DESIGN AND MODAL ANALYSIS TO CALCULATE CRITICAL SPEED OF SHAFT

Shelar Santosh Ashok¹, Gondkar Suryakant Ashok², Prof. Kadam Abhijit³

^{1,2}Student, Mechanical Department, P.G.Moze College of Engineering, (India)

³Assistant Professor, Mechanical Department, P.G.Moze College of Engineering, (India)

ABSTRACT

Present paper deals with design, analysis and development of critical speed measurement machine for various diameters and lengths of shaft. Everybody has its own frequency it is called natural frequency. When the working frequency matches with natural frequency, resonance will be occurs at certain speed this speed is called 'critical speed'. In general it is very important to determine the critical speed to avoid the breakdown of rotating machine. By knowing the critical speed we run the machine above or below that critical speed. In this project we determine the critical speed of shaft by the experimental analysis. First we calculate the natural frequency of shaft by theoretical and modal analysis (Ansys Software). Natural frequencies at different speed for various diameter of shaft are evaluated and compared in this project.

Keywords: Critical speed, Natural frequency, Modal analysis, Resonance

I INTRODUCTION

All rotating shafts, even in the presence or absence of an external load due to self weight, will cause deflection during the rotation. Due to the combined weight of a shaft and shaft-mountings can cause the deflection which will create or further lead to the resonant vibrations at certain speed. These speeds are generally known as 'critical speed'. Therefore, calculation of critical speed for any shaft is necessary in order to avoid the resonance of shaft [2].

At the critical speed, the shaft is subjected to violent (frequent) vibrations in the 'transverse direction' that of the axis of rotation. These excessive vibrations, associated with the critical speed, may lead or cause the permanent deformation of the shaft. This subjected to structural damage. Also the large shaft deflection at the critical speed, include large bearing reactions and may subjected to bearing failure [1].

The all type of discontinuities are unavoidable, due to assembly, manufacturing and application considerations, which all ensure that the centre of gravity of shaft can't coincides with the axis of rotation.


The main objective of the project is to measure the critical speed with the help of 'modal analysis', 'theoretically' first and then compare it with the 'practical' (experimental) value.

II CRITICAL SPEED

When the working frequency matches with natural frequency, resonance will be occurs at certain speed this speed is called 'critical speed'.

The fig.1 shows, the shaft vibrates with maximum amplitude that is working frequency matches with first natural frequency at that point we obtained the first mode of whirl at that point we get a 'first critical speed' of shaft.

The fig. 2 shows, the working frequency matches with second natural frequency at that point we obtained the second mode of whirl, this means at that point we get 'second critical speed' of shaft.

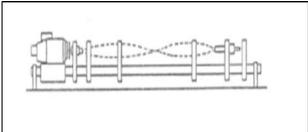


Fig.1: First Mode of Whirl [2]

Fig. 2: Second Mode of Whirl [2]

NATURAL FREQUENCY

Natural frequency is the frequency at which a body tends to oscillate (vibrates) in the absence of any external force (example: driving force or damping force).

III CRITICAL SPEED EQUATION

 f_n = Natural Frequency, Hz

N = Mode number i.e. 1,2,3...

I = Moment of inertia of shaft

E = Young's Modulus (GPA)

W = Weight of shaft per meter length

L = Length of shaft (m)

g = Acceleration due Gravity (m/s²)

International Journal of Advance Research in Science and Engineering

Volume No.07, Special Issue No.04, April 2018

www.ijarse.com

ISSN: 2319-8354

Formula for Critical Speed [2],

$$f_n = \frac{\pi}{4} \left[N + \frac{1}{2} \right]^2 \sqrt{\frac{g \times E \times I}{W \times L^4}}$$

IV CALCULATION

Natural Frequency for Diameter (D) =0.004m and Length (L) =1m

We Know the Formula

$$f_n = \frac{\pi}{4} \left[N + \frac{1}{2} \right]^2 \sqrt{\frac{\mathsf{g} \times \mathsf{E} \times \mathsf{I}}{\mathsf{W} \times \mathsf{L}^4}}$$

i. For Node one, D=0.004m, L=1m

$$f_n = \frac{\pi}{4} \left[N + \frac{1}{2} \right]^2 \sqrt{\frac{9.81 \times 200 \times 10^9 \times 1.26 \times 10^{-11}}{0.96 \times 1^4}}$$

$$f_n = 3.534 \times 5.0745$$

$$f_n = 17.93 \text{ Hz}$$
 For 1st Mode

ii. For Node Two, D=0.004m, L=1m

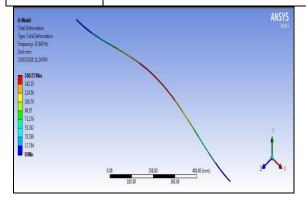
 $f_n = 9.817 \times 5.0745$

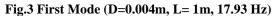
Similarly by Calculating the Frequencies for D = 6mm, 8mm and Length L = 1m, 0.9m, the values are shown in following table 1.

Table 1: Natural Frequency For different diameter and length

Sr. No.		Length	Diameter	Natural Frequency	Theoretical Value
A	i		0.004m	First Freq.	17.93 Hz
	-		0.00 1.11	Second Freq.	49.81 Hz
	ii	1m	0.006m	First Freq.	26.82 Hz
			0.00011	Second Freq.	74.25 Hz
	iii		0.008m	First Freq.	35.52 Hz

				Second Freq.	98.63 Hz
В	i	0.9m	0.004m	First Freq.	22.20 Hz
				Second Freq.	61.24 Hz
	ii 0.9m		0.006m	First Freq.	33.14 Hz
		0.000	Second Freq.	91.42 Hz	
	iii		0.008m First Freq. Second Freq.	44.48 Hz	
				Second Freq.	122.21 z


V MODAL ANALYSIS OF SHAFT


For finding the natural frequency we have done the modal analysis of shaft in Ansys (R14.5) By putting the engineering data of shaft and fix the both end of shaft, we have find six modes of vibration the first mode frequency is called natural frequency. Modal Analysis for Various Diameter and Length as Show in Fig 3,4,5,6,7,8,9,10 etc.

The Modal Analysis for various diameter and length of shafts as shown in below table 2.

Table 2: Properties for Spring Steel Material (0.48C, 0.75Mn, 0.40P, 0.40S, 0.20Si, 0.40Ni, 0.40Cr, 0.15Mo) [8]

Sr. No.	Property	Value	Unit
1	Young's Modulus (E)	207	GPa
2	Density	7860	Kg/m ³
3	Poisson's Ratio	0.3	-
4	Ultimate Tensile Strength	1350	MPa
5	Yield Strength	1200	MPa

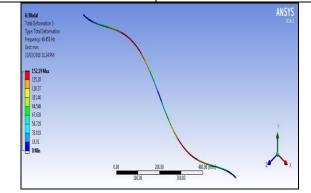


Fig.4 Second Mode (D=0.004m, L=1m, 49.55 Hz)

International Journal of Advance Research in Science and Engineering Volume No.07, Special Issue No.04, April 2018

www.ijarse.com

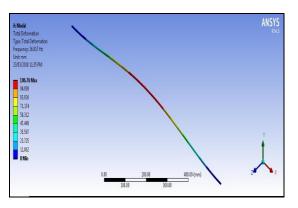


Fig.5 First Mode (D=0.006m, L= 1m, 26.917 Hz)

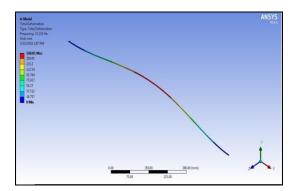


Fig.7 First Mode (D=0.004m, L= 0.9m, 22.152 Hz)

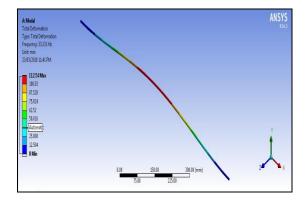
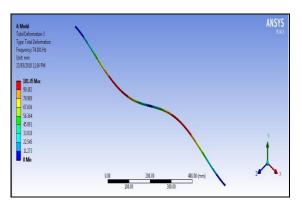



Fig.9 First Mode (D=0.006m, L= 0.9m, 33.230 Hz)

IJARSE

ISSN: 2319-8354

Fig.6 Second Mode (D=0.006m, L=1m, 74.181 Hz)

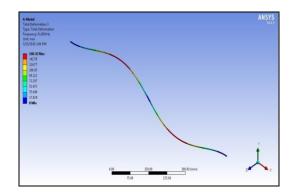


Fig.8 Second Mode (D=0.004m, L=0.9m, 61.054 Hz)

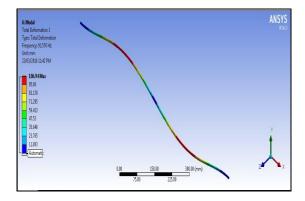


Fig.10 Second Mode (D=0.006m, L=0.9m, 91.576 Hz)

Table 3: Modal Frequency For different diameter and length by Modal Analysis

Sr. No.		Length	Diameter	Modal Frequency	Modal Analysis Value
A	i	1m	0.004m	First Mode	17.943 Hz
				Second Mode	49.455 Hz
	ii		0.006m	First Mode	26.917 Hz
		1		Second Mode	74.180 Hz
	iii		0.008m	First Mode	35.880 Hz
				Second Mode	98.880 Hz
В	i		0.004m	First Mode	22.152 Hz
	1		0.004111	Second Mode	Analysis Value 17.943 Hz 49.455 Hz 26.917 Hz 74.180 Hz 35.880 Hz 98.880 Hz
	ii	0.9m	0.006m	First Mode	33.230 Hz
				Second Mode	91.576 Hz
	iii		0.008m	First Mode	44.302 Hz
				Second Mode	122.06Hz

VI CONCLUSION

From table 1 and table 3 the theoretical values as well as modal analysis values of natural frequency are approximately equal.

ACKNOWLEDGEMENTS

We heartly felt thanks to Asst. Prof. Kadam Abhijit, our project guide who helped us to bring out this project in good manner with his precious suggestion and rich experience. We take this opportunity to express our sincere thanks to our project guide for cooperation in accomplishing this project with a satisfactory conclusion We wish to thank our Head of Department Asst. Prof. More Vinayak and seminar Co-ordinator Asst. Prof. Kadam Abhijit and entire Mechanical Department, teaching and Non-teaching staff who guided and helped we immense.

REFERENCES

[1] Ankit J. Desai, Devendra A. Patel, Pranav B. Patel, "Analysis of whirling speed and Evaluation of self-excited motion of the rotating shaft", International Journal of Engineering Sciences & Research Technology. (July 2014).

- [2] Mr. Balasaheb Keshav Takle, "Experimental Investigation of Shafts on Whirling of Shaft Apparatus", International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3. (8th August 2014).
- [3] A.C. Babar, A.A. Utpat, "Vibration Analysis of Misaligned Rotating Shaft", International Journal of Mechanical Engineering and Information Technology. (June 2014).
- [4] E. DOWNHAM, B.Sc. (Eng.), A.F.R.Ae.S. "The Critical Whirling Speeds and Natural Vibrations of a Shaft Carrying a Symmetrical Rotor", Aeronautical Research Council Reports and Memoranda. (7th March 1955).
- [5] N. Lenin Rakesh, A. Thirugnanam and Mike Vaultine, "Analysis of Critical Speed of Shaft Using C and MATLAB", Middle-East Journal of Scientific Research 12 (12): 1678-1682. (12th December 2012).

BOOKS:

- [6] Mechanical Vibration (S. S. Rao)
- [7] Design of Machine Elements (V. B. Bhandari)
- [8] ASME Material Handbook