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ABSTRACT 

Aim of this paper is to derive the transient term of velocity profile for pulsatile flow of blood. This term has not 

been given proper attention in available literature. It is assumed to be negligible compared to other terms. The 

effects of initial conditions on the analytic solution of the pulsatile flow of blood are investigated. The governing 

equation of motion is solved using two different initial and boundary conditions given by Lightfoot [1] and Sud 

and Sekhon [2] The change in velocity expression is observed only in transient term. Comparative values of the 

transient term for two different initial conditions are given in Table-1. Comparison of the magnitudes of 

transient, steady state and oscillatory forms in the velocity expression when body force G = 0.0 and 1.0g are 

made through Tables-2 and 3, respectively. Variation of velocity transient term with viscosity is shown through 

Fig. 1 and variation of its magnitude with time when body force G = 0.0 and 1.0g are presented through Fig. 2 

to 5. 

Keywords:Blood, body force, circular tube, pressure gradient, pulsatile, transient term. 

 

I.INTRODUCTION 

In the literature of pulsatile flow of blood, two mathematical methods have been used to study the flow 

characteristics. The first one is method of separation of variables, used by Womersley[3],  Lightfoot [1], Verma 

and Sharma [4], Milnor[5], Sharma, Ariel and Chaturani [6] and Sharma and Mishra [7] etc. In this method, 

flow velocity was considered of the form:  

   ruetru z

ti

z

, .  …(1) 

The other method is namely integral transform technique, which has been used by Chaturani and Rathod [8] and 

Sud and Sekhon [2] etc. It is noticed that the solutions obtained by above mentioned methods are exactly same 

with only one major difference. The second method (integral transform technique) gives transition term, which 

is many a time quite important. Where as, in the first method, it has been assumed that steady state pulsatile 

flow is of the form of the total force.  

It appears that some researchers (Sud and Sekhon [2], Chaturani and Palanisamy [9 and 10] etc.) had a feeling 

that the duration of the transient time and the magnitude of the flow variables in transient time is small in 
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comparison to oscillatory period and the magnitude of the amplitude of the steady state oscillatory part of the 

flow variables, hence the transient quantities have not been computed, in literature. 

In this paper, aim is to derive transient term of velocity profile for pulsatile flow of blood through a circular 

tube. Then the effects of initial conditions on the analytic solution of the pulsatile flow of blood are investigated.  

 

II. GOVERNING EQUATIONS OF MOTION 

Assuming blood to be viscous, incompressible and Newtonian fluid, and the tube wall to be rigid and very long 

compared to its diameter, flow to be symmetric about tube axis, the variation of velocity along the tube length to 

be small in comparison to the rate of change of velocity with respect to time and radial distance, and the 

frequency of body acceleration be small so that the wave effect can be neglected. Under these assumptions, the 

governing equation of motion for the flow of blood in the presence of body force through a circular tube in a 

cylindrical polar coordinate system is given by:  
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where fand  are the density and viscosity of blood respectively, zu  is the axial component of velocity, z 

is axial distance and t is time and r is the radial coordinate. G is the body force in axial direction in terms of 

Fourier series (Kreyszig [11]) given by: 

 

 G=     





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mbmmbm tmbtmaa                     …(3) 

bbb ff ,2   is its frequency with zp  , m  is its phase difference, a0, am and bm are Fourier coefficients 

and p is the pressure which is a function of t and z: 
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ppp ff ,2   is heart pulse frequency and A0, An and Bn are Fourier coefficients.  

 

The governing equation of motion is solved by using two different initial and boundary conditions as mentioned 

below 

 

(i) Initial and boundary conditions considered by Lightfoot [1] are: 

When t = o;   00, uruz   (const.),  

When t > 0; r = 0:  tuz ,0  is finite, r = R:  tRuz ,  = 0.            …(5) 
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(ii) Initial and boundary conditions considered by Sud and Sekhon [2]) are: 

 

When t = 0;  
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When t > 0;  r = 0:  tuz ,0  is finite, r = R:  tRuz ,  = 0.         …(6) 

 

III.METHOD OF SOLUTION 

Applying Laplace transformation (Sneddon [12] and Kreyszig [11]), the solution of the equation (2) is obtained 

of the form given by: 
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              + Transient term ( tu ).                          …(7) 

where i = 1 , J0   is the Bessel function of  zeroth order  with complex argument.  

For first initial and boundary conditions (5), the transient term 1tu  is obtained and given by:  
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where
2Rf    and 1 , 2 ,…… k  are the zeros of the Bessel function  J0  given by: 

   














f

si
RJ



2

0 =0.  

When the equation (2) is solved under initial and boundary conditions (6), then steady pulsatile part of 

the solution remains same but the expression for transient term changes and the changed form of transient term 

2tu  is given by: 
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Now both transient terms 1tu and 2tu  can be written as given below: 
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It is observed that both the transient terms 1tu and 2tu  are different to each other. For the first initial 

condition   00, uruz  , the difference of term in 1tu  is  2

00 kuA  . While for the second initial 
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IV. RESULTS AND DISCUSSION  

It is very interesting to note that the steady state and oscillatory part of the solution are unaffected by the initial 

conditions, only transient term is influenced by initial conditions. It is further noticed that the analysis (variable 

separable) used by Womersley [3] gives only steady state oscillatory part of the flow; it does not give transient 

part of the solution. The transient part of the flow can be obtained by transform techniques (Sud and Sekhon [2]) 

 A comparison of two transient terms [Equations (10) and (11)] for the two different initial conditions is given in 

Table -1. The only change is in the transient term and the steady pulsatile part of the solution remains 

unaffected. This appears reasonable from physical viewpoint, since the driving force will force the flow to be 

steady pulsatile of a form similar to driving force in due course, irrespective of the initial conditions.  

It is observed that the magnitude and duration of transition in the two cases are quite different. Because with the 

change of state (sitting to walking or during play, the fast changes instate can occur), this term could be 

important while determining performance or work done on arterial walls. The oscillation in wall shear at higher 

wall shear could be more injurious to the wall muscle. This term has not been given the desire attention in 

literature. 

It is also observed from Fig. 1 that the transient time for velocity decreases as the blood viscosity increases. A 

comparison of magnitudes of transient, steady state and oscillatory terms in the velocity expression is shown in 

Table- 2 and 3. It is observed that magnitude of the transient term is comparable with magnitude of the steady 

state term. Hence it is not insignificant to be left out. 

Fig. 2 to 5 show variation of magnitude of transient term (velocity) with time for the flow with and without body 

force. It can be seen that the transient time is more than the time period of the flow.  Again, it is noticed that 

transient time and the magnitude of flow variables in transient time are significant for flow with and without 

body force.  

Table-1. Comparison of the transient term for two different initial conditions 

k Transient term 1tu  Transient term 2tu  

1      5416.6 11 CD   11972.32 11 CD   

2 18218.99 22 CD   11972.32 22 CD   

3 32330.31 33 CD   11972.32 33 CD   

4 43992.68 44 CD   11972.32 44 CD   
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Table-2. Comparison of the magnitudes of transient, steady state and oscillatory terms in the velocity expression  

when G = 0.0g. 

 

t 

(sec.) 

Magnitude of the 

transient term 

(m/sec.) 

Magnitude of the 

steady state term 

(average) (m/sec.) 

Maximum amplitude of the 

oscillatory term over steady 

state term (m/sec.) 

0 3.61  0.46 0.7 

0.89 3.05  0.46 0.7 

45.0 1.98 
410   0.46 0.7 

 

Table-3. Comparison of the magnitudes of transient, steady state and oscillatory terms in the velocity expression  

when G = 1.0g. 

 

t 

(sec.) 

Magnitude of the 

transient term 

(m/sec.) 

Magnitude of the 

steady state term 

(average) (m/sec.) 

Maximum amplitude of the 

oscillatory term over steady 

state term (m/sec.) 

0 60.43  56.36 2.0 

0.89 52.14  56.36 2.0 

45.0 3.52 
310   56.36 2.0 

 

 

Fig. 1. Variation of velocity transient term with viscosity f  when pf =1.2 Hz. 
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Fig. 2. Variation of magnitude of transient term (velocity) with time when G = 0.0g. 

 

 

 

Fig. 3. Variation of magnitude of transient term (velocity) with time when G = 0.0g. 
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Fig. 4. Variation of magnitude of transient term (velocity) with time when G =1.0g. 

 

V.CONCLUSION 

It is observed that the flow expression consists of two parts, the basic steady pulsatile part (steady part and 

oscillatory part) and the transient part. In this paper, mathematical model with transient term is discussed for 

pulsatile flow of blood through a circular tube. By applying two different initial conditions (Lightfoot [1] and 

Sud and Sekhon [2]), it is shown that a change in the initial condition leads to a change only in the transient 

term, the basic steady pulsatile term remains unaffected. It is observed that the effects of transient term are 

significant, in comparison to steady pulsatile term, before the transient time approximately 60 sec.  

Many researchers [Sud and Sekhon [2] etc.] argued that the transient time is very small in comparison to the 

period of the system. Other researchers (Chaturani and Palanisamy [9 and 10]) found the transient time is quite 

large for pulsatile flow with and without body forces. Further, it is observed that the magnitude of the velocity in 

transient time is not small compared to amplitude of the oscillatory part (Table- 2 and 3) in some situations.  

It is observed from Fig. 1 that the effects of the blood viscosity on the transition time of all the flow variables 

are quite significant and the blood viscosity appears to be an important factor in this study. The quantitative 

details of transient flow are provided in this paper. Hence, the inputs for the mathematical models are improved 

and efforts are made to make the models more realistic. 
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