### IRE1 a dynamic molecular platform linking diverse cellular functions: A quantitative proteomic analysis.

### Samirul Bashir<sup>1\*</sup>, Mariam Banday<sup>1\*</sup>, Arif Bashir<sup>1</sup>, Sneha Pinto<sup>2</sup>, Keshava Prasad<sup>2</sup>, Khalid Majid Fazili<sup>1#</sup>

1 (Department of Biotechnology, University of Kashmir, India)
2 (YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, India)

#### **ABSTRACT**

IRE1 branch of unfolded protein response (UPR) signalling network represents the highly conserved pathway of all the three and provides a major platform for deciding the fate of the cells under stress. IRE1 is a type I transmembrane protein with dual enzyme activity, kinase and endoribonuclease localized to ER membrane. Upon activation, IRE1 catalyse the non-canonical splicing of hac1 mRNA in yeast and xbp1 mRNA in humans. In addition, IRE1 degrades a subset of mRNAs localized to ER by process, termed as Regulated IRE1 Dependent Decay (RIDD). IRE1 acts as a platform in order to orchestrate with other signalling pathways. A number of proteins either acting as inhibitors or cofactors of IRE1 have been found to interact and modulate the IRE1 signalling pathway, the concept which introduced 'UPRosome' as a signalling platform. We performed immuno pull down of IRE1 associated factors, followed by Mass Spectrometric analysis. Proteins belonging to diverse cellular functions were found to interact with IRE1. These proteins were divided into 19 different functional clads. In addition we found that these proteins interact with IRE1 in a stress dependent manner. Our results thus imply that IRE1 is at the centre of intricate cellular networks.

Keywords:ER stress, Proteomic analysis, IRE1, UPR, UPRosome

#### **I.INTRODUCTION**

Endoplasmic reticulum is the largest single membrane bound intracellular compartment is associated with proper maturation and secretion of proteins, which enter the lumen. ER stress, induced by external or internal cues, activates a well-orchestrated process aimed at either restoring cellular homeostasis or committing to cell death and is mediated by engagement of an integrated signal transduction-transcriptional network known as unfolded protein response (UPR) [1-3].

The IRE1 (Inositol requiring enzyme 1) arm of UPR is the most evolutionarily conserved and ancient of the three and it aims to increase cells protein folding ability by inducing chaperone synthesis and facilitating removal of misfolded proteins. IRE1 is a dual function enzyme with both kinase and nuclease activities.

Activation of UPR results in IRE1 dimerization and trans auto-phosphorylation of its kinase domains, which in turn activates its RNAse activity and catalyses splicing of XBP1mRNA. Splicing of XBP 1 results in formation of an active transcriptional factor XBP 1protein which induces a plethora of genes involved in protein folding and lipid biosynthesis [4]. Besides XBP 1 splicing, IRE1 also cleaves ER associated mRNAs leading to their decay an activity termed as Regulated IRE1 Dependent Decay (RIDD) [5]. RIDD degrades `ER localized mRNAs preferentially by cleaving them at XBP1 like consensus site [6]. WhereasXBP1 splicing is cytoprotective in response to ER stress RIDD has revealed many unexpected features. For instance RIDD has an activity divergent from XBP1 splicing and can either preserve ER homeostasis or induce cell death [7].

Apart from its endoribonuclease activity, IRE1 also perform diverse cellular functions by binding directly with adaptor proteins. TNFR-associated factor 2 (TRAF2), an adaptor protein binds to the cytosolic region of IRE1 and initiate the process of apoptosis by activation of downstream signalling molecules like apoptosis signal-regulating kinase 1 (ASK1) and cJun-N terminal kinase (JNK) [8-10]. Ire1 also initiates autophagy by binding to other adaptor molecules and JNK [11]. IRE1 communicates to ERAD pathway through binding with ubiquitin specific protease (USP) 14, DERLIN-1, DERLIN-3, SEL1, and HRD1, [12]. IRE1 represents a huge platform for diverse protein-protein interactions, allowing the assembly of a protein complex referred as UPRosome [13, 14]. This model would be useful in addressing how IRE1 performs distinct and diverse cellular functions. Dynamic association and dissociation of different proteins would result in different cellular outputs.

In this study we performed proteomic analysis to understand the multitude of cellular functions performed by IRE1. Our results revealed that IRE1 interacts with proteins involved in multitude of cellular processes like apoptosis, autophagy, redox response, mitochondrial functions, cytoskeleton and RNA binding. These results suggest that IRE1 might aid in various cellular functions by directly binding to factors involved in respective pathways.

#### II.MATERIALS AND METHODS

#### 2.1 Cell Culture, Reagents and Antibodies

HEK-T cells were maintained in Dulbecco's modified Eagles medium (Gibco by Life Technologies) supplemented with 10% fetal bovine serum (Gibco by Life Technologies) and 1 × penicillin-streptomycin solution (Gibco by Life Technologies) at 37°C in a humidified incubator with 5% CO2. The protease inhibitor cocktail was purchased from Calbiochem and used according to the manufacturer's instructions. Tunicamycin (UPR inducer) was purchased from Calbiochem. Protein G Resin was purchased from GeneScript. Anti-IRE1 (Phospho S724) was purchased from Abcam.

#### 2.2 Cloning

IRE1 alpha-pcDNA3.1-EGFP clone (#13009) was purchased from Addgene Inc., and used as a template for Ire1 cloning. Ire1 insert (2.9) kb was excised from this clone as HindIII and XhoI fragment and cloned at pcDNA 3.1(+) vector (5.4 kb) at HindIII and XhoI site using the standard cloning methods.

#### 2.3 Immuno-precipitation

HEK T cells were transfected with pcDNA3.1 (+) clone using PEI transfection reagent. Cells with Ire1 clone transfected and without transfection were treated with  $6\mu M$  of tunicamycin for 5 hrs. As a control, similar experiments were performed on cells without tunicamycin treatment. Cells were harvested in cold Tris-buffered saline. Then 120ul of lysis buffer (20 mM Tris-Cl, pH 8.0, 137 mM NaCl, 0.01% NP-40, and 2mM EDTA, 0.1% glycerol, NaF 10mM,  $\beta$ -glycerolphosphate, 1X protein inhibitor cocktail) was added and incubate on Ice for 1hour. After centrifugation supernatant was collected. Protein G Resin was incubated with 2ug of antibody overnight and next day protein lysate was added and again incubated overnight. Beads were then washed with 1X lysis buffer and eluted with 2X loading dye. Samples were then run on 12% SDS page. Stained with Coomassie blue and destained gel to a clear background so that bands were easily seen. Gel slices were prepared corresponding to each sample. For immunoprecipitation assay, Anti-IRE1 (phospho S724) antibody was used.

#### 2.4 Sample preparation and mass spectrometry analysis

For Mass spectrometry analysis, proteins were eluted from gel slices followed by reduction and alkylation of cysteine residues. The proteins were then treated with TPCK-trypsin (Promega, Madison, WI) for 16 h at 37 °C. The peptides were resuspended in 0.1% formic acid, desalted using C18 StageTips and analyzed by nano LC-MS on a hybrid quadrupole-orbitrap mass spectrometer (Orbitrap Fusion Tribrid mass spectrometer, Thermo Scietific). The raw data obtained after analysis was searched using Proteome Discoverer suite (Thermo scientific). Mascot and Sequest search engines were used to search the LCMS/MS data against human RefSeq protein databases. Carbamidomethylation of cysteine was used as a fixed modification and oxidation of methionine as a variable modification. FDR was calculated by employing decoy database searches to avoid false positive identifications. Only proteins that were absent in the control condition were considered as potential interaction partners.

### **III.RESULTS**

### 3.1 Cloning of Ire1 and pull-down of IRE1 associated factors

Ire1 gene was cloned in a mammalian expression vector pcDNA3.1 (+). The clone was confirmed by digesting the extracted plasmids with HindIII and XhoI restriction enzymes. Digested products were checked on agarose gel. We could see a release of 2.9 kb insert and 5.4 kb vector backbone (Fig1). The clone was transiently transfected in HEKT cell line and checked for its expression. Different experiments sets viz untreated (Mock-T), Tm treated (Mock), Ire1 transfected without treatment (Ire1 -T) and Ire1 transfected and Tm treated (Ire1+T) were subjected to immune-pull down using anti-IRE1 (phospho S724) antibody (Fig2). Tunicamycin (Tm) is an N-glycosylation inhibitor, which induces UPR. (Mock -T) represents a control, whereas (Mock +T), (Ire1 -T), (Ire1+T) represent different levels of ER stress and Ire1 activation.

#### 3.2 Proteomic analysis of Ire1 interactors

To identify interacting partners of IRE1 proteomic analysis of the four different IP experimental sets was performed using mass spectrometry. More than 150 proteins were found to potentially interact with Ire1 in different experimental sets in comparison to control (Mock –T). These proteins were differentially present in different experimental sets. There was a set of proteins found in all the three experimental sets (Table1). Another set of proteins was only present in tunicamycin treated and Ire1 overexpressed sample (Ire1 +T) (Table2). Surprisingly there were some proteins exclusively present in Ire1 overexpressed sample without any treatment (Mock –T) (Table3). Next we divided these proteins based on their functions using NCBI web search. There were around 19 functional groups of these proteins (Fig3). These functional groups include Metabolism (16%), RNA binding proteins (14%), Transport Proteins (12%), Cytoskeleton (9%), Protein Modification system (7%), Protein folding (6%), Mitochondrial biology (5%), DNA Repair (5%), Translation (5%), Cell cycle (5%), Cell signalling (4%), Cell proliferation (3%), Gene expression (2%), Apoptosis (3%), Membrane component (2%), Autophagy (1%), Nucleosome (1%), Oxidative pathway (1%), and immune Response (1%).

#### IV. DISCUSSION

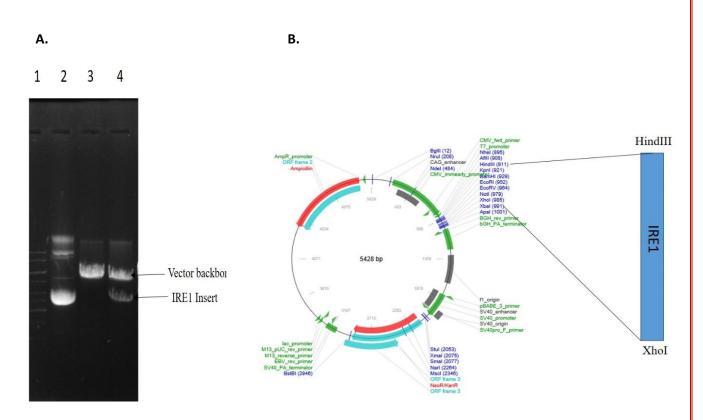
IRE1, a transmembrane signalling protein that represents the start point of one of the UPR signalling cascades, is highly conserved and a major platform deciding the cell fate, is endowed with kinase and endoribonuclease activities. Upon activation the ribonuclease activity of IRE1 results in xbp 1 splicing, and in addition cleaves ER associated mRNAs leading to their decay, an activity termed as Regulated IRE1 Dependent Decay (RIDD). RIDD & XBP-1 splicing can be activated differentially, suggesting an unanticipated complexity in UPR. [4-7]

Many studies have described various UPR binding partners with particular reference to IRE1, giving rise to the concept of 'UPRsome'- a dynamic signalling platform in which many regulatory and adaptor proteins assemble to activate and modulate downstream cascade of UPR [13]. The list of proteins interacting physically with IRE1 and modulating its activity are many which include proteins with wide range of functions from cytosolic chaperones like HSP 72, pro-apoptotic proteins BAX and BAK, MAPK related proteins like ASK1-interacting protein1 (AIP1), JNK inhibitory kinase (JIK), JUN activation domain binding protein1 (JAB1) to protein Tyr phosphatase1B (PTP1B) [15-20]. This implies that UPRosome acts as a molecular platform in order to orchestrate with other signalling pathways.

Our proteomic studies revealed that IRE1 interacts with multitude of protein factors spanning over diverse cellular pathways. Around 19 clads of proteins based on their functional types were found to interact with IRE1. Largest functional clad among them is metabolic proteins, which were found to interact with IRE1. These proteins mostly include those involved in glucose metabolism. In a previous study it was found that inhibition of glucose metabolism affected the phosphorylation status of IRE1 [21]. This finding corroborates our data for having the connecting link of IRE1 with glucose metabolism. The next richest clad involved the RNA binding proteins. These proteins include mostly ones which are involved RNA processing and transport. The other group covered the cytoskeleton proteins, which are already known to have role in in stabilizing the IRE1 structure and

activation [22]. Proteins involved in cell proliferation and cell cycle regulation were also found to interact with IRE1 possibly indicating the role of IRE1 in cell division, which highlights the important function of Ire1 as a cell fate executor.

Our study revealed that IRE1 interacts with proteins involved in apoptosis that which is reinforced by many other studies. These studies included the interaction between key apoptotic transducers like TRAF2 (8, 9), BCL2 family proteins, such as BAX and BAK, and the BI-1 BCL2 regulatory protein [23]. Thus these protein-protein interactions serve as the convergent points of different pathways, which cumulatively send pro-death signals leading to apoptosis. Previous studies have confirmed the existing link between autophagy and UPR with IRE1 as a central molecule [24]. This supports our data that demonstrates a physical connection between proteins involved in autophagy and IRE1. The link between ER and Mitochondrion commonly known as mitochondria-associated ER membranes (MAMs) unravelled a crucial role for ER in cell death regulation [25, 26]. MAMS are predominately presided by IRE1 [27, 28], which supports our data where mitochondrial proteins were found to interact with IRE1.


Besides the functional crosstalk of IRE1 our study indicated that proteins interacting with IRE1 showed differential association under varied experimental conditions. One set of proteins showed ubiquitous association with IRE1 irrespective of the experimental conditions [table1]. It highlights that the presence of these proteins in UPRosome might be independent of the levels of IRE1 activation and reasonably the oligomerization state. While the other two sets of proteins showed varied association depending on the presence of UPR inducer [table 2, table 3]. The UPR induction and IRE1 over-expression individually or in combination imitates the different levels of IRE1 activation and, therefore suggest the reason that binding partners of IRE1 are dependent on its activation/oligomerization state. In fact this argument is supported by previous studies from other groups [7, 29]. Therefore it could be put forth that the extent of ER stress and IRE1 oligomerization regulates the association of different proteins in the UPRosome in a dynamic manner.

Our study captured an overall picture that presents IRE1 as a central molecule orchestrating the diverse cellular pathways. This cumulatively sends a downstream signal regulating cell's important functions including cell fate determination. However these interactions need to be individually validated and functionally characterized, in order to get detailed mechanistic insights of the IRE1's communicating partners and the factors, which govern them.

#### V.FIGURES AND TABLES

ISSN: 2319-8354

### **5.1 Figures**



В

Figure 1. Cloning of Ire1 gene in Mammalian Expression Vector A.) Agarose gel electrophoresis showing restriction digestion pattern of Ire1 clone. Lane 1 1kb DNA, lane 2 undigested clone, lane 3 vector digested with HindIII and XhoI enzyme, and lane 4 Ire1 clone digested with HindIII and XhoI enzyme. B.) Shows a vector map of pcDNA3.1 (+) IRE1 clone.

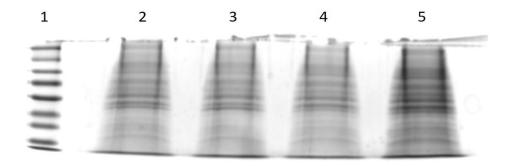



Figure 2. IRE1 pull down: Immuno-precipitated proteins were run on 12% SDS PAGE stained with Coomassie blue. Lane 1, pre-stained protein marker, lane2 Mock -T, lane3 Mock +T, lane4 Ire1 -T, and lane5 Ire1 +T.

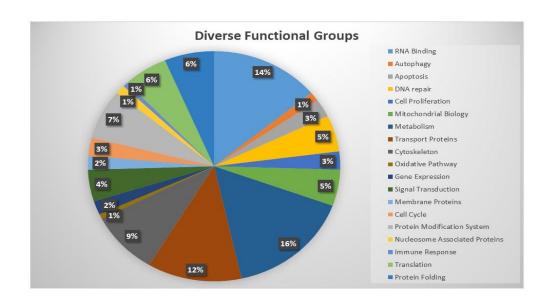



Figure 3: IRE1 interacting partners divided according to their functional clads.

### **5.2 Tables**

Table1 IRE1 interacting partners present in all experimental sets viz [Mock +T], [Ire1 -T], [Ire1 +T]

| Gene symbol | Description                                                   | Coverage | MW      | calc. | Score    |
|-------------|---------------------------------------------------------------|----------|---------|-------|----------|
|             |                                                               |          | [kDa]   | pΙ    | Mascot   |
| AARS        | alaninetRNA ligase, cytoplasmic                               | 4.64876  | 106.743 | 5.53  | 442.34   |
| ADSL        | adenylosuccinate lyase isoform a                              | 4.132231 | 54.854  | 7.11  | 186.5651 |
| ANKHD1-     | ANKHD1-EIF4EBP3 protein                                       | 0.840657 | 277.004 | 5.86  | 117.71   |
| EIF4EBP3    |                                                               |          |         |       |          |
| ARCN1       | coatomer subunit delta isoform 1                              | 3.913894 | 57.174  | 6.21  | 170.7514 |
| ARL6IP5     | PRA1 family protein 3                                         | 4.787234 | 21.6    | 9.77  | 85.06    |
| ATAD3A      | ATPase family AAA domain-containing protein 3A isoform 1      | 14.51104 | 71.325  | 8.98  | 636.2529 |
| ATP2A2      | sarcoplasmic/endoplasmic reticulum calcium ATPase 2 isoform b | 4.894434 | 114.683 | 5.34  | 121.1921 |
| CANX        | calnexin precursor                                            | 6.756757 | 67.526  | 4.6   | 191.4423 |
| CBR1        | carbonyl reductase [NADPH] 1 isoform 1                        | 3.249097 | 30.356  | 8.32  | 0        |
| CCZ1        | vacuolar fusion protein CCZ1 homolog                          | 3.526971 | 55.83   | 6.48  | 112.98   |
| CDC37       | hsp90 co-chaperone Cdc37                                      | 2.380952 | 44.44   | 5.25  | 24.86    |
| CKAP4       | cytoskeleton-associated protein 4                             | 3.156146 | 65.983  | 5.92  | 49.4371  |
| DARS        | aspartatetRNA ligase, cytoplasmic isoform 1                   | 11.57685 | 57.1    | 6.55  | 170.3874 |
| DDB1        | DNA damage-binding protein 1                                  | 5.614035 | 126.887 | 5.26  | 36.52333 |
| DDX46       | probable ATP-dependent RNA helicase DDX46 isoform 1           | 1.744186 | 117.389 | 9.29  | 38.94    |
| DDX5        | probable ATP-dependent RNA helicase DDX5 isoform b            | 17.58958 | 69.044  | 8.85  | 465.4743 |

| DNAJC7   | dnaJ homolog subfamily C member 7 isoform 1                        | 7.08502  | 56.405  | 6.96 | 192.684  |
|----------|--------------------------------------------------------------------|----------|---------|------|----------|
| EZR      | ezrin                                                              | 2.901024 | 69.37   | 6.27 | 38.10566 |
| FECH     | ferrochelatase, mitochondrial isoform a precursor                  | 4.895105 | 48.594  | 8.72 | 44.11    |
| FKBP4    | peptidyl-prolyl cis-trans isomerase FKBP4                          | 6.753813 | 51.772  | 5.43 | 82.08657 |
| GANAB    | neutral alpha-glucosidase AB isoform 3 precursor                   | 2.691511 | 109.369 | 6.24 | 167.9868 |
| GARS     | glycinetRNA ligase isoform 1 precursor                             | 5.142084 | 83.113  | 7.03 | 307.5718 |
| GART     | trifunctional purine biosynthetic protein adenosine-3 isoform 1    | 4.950495 | 107.699 | 6.7  | 44.72667 |
| GLG1     | Golgi apparatus protein 1 isoform 1 precursor                      | 1.745636 | 137.132 | 6.9  | 191.1414 |
| GLUL     | glutamine synthetase                                               | 2.680965 | 42.037  | 6.89 | 157.21   |
| GOLGA2   | golgin subfamily A member 2                                        | 3.293413 | 113.017 | 5.02 | 150.1353 |
| HNRNPA1  | heterogeneous nuclear ribonucleoprotein A1 isoform b               | 4.83871  | 38.723  | 9.13 | 512.6586 |
| HNRNPR   | heterogeneous nuclear ribonucleoprotein R isoform 1                | 3.144654 | 71.17   | 8.13 | 137.9293 |
| HNRNPUL1 | heterogeneous nuclear ribonucleoprotein U-like protein 1 isoform a | 7.71028  | 95.679  | 6.92 | 120.099  |
| HSPA4L   | heat shock 70 kDa protein 4L isoform 2                             | 5.057471 | 97.597  | 5.95 | 106.0278 |
| KARS     | lysinetRNA ligase isoform 2                                        | 5.862647 | 68.005  | 6.35 | 233.6875 |
| KTN1     | kinectin isoform a                                                 | 2.800295 | 156.179 | 5.64 | 189.3934 |
| LAP3     | cytosol aminopeptidase                                             | 5.202312 | 56.131  | 7.93 | 324.0894 |
| LETM1    | LETM1 and EF-hand domain-containing protein 1, mitochondrial       | 2.70636  | 83.302  | 6.7  | 371.1954 |
|          | precursor                                                          |          |         |      |          |
| LMNB1    | lamin-B1 isoform 1                                                 | 5.972696 | 66.368  | 5.16 | 71.1     |
| LONP1    | lon protease homolog, mitochondrial isoform 1 precursor            | 0.938478 | 106.422 | 6.39 | 174.72   |
| LRRFIP1  | leucine-rich repeat flightless-interacting protein 1 isoform 3     | 5.074257 | 89.199  | 4.65 | 252.64   |
| LUC7L3   | luc7-like protein 3                                                | 7.407407 | 51.435  | 9.79 | 214.8757 |
| MARCKSL1 | MARCKS-related protein                                             | 14.35897 | 19.517  | 4.67 | 174.97   |
| MSH2     | DNA mismatch repair protein Msh2 isoform 1                         | 0.963597 | 104.677 | 5.77 | 26.78    |
| MSH6     | DNA mismatch repair protein Msh6 isoform 1                         | 2.867647 | 152.689 | 6.9  | 34.54667 |
| NOMO2    | nodal modulator 2 isoform 1 precursor                              | 2.052092 | 139.351 | 5.76 | 40.82333 |
| OGT      | UDP-N-acetylglucosaminepeptide N-acetylglucosaminyltransferase     | 2.390057 | 116.85  | 6.7  | 123.6044 |
|          | 110 kDa subunit isoform 1                                          |          |         |      |          |
| P4HB     | protein disulfide-isomerase precursor                              | 7.086614 | 57.081  | 4.87 | 573.9591 |
| PCBP1    | poly(rC)-binding protein 1                                         | 20.22472 | 37.474  | 7.09 | 336.6625 |
| PGM1     | phosphoglucomutase-1 isoform 2                                     | 1.206897 | 63.75   | 5.83 | 38.98    |
| POP1     | ribonucleases P/MRP protein subunit POP1                           | 2.246094 | 114.636 | 9.22 | 0        |
| PRKCSH   | glucosidase 2 subunit beta isoform 3 precursor                     | 15.70093 | 60.154  | 4.41 | 170.36   |
| PSMA1    | proteasome subunit alpha type-1 isoform 1                          | 2.60223  | 30.22   | 6.99 | 35       |
| PSMC5    | 26S protease regulatory subunit 8 isoform 1                        | 6.650246 | 45.597  | 7.55 | 740.2789 |
| PSMD11   | 26S proteasome non-ATPase regulatory subunit 11                    | 5.450237 | 47.434  | 6.48 | 158.1071 |
| RARS     | argininetRNA ligase, cytoplasmic                                   | 8.787879 | 75.331  | 6.68 | 77.51286 |
| RBM25    | RNA-binding protein 25                                             | 3.795967 | 100.124 | 6.32 | 55.34    |
| RBM26    | RNA-binding protein 26 isoform 2                                   | 4.170905 | 110.956 | 9.07 | 467.1438 |
| SCFD1    | sec1 family domain-containing protein 1 isoform a                  | 1.401869 | 72.334  | 6.27 | 71.25667 |
| SEC63    | translocation protein SEC63 homolog                                | 1.052632 | 87.942  | 5.31 | 36.82774 |
| SLC25A6  | ADP/ATP translocase 3                                              | 16.10738 | 32.845  | 9.74 | 377.7405 |

| SPRR1B | CF                                                            | 8.988764 | 9.881   | 8.48 | 71.15    |
|--------|---------------------------------------------------------------|----------|---------|------|----------|
| SPRR2G | small proline-rich protein 2G                                 | 30.13699 | 8.152   | 7.96 | 128.49   |
| SPTBN2 | spectrin beta chain, non-erythrocytic 2                       | 0.878661 | 271.127 | 6.11 | 60.0514  |
| SRP72  | signal recognition particle subunit SRP72 isoform 1           | 6.85544  | 74.56   | 9.26 | 379.3827 |
| SUCLG2 | succinyl-CoA ligase [GDP-forming] subunit beta, mitochondrial | 4.62963  | 46.481  | 6.39 | 107.13   |
|        | isoform 2 precursor                                           |          |         |      |          |
| TFRC   | transferrin receptor protein 1 isoform 1                      | 3.684211 | 84.818  | 6.61 | 149.2543 |
| TPI1   | triosephosphate isomerase isoform 2                           | 16.43357 | 30.772  | 5.92 | 290.4018 |
| TXLNA  | alpha-taxilin                                                 | 10.25641 | 61.853  | 6.52 | 243.5214 |
| USP10  | ubiquitin carboxyl-terminal hydrolase 10 isoform 1            | 2.244389 | 87.479  | 5.27 | 57.32    |
| USP5   | ubiquitin carboxyl-terminal hydrolase 5 isoform 1             | 2.564103 | 95.725  | 5.03 | 79.17    |
| ZYX    | zyxin                                                         | 4.895105 | 61.238  | 6.67 | 166.2738 |

**Table 2**. IRE1 interacting partners present in only [Ire1 +T] experimental set.

| Gene symbol | Description                                                         | Coverage | MW      | calc. | Score  |
|-------------|---------------------------------------------------------------------|----------|---------|-------|--------|
|             |                                                                     |          | [kDa]   | pΙ    | Mascot |
| AASS        | alpha-aminoadipic semialdehyde synthase, mitochondrial              | 1.079914 | 102.066 | 6.64  | 63.51  |
| AHCYL2      | adenosylhomocysteinase 3 isoform a                                  | 1.963993 | 66.678  | 7.36  | 54.7   |
| AHSA1       | activator of 90 kDa heat shock protein ATPase homolog 1             | 2.95858  | 38.25   | 5.53  | 0      |
| AKAP1       | A-kinase anchor protein 1, mitochondrial precursor                  | 1.550388 | 97.281  | 4.94  | 0      |
| AKAP12      | A-kinase anchor protein 12 isoform 1                                | 0.785634 | 191.367 | 4.41  | 0      |
| ALDOC       | fructose-bisphosphate aldolase C                                    | 8.241758 | 39.431  | 6.87  | 61.85  |
| AP1B1       | AP-1 complex subunit beta-1 isoform a                               | 1.264489 | 104.54  | 5.06  | 42.64  |
| ATP2B2      | plasma membrane calcium-transporting ATPase 2 isoform 1             | 0.884956 | 136.789 | 5.91  | 0      |
| ATXN10      | ataxin-10 isoform 1                                                 | 1.894737 | 53.455  | 5.25  | 0      |
| BICD2       | protein bicaudal D homolog 2 isoform 1                              | 1.28655  | 96.746  | 5.44  | 39.65  |
| CCDC129     | coiled-coil domain-containing protein 129 isoform 3                 | 4.613936 | 117.641 | 5.39  |        |
| CFL1        | cofilin-1                                                           | 7.228916 | 18.491  | 8.09  | 46.54  |
| CLCC1       | chloride channel CLIC-like protein 1 isoform 1 precursor            | 3.085299 | 61.983  | 5.55  | 18.52  |
| DBNL        | drebrin-like protein isoform b                                      | 2.790698 | 48.178  | 5.05  | 14.74  |
| DPYSL2      | dihydropyrimidinase-related protein 2 isoform 1                     | 1.329394 | 73.457  | 6.35  | 0      |
| ETFA        | electron transfer flavoprotein subunit alpha, mitochondrial isoform | 5.405405 | 35.058  | 8.38  | 29.34  |
|             | a                                                                   |          |         |       |        |
| EXOC4       | exocyst complex component 4 isoform a                               | 1.232033 | 110.429 | 6.49  | 46.22  |
| G6PD        | glucose-6-phosphate 1-dehydrogenase isoform b                       | 1.553398 | 59.219  | 6.84  | 23.23  |
| GLA         | alpha-galactosidase A precursor                                     | 1.631702 | 48.735  | 5.6   | 29.83  |
| GOT2        | aspartate aminotransferase, mitochondrial isoform 1 precursor       | 3.255814 | 47.487  | 9.01  | 34.31  |
| GRIPAP1     | GRIP1-associated protein 1                                          | 1.307967 | 95.931  | 5.11  | 0      |
| HLA-C       | HLA class I histocompatibility antigen, Cw-1 alpha chain precursor  | 2.459016 | 40.685  | 5.87  | 27.8   |
| IGF2BP3     | insulin-like growth factor 2 mRNA-binding protein 3                 | 2.24525  | 63.666  | 8.87  | 0      |
| IPO4        | importin-4                                                          | 0.647549 | 118.64  | 4.96  | 34.18  |

| IRF2BP2  | interferon regulatory factor 2-binding protein 2 isoform A         | 1.873935 | 60.987  | 8.69  | 59.42    |
|----------|--------------------------------------------------------------------|----------|---------|-------|----------|
| LMF2     | lipase maturation factor 2                                         | 1.131542 | 79.647  | 10.1  | 21.12    |
| LUC7L    | putative RNA-binding protein Luc7-like 1 isoform b                 | 9.433962 | 43.701  | 9.92  | 139.8114 |
| LYPLAL1  | lysophospholipase-like protein 1 isoform a                         | 4.219409 | 26.299  | 7.84  | 100.1867 |
| MGME1    | mitochondrial genome maintenance exonuclease 1 isoform 1           | 3.064067 | 41.198  | 7.68  |          |
|          | precursor                                                          |          |         |       |          |
| MKLN1    | muskelin isoform 2                                                 | 1.768707 | 84.713  | 6.34  | 77.97    |
| NEK9     | serine/threonine-protein kinase Nek9                               | 0.81716  | 107.1   | 5.74  | 19.98    |
| NOM1     | nucleolar MIF4G domain-containing protein 1                        | 1.27907  | 96.198  | 8.1   | 0        |
| NRBP1    | nuclear receptor-binding protein                                   | 2.990654 | 59.807  | 5.08  | 17.51    |
| NUP88    | nuclear pore complex protein Nup88 isoform 1                       | 1.717305 | 85.451  | 5.81  | 48.07    |
| PANK4    | pantothenate kinase 4                                              | 1.792574 | 86.871  | 6.34  | 23.56    |
| PCCB     | propionyl-CoA carboxylase beta chain, mitochondrial isoform 2      | 2.862254 | 60.483  | 7.24  | 0        |
|          | precursor                                                          |          |         |       |          |
| PGM2     | phosphoglucomutase-2                                               | 2.124183 | 68.24   | 6.73  | 23.11    |
| PPA1     | inorganic pyrophosphatase                                          | 2.768166 | 32.639  | 5.86  | 69.33    |
| PPAT     | amidophosphoribosyltransferase precursor                           | 3.675048 | 57.362  | 6.76  | 0        |
| PPP4C    | serine/threonine-protein phosphatase 4 catalytic subunit isoform 1 | 2.605863 | 35.057  | 5.06  | 55.63545 |
| PPWD1    | peptidylprolyl isomerase domain and WD repeat-containing           | 1.702786 | 73.528  | 7.15  | 42.01    |
|          | protein 1 isoform 1                                                |          |         |       |          |
| PRDX6    | peroxiredoxin-6                                                    | 5.803571 | 25.019  | 6.38  | 17.92    |
| PRKAR2A  | cAMP-dependent protein kinase type II-alpha regulatory subunit     | 2.722772 | 45.49   | 5.07  | 0        |
| PSMC6    | 26S protease regulatory subunit 10B                                | 2.233251 | 45.768  | 7.78  | 0        |
| PTPN11   | tyrosine-protein phosphatase non-receptor type 11 isoform 1        | 1.854975 | 67.968  | 7.3   | 34.17    |
| PYGL     | glycogen phosphorylase, liver form isoform 1                       | 2.479339 | 97.087  | 7.17  | 28.85    |
| QTRT1    | queuine tRNA-ribosyltransferase                                    | 3.473945 | 44.019  | 7.23  | 173.6234 |
| RNASEH2B | ribonuclease H2 subunit B isoform 1                                | 4.166667 | 35.116  | 9.13  | 22.07    |
| SACM1L   | phosphatidylinositide phosphatase SAC1 isoform 1                   | 1.53322  | 66.924  | 7.12  | 26.93    |
| SETD1A   | histone-lysine N-methyltransferase SETD1A                          | 0.820152 | 185.92  | 5.14  | 24.95    |
| SLC19A1  | folate transporter 1 isoform 1                                     | 1.692047 | 64.827  | 8.95  | 45.9     |
| SRPRB    | signal recognition particle receptor subunit beta                  | 7.01107  | 29.684  | 9.04  | 44.93    |
| SRRM1    | serine/arginine repetitive matrix protein 1 isoform 1              | 1.091703 | 103.734 | 11.84 | 65.04    |
| TBCD     | tubulin-specific chaperone D                                       | 0.838926 | 132.515 | 6.19  | 26.59    |
| TOR1AIP1 | torsin-1A-interacting protein 1 isoform 1                          | 2.226027 | 66.279  | 8.18  | 30.08    |
| TOX3     | TOX high mobility group box family member 3 isoform 1              | 10.9375  | 63.302  | 7.85  |          |
| TP53     | cellular tumor antigen p53 isoform a                               | 3.307888 | 43.625  | 6.79  | 89.36    |
| TRIP12   | E3 ubiquitin-protein ligase TRIP12 isoform a                       | 0.686275 | 225.379 | 8.69  | 43.41    |
| TRUB1    | probable tRNA pseudouridine synthase 1                             | 4.011461 | 37.229  | 8.25  | 67.39    |
| UBIAD1   | ubiA prenyltransferase domain-containing protein 1                 | 2.662722 | 36.808  | 8.15  | 94.44406 |
| USP15    | ubiquitin carboxyl-terminal hydrolase 15 isoform 1                 | 1.223242 | 112.348 | 5.22  | 116.93   |
| VCPIP1   | deubiquitinating protein VCIP135                                   | 1.309329 | 134.236 | 7.2   | 0        |
| WDR48    | WD repeat-containing protein 48 isoform 1                          | 2.215657 | 76.162  | 7.03  | 64.56333 |
| XPO6     | exportin-6 isoform 2                                               | 0.711111 | 128.801 | 6.35  | 37.01    |

ZNF598 zinc finger protein 598 1.327434 98.605 8.4 0

**Table 3.** IRE1 interacting partners present in only [Ire1 –T] experimental set.

| Gene symbol | Description                                                       | Coverage | MW      | calc. | Score    |
|-------------|-------------------------------------------------------------------|----------|---------|-------|----------|
|             |                                                                   |          | [kDa]   | pΙ    | Mascot   |
| KIAA0368    | proteasome-associated protein ECM29 homolog                       | 0.34705  | 223.552 | 8.75  | 17.94    |
| KRT77       | keratin, type II cytoskeletal 1b                                  | 6.228374 | 61.864  | 5.99  | 2166.639 |
| MRPL38      | 39S ribosomal protein L38, mitochondrial                          | 1.842105 | 44.568  | 7.53  | 25.82    |
| NPLOC4      | nuclear protein localization protein 4 homolog                    | 1.151316 | 68.077  | 6.38  | 55.12937 |
| OR10H3      | olfactory receptor 10H3                                           | 18.03797 | 35.696  | 8.92  |          |
| PABPN1      | polyadenylate-binding protein 2                                   | 5.228758 | 32.729  | 5.06  | 108.4    |
| PALLD       | palladin isoform 1                                                | 0.979519 | 123.617 | 6.87  | 15.57    |
| PDCD11      | protein RRP5 homolog                                              | 0.481026 | 208.57  | 8.87  | 0        |
| PFAS        | phosphoribosylformylglycinamidine synthase                        | 0.822123 | 144.643 | 5.76  | 40.34    |
| PFKFB2      | 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 2 isoform a | 1.782178 | 58.44   | 8.38  | 17.78    |
| PLP1        | myelin proteolipid protein isoform 1                              | 2.888087 | 30.057  | 8.35  | 68.08721 |
| PPP2CA      | serine/threonine-protein phosphatase 2A catalytic subunit alpha   | 2.588997 | 35.571  | 5.54  | 43.9527  |
|             | isoform                                                           |          |         |       |          |
| PTBP3       | polypyrimidine tract-binding protein 3 isoform 6                  | 1.792115 | 60.379  | 9.19  | 88.8479  |
| RAP1GDS1    | rap1 GTPase-GDP dissociation stimulator 1 isoform 1               | 1.973684 | 66.346  | 5.31  | 36.59    |
| TP53BP2     | apoptosis-stimulating of p53 protein 2 isoform 1                  | 1.851852 | 126.245 | 6.21  | 0        |
| UBA6        | ubiquitin-like modifier-activating enzyme 6                       | 0.855513 | 117.895 | 6.14  | 86.92333 |
| YTHDF1      | YTH domain-containing family protein 1                            | 9.660107 | 60.836  | 8.79  | 32.03    |

#### VI. CONCLUSION

Our study implicated that IRE1 acts as structural and functional platform serving as docking site for huge number of proteins, and thereby representing a connecting link between diverse cellular pathways. However, study is subjected to further validation.

### VII. ACKNOWLEDGEMENTS

We thank DST-INSPIRE for PhD studentship grant.

#### REFERENCES

- [1] M. Schroder, and R.J. Kaufman, The mammalian unfolded protein response. Annual Review of Biochemistry, 74, 2005, 739-789.
- [2] P. Walter, and D. Ron, The unfolded protein response: from stress pathway to homeostatic regulation. Science, 334(6059), 2011, 1081-1086.
- [3] R. Jager, M.J. Bertrand, A.M. Gorman, P. Vandenabeele, and A. Samali, The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biology of the Cell, 104(5), 2012, 259-270.

- [4] M. Calfon, H. Zeng and F. Urano, J.H. Till, S.R. Hubbard, H.P. Harding, S.G. Clark, and D. Ron, IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature, 415(6867), 2002, 92–96.
- [5] J. Hollien, and J.S. Weissman, Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science, 313(5783), 2006, 104–107.
- [6] B. Dong, M. Niwa, P. Walter, and R.H. Silverman, Basis for regulated RNA cleavage by functional analysis of RNase and Ire1p. RNA, 7(3), 2001, 361-373.
- [7] D. Han, A.G. Lerner, W.L. Vande, J.P. Upton, W. Xu, A. Hagen, B.J. Backes, S.A. Oakes, and F.R. Papa, Ire1 alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell, 138(3), 2009, 562-575.
- [8] F. Urano, X. Wang, A. Bertolotti, Y. Zhang, P. Chung, H.P. Harding, and D. Ron, Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science, 287(5453), 2000, 664–666.
- [9] H. Nishitoh, A. Matsuzawa, K. Tobiume, K. Saegusa, K. Takeda, K. Inoue, S. Hori, A. Kakizuka, and H. Ichijo, ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes and Development, 16(11), 2002, 1345–1355.
- [10] H. Kanda, and M. Miura, Regulatory roles of JNK in programmed cell death. The Journal of Biochemistry, 136(1), 2004, 1-6.
- [11] M. Ogata, S. Hino, A. Saito, K. Morikawa, S. Kondo, S. Kanemoto, T. Murakami, M. Taniguchi, I. Tanii, K. Yoshinaga, S. Shiosaka, J.A. Hammarback, F. Urano, and K. Imaizumi, Autophagy is activated for cell survival after endoplasmic reticulum stress. Molecular and Cell Biology, 26(24), 2006, 9220–9231.
- [12] A. Nagai, H. Kadowaki, T. Maruyama, K. Takeda, H. Nishitoh, and H. Ichijo, USP14 inhibits ER-associated degradation via interaction with IRE1 alpha. Biochemical and Biophysical Research Communications, 379(4), 2009, 995–1000.
- [13] C. Hetz, and L. H. Glimcher, Fine-tuning of the unfolded protein response: assembling the IRE1α interactome. Molecular Cell, 35(5), 2009, 551–561.
- [14] U. Woehlbier, and C. Hetz, Modulating stress responses by the UPRosome: a matter of life and death. Trends in Biochemical Sciences, 36(6), 2011, 329–337.
- [15] S. Gupta, A. Deepti, S. Deegan, F. Lisbona, C. Hetz, and A. Samali, HSP72 protects cells from ER stress induced apoptosis via enhancement of IRE1α–XBP1 signalling through a physical interaction. PLOS Biology, 8(7), 2010, e1000410.
- [16] C. Hetz, P. Bernasconi, J. Fisher, A.H. Lee, M.C. Bassik, B. Antonsson, G.S. Brandt, N.N. Iwakoshi, A. Schinzel, L.H. Glimcher, and S.J. Korsmeyer, Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1α. Science, 312(5773), 2006, 572–576.

- [17] D. Luo, Y. He, H. Zhang, Yu L, H. Chen, Z. Xu, S. Tang, F. Urano, and W. Min, AIP1 is critical in transducing IRE1-mediated endoplasmic reticulum stress response. The Journal of Biological Chemistry, 283(18), 2008, 11905–11912.
- [18] T. Yoneda, K. Imaizumi, K. Oono, D. Yui, F. Gomi, T. Katayama and M. Tohyama, Activation of caspase-12, an endoplasmic reticulum (ER) resident caspase, through tumour necrosis factor receptor-associated factor 2- dependent mechanism in response to the ER stress. The Journal of Biological Chemistry, 276(17), 2001, 13935–13940.
- [19] K. Oono, T. Yoneda, T. Manabe, S. Yamagishi, S. Matsuda, J. Hitomi, S. Miyata, T. Mizuno, K. Imaizumi, T. Katayama and M. Tohyama, JAB1 participates in unfolded protein responses by association and dissociation with IRE1. Neurochemistry International, 45(5), 2004, 765–772.
- [20] F. Gu, D.T. Nguyên, M. Stuible, N. Dubé, M.L. Tremblay, and E. Chevet, Proteintyrosine phosphatase 1B potentiates IRE1 signalling during endoplasmic reticulum stress. The Journal of Biological Chemistry, 279(48), 2004, 49689–49693.
- [21] S. Khoo and M.H. Cobb, Activation of mitogen-activating protein kinase by glucose is not required for insulin secretion. Proceedings of the National Academy of Sciences, U S A. 94(11), 1997, 5599-604.
- [22] Y. He, A. Beatty, X. Han, Y. Ji, X. Ma, R.S. Adelstein, J.R. Yates, K. Kemphues and L. Qi, Nonmuscle myosin IIB links cytoskeleton to IRE1a signaling during ER stress. Developmental Cell, 23(6), 2012, 1141–1152.
- [23] C. Hetz and F.R. Papa, The Unfolded Protein Response and Cell Fate Control, Molecular Cell, 69(2), 2018, 169-181.
- [24] S. Deegan, S. Saveljeva, A.M. Gorman, and A. Samali, Stress-induced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress. Cellular and Molecular Life Sciences, 70(14), 2013, 2425-41.
- [25] S. Grimm, The ER-mitochondria interface: the social network of cell death. Biochimica et Biophysica Acta, 1823(2), 2012, 327-34.
- [26] A. Raturi, and T. Simmen, Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). Biochimica et Biophysica Acta, 1833(1), 2013, 213–224.
- [27] T. Mori, T. Hayashi, E. Hayashi, and T.P. Su, Sigma-1 Receptor Chaperone at the ER-Mitochondrion Interface Mediates the Mitochondrion-ER-Nucleus Signaling for Cellular Survival. PLOS One, 8(10), 2013, e76941.
- [28] M. Sanchez-Alvarez, M.A. del Pozo and C. Bakal, AKT-mTOR signaling modulates the dynamics of IRE1 RNAse activity by regulating ER-mitochondria contacts. Scientific Reports, 7(1), 2017, 16497.
- [29] D. Sepulveda, D. Rojas-Rivera, D. A. Rodríguez, J. Groenendyk, A. Köhler, C. Lebeaupin, S. Ito, H. Urra, A. Carreras-Sureda, Y. Hazari, M. Vasseur-Cognet, M.U. Ali, E. Chevet, G. Campos, P. Godoy, T. Vaisar, B. Bailly-Maitre, K. Nagata, M. Michalak, J. Sierralta, and C. Hetz, Interactome Screening Identifies the ER Luminal Chaperone Hsp47 as a Regulator of the Unfolded Protein Response Transducer IRE1α. Molecular Cell. 69(2), 2018, 238-252.