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1. Introduction

The existence of fixed points for self-mappings in partially ordered sets has been considered in [1,2], where
some applications to matrix equations are presented. This result was extended by Nieto et al. [3] and Nieto and
Rodriguez-Lopez [4, 5] in partially ordered sets and applied to study ordinary differential equations.

The problem of fixed points for random mappings was initiated by the Prague school of probability research.
The first results were studied in 1955-1956 by §paEek and Han# in the context of Fredholm integral equations
with random kernel. In a separable metric space, random fixed point theorems for contraction mappings were
proved by Hang [8, 9], Hang and Spagek [10] and Mukherjee [11, 12]. Then random fixed point theorems of
Schauder or Krasnosel’skii type were given by Mukherjea (cf. Bharucha-Reid [6], p. 110), Bharucha-Reid [13]
and Itoh [14]. Now it has become a full-fledged research area and a vast amount of mathematical activities have
been carried out in this direction (see, for examples, [15-18]). The existence of a random fixed point for
mappings in partially ordered metric spaces and partially ordered probabilistic metric spaces was studied, for
example, in [19, 20]. In 2014, Ansari [1] introduced the concept of C-class functions and proved the unique

fixed point theorems for certain contractive mappings with respect to the C-class functions.
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The goal of this paper is to establish a common random fixed point results in partially ordered complete
separable metric spaces for weakly increasing self mappings satisfying (. @’}-contractions via the concept of C-
class functions. Some corollaries are also presented for particular cases of the C-function.
2. Mathematical Preliminaries
The triple (X.d. =) is called a partially ordered metric space if {X. =) is a partially ordered set and (X.d) is a
metric space. Further, if (X, d} is complete metric space, and then the triple (X.d. =} is called a partially ordered
complete metric space.
Definition 2.1 Let (X.d) be a metric space endowed with a partial order =. Let {x,}and z be in X. (X.d. =)
is said to be regular if x, = z and [x.1is non-decreasing; then x, = = for all n € M.
Let (X. B ) be a separable Banach space, where By is a o -algebra of Borel subsets of X, and let (12, 5. u} denote
a complete probability measure space with measure & and & be a =-algebra of subsets of 12
Definition 2.2 A measurable mapping £: 12 — X is said to be an X-valued random variable if the inverse image
under the mapping x of every Borel set B of X belongs to 3, that is, £~*(B) € £ for all B € 8.
Definition 2.3 A measurable mapping £:12 = X is said to be a finitely-valued random variable if it is constant
on each finite number of disjoint sets A; € § and is equal to 0 on 12 — (U?_, A). £ is called a simple random
variable if it is finitely valued and pfw: [IF(w} Il = 0} < co,
Definition 2.4 A measurable mapping £:12 = X is said to be a strong random variable if there exists a
sequence if,{w)} of simple random variables which converges to () almost surely, that is, there exists a set
Ap € B with (4, ) = 0 such that
lim, . F,(w) = Flaw), w e 2 — A,

Definition 2.5 A measurable mapping £:12 = X is said to be a weak random variable if the function
E"(E(w)) is a real-valued random variable for each £ € X™. the space X~ denoting the first normed dual space
of X.
Definition 2.6 Let ¥ be another Banach space. A measurable mapping f : 2= X =¥ is said to be a random
mapping if f(w. £) = ¥(w) is a V-valued random variable for every £ € X.
Definition 2.7 A measurable mapping f : 2 % X — ¥ is said to be a continuous random mapping if the set of
all w € 12 for which f (. £ is a continuous function of £ has measure one.
Definition 2.8 A mapping measurable f : 12 = X — ¥ is said to be demi-continuous at the £ € X if

£, — £ll = 0 implies f (. &,) = Flw, £)
almost surely.
Definition 2.9 An equation of the type f{w, £(w}) = £(w]), where f: 12 ®x X — X is a random mapping, is
called a random fixed point equation.
Definition 2.10 Any measurable mapping £ :42 = X which satisfies the random fixed point equation

filo, £{w)) = £{w) almost surely is said to be a wide sense solution of the fixed point equation.
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Definition 2.11 Any X-valued random variable £ (e} which satisfies
pfe : flw é(w)) = {{w)} =1
is said to be a random solution of the fixed point equation or a random fixed point of f.
Definition 2.12 A measurable mapping £:42 —= X is called a random fixed point of a random operator
Fil x X = Xif £(e) = fle, £(w) ) for every w € 0,
Definition 2.13 A measurable mapping £:12 = X is called a random coincidence of random operators
T.f:ilxX—Xif
T, £(w)) = flw, E(w)) for every @ € 2.
Definition 2.14 A measurable mapping £: 12 — X is called a random common fixed point of random operators
fogixX-=Xif
T, £w)) = fFlw, Elw)) = Flw) for every w € 2.

Example 2.15 Let X be the set of all real numbers and let E be a non-measurable subset of X. Let
f:2 = X — ¥ be a random mapping defined as

flw.g(w)) =& (w) +£(w)-1
for all w € 12. In this case, the real-valued function £{w), defined as £{w)} = 1 for all w € 12, is a random fixed

point of f. However, the real-valued function y{w) defined as

. _[-1. weE,
3"{{"]_{1 weE

is a wide sense solution of the fixed point equation f (. £ ()} = £{e)} without being a random fixed point of f.
Definition 2.16 Let (X, =. 4} is a partially ordered separable metric space.
(1) Arandom operator f:12 % X — X is said to be monotone non-decreasing if for all x.¥ € X,
=y = f{m,x{aﬂ} = f{w,}r{m]},m =

(2) Two random operators f.g:12 % X — X is said to be weakly increasing if for all x € X and w € 12

Floxlw) < g (m,f{m,x(m} }) and glw. x(w)) = f (mg{m x{m]}).

Ansari [21] introduced the class of &-functions which covers a large class of contractive conditions.
Definition 2.17 [21] A mapping F:[0.2)* — R is called C-class function if it is continuous and satisfies
following axioms:

(1) Fils.t) < s forall s.t € [0,00);

(2) F(s.t) = s implies that either s = 0 or t = 0 for all 5. £ £ [0.22),
Mention that any C-function F verifies F (0.0} = 0. We denote by C the set of C-class functions.
Example 2.18 [21] The following functions F: [0, e2)* — R are elements of €. For all s.t € [0, e}, consider

(1) Fis,t) =5 — &

2 Fls,t) =ms,0=m =1;

(3) Fls.t) = /(1 + )", where r € (0, c0);
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(4) Fis.t) = log, (::r] a > 1;

(5) Fls.8) = log, (%)

_t
(6) Fis.t) = (s + Duser — LI > 1,r € (D, o0);
(7) Fls.t) =slogp,za.a > 1;

(8) Fls.8) =5 - (Z2) (X);

(9) Fis.t) = =F(s). where f:[0.c2) — [0.1} is continuous;

(10) Fls. ) =s ——;

R+T
(11) Fis.t) =5 — p(s), where ¢: [0, 02) — [0, 2] is a continuous function such that @{t) =0 & t = 0;
(12) Fis.t) = shis,t), where h:[0, 02} x [0,c0) — [0,¢0) is a continuous function such that h(t.s) = 1

forall t.5 = 0;

(13) Fis.t) =s — (i] t:

1+1
(14) Fls.t) =3Il +s™)
(15) Fis.t) = @(s). where @:[0.00) = [0.t0) is a is a upper semi-continuous function such that
@(0) = 0and ¢lt) <t fort= 0
(16) Fis.t) =

= ~Ir:rE'i[] ca).

(17) Fls.t) = 8(s), where #: R* x R* — R is a generalized Mizoguchi-Takahashi type function;

(18) Fis.t) =

iz \,JF: : dx, where I' is the Euler Gamma function.

3. Main Result

First, we introduce an auxiliary lemma as follows.

Lemma 3.1 Let (1, I, 1) is a complete probability measure space, (X.d) be a separable metric space, and

{£,(w):w e 0} be a sequence of measurable mappings from 2 to X such that {d(,(w). &,,, (@)} is

decreasing and

limy, .. d(Ey(e), En,s()) = 0 (3.2)

If {£, (o)} is not a Cauchy sequence, then there exist an e(w) = 0 and {m;} {n;} of positive integers such that
the four sequences {d(f:m{@jaf:mi{@])} { (.,f S ) I 9 ) )} {d(fzﬂi{m],.f:mi_l{m])} and
{d (f:ﬂi_llim], £, mg—L{W:])} tend to e{w) when i — oo,

Proof: Assume that {;,(w): @ € 22} is not a Cauchy sequence, it is sufficient to prove that {£;,(w@]} is a

Cauchy sequence. So there exist () = 0 for which we can find two subsequences of positive integers {m;}

and {n;} for positive integer i. we

m; = =i, d(fzﬂi(m],fzmi{m]) zelw), iz1l.wel (3.2)

Further, we can choose ; to be smallest integer with m; = n; for which (3.2) holds. Then
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d (&3, (@), £, (@) ) < €(w) (3.3)
Using (3.2), (3.3) and the triangle inequality, we obtain
e(w) < d (&g, (@), £, (@)
= d (£, (@), Eay2 (@) ) + @ (Eamy—a (@), Ep—s (@)
+d (g1 (@), By, () )
= elw) + Gy, 2 (@) + Gy () (3.4)
On letting the limit as i — &2 in the above inequality and using (3.1), we get
limy e d (E2n, (@), £, (@) ) = ), w € 0 (3.5)
addition, by the triangle inequality, we have
d (£2n, (@), £, (@)) < @ (£2, (@), E2npms (@) ) + 0 (Erpms (@), Eppy s ()
+ 0 (Egmem1 (@), £, ()
= Spne1 (@) + d (Egnyos (@) Epyes @) ) + By (@) (3.6)
@ (Eanms (@) Ermmy (@) ) = d (£ (), £ () ) 4 d (£, (), £y, (@)
+ d £z, (@), Famy—1 ()
= Synee1 (@) + 0 (Egn, (@), By, (0)) + By (@) 3.7)
Letting the limit as i — @2 in the above two inequality, using (3.1) and (3.5), we get
lim; e d (E2mye s (@), Exys (@)) = £(w), w € 0 (38)
Also
|d (£2mp-1 (@), Eamy (@) ) = d (E2n, (@), Eam (@) )| = d (E30, (@), £z () (3.9)
| (£2n @), E2my () ) = (E2n, 02, Exmy (@) )| = @ (Err (@) g1 (@) ) (3.10)
On letting the limitas ¢ — 2 in (3.9) and (3.10), using (3.1) and (3.5), we get
|tim; . (Eappes (@), Erm, (@) ) — @] = 0,
|t @ (Eam (@), Eamy 1 (@)) = )| < 0.
Hence
1im; e d (Ermp1 (@), Egy (@) ) = £(w), @ € 0 (3.12)
tim; e d (Ean, (@), Exmy—1 @) ) = €(@),w € 0 (3.12)
We denote w = {y:[0,00) — [0, ) is continuous, nondecreasing and ¢~ ({0}) = {0}}, and

@ = {:p : [0, 02) — [0, o2) is lower semicontinuous, nondecreasing, and @~ *({0}) = {U}}.

Now, we state and prove our main result in the following way.
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Theorem 3.2 Let (0. I. u) is a complete probability measure space, (X.d. =) be a separable complete partially
ordered metric space. Let f. g: 2 = X — X be two mappings such that

(@). flw..) and gle..) are continuous for all @ & 0;

(b). fC.xJ) and gC..x) are measurable mapping for all x € X;

(c). The pair (f. g} is weakly increasing such that there exist ¥.¢ € ¥ and F £ € such that for all

comparable x.¥ € X and for all w € L we have

¥ (d(Fw.x). glw.y))) = F (p (3G 1)), o (32 (x.7))) (3.13)

where

dlx.gley)}+dly.f [m_rflj}
2

M(x,y, ) = max {d{x, ). d(x. flew, ), d(y. glew. ),
Suppose that one of the following two cases is satisfied:
(i). f or g iscontinuous;
(ii). (X.d.=)isregular.
Then the maps f and g have a common random fixed point.

Proof: Assume that £{cs). @ € QL iis a fixed point of f. Taking x = ¥ = £ in (3.13), we have

¥ (d (f{m,f(m]lg{m,f(m]})) <F (;.u (20(2G).2))) 0 (M{E(mlf(m]})) (3.14)
where
(£ @), £(w)) = max{ d(#w), £@)).d (£(w), (. 8())). d (£(). g (. () )
dl ) gl lad ) )+ (e f (o, e[m]}}

2

2

= max {n,m d (£(). gl ()) M}

= d(£ (). glw.£()) (3.15)

Hence, from (3.14), we get
] (d (ﬂm], g {m, Elew) })) =1 (d {f[m, Elea) l g{m, E{m]}))

<7 (w (4 (6@, 9(0.£@))) o (a («f(wlg{w;f{ﬂm))

< t,f:(d (¢ {m],g{m,f(m]})) (3.16)
We deduce
F (t,!r (d (f {ca],g{ca,f(w]})) . (d {f[m] g, E(ew) }):]) =y (d ({(m],g {w,f(w]})). By the property of

F, we have

v (a (6@, 9. £))) = 00r e (¢ (£6w). g, £(w))) ) = 0.
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The functions ¥ and ¢ are in ¥, so d (E {m],,g{m,ﬂm]}) = 0; that is, £(w) = glew, £(w)); that is, £(w) isa

common fixed point of f and g. Now, if £{c) is a fixed point of g, similarly, we get that £(w) is also fixed
point of f.
Let the function £5(e): 2 = X be an arbitrary measurable mapping. We can define a sequence of measurable

mappings £, (ca) } from 2 to X as following:
Eaner (@) = flo £ (@),
Eanaze) = glo f1p (@) w e2n=012... (3.17)
Since the pair (f. g} is weakly increasing mappings, we have
£() = flw. &) = g (o (w0 8))
= glw.£, (W) = &),
£0) = flo.& @) = g (0.f(0.£))
= glw.5 () = £ ),

Continuing this process, we get
Ean (@) = fl0. 520 (@) = g (0. f (@, £ ()
= gle, £y (@) = E3p2(00),
Eanez(@) = o Eanas (@) 2 g (@, F 0,830 (@)
= glw, Eon sz (@) = Expsalw)

Thus for all n = 1., we have
'En {Cﬂ] ﬁ §n+1|:m]. (3.18)
Without loss of the generality, we can assume that £, () = .., (@) and since £7,(w) and f7,.,(w) are

comparable, applying (3.13), we have
¥ (@001 (@), £202@)) = (2 (£ (0 £200)). (00 E2ne1 () )

< F (9 (30(620 ). £200 1)) @ (30 (620 (@), 1nr () (319)
where

P (E2n0), E3n1 () = max {d(E20 (@), E2n01 (@), d (£2n () £, £2n (),

d[_fmf.aﬂ.g[m.fm-J.nm}m[_fm-if.nﬂ.f[w.fmw}}
2

d (fznﬂ{ﬁdlg{w, Eanes (0 }) :

= max{d({zn(m],fm +1.':¢7‘:| } d(‘f:n(ﬁﬂjafznn(ﬁﬂjl

Al lad Fopaa o)} Egp eyl Eop g e
d{£2n+1{mlfzn+2{m]l (F2mlw) 2 zﬁi-.]+2£52 1z 143-'-.]}

d[é'mr-ﬁ-'j.fm—zr-ﬁ-':'.]}

= max {d(E2n (@) Eanes (@)), @(Ean 00 (), Eanez @), =2
= max{d(fzn(m],fmﬂ_(m] } d(‘f:nn(@lﬁrzn +2(@]}s
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Al fanle) Eapey lw))+d Lfm—i[ﬁ-':'.fzn—z[ﬁ-':'.]}
2
= max{d(£2n (@), E2n 11 (@) ). (Egnss (@), Ern sz ()]} (3.20)

If 6(Eap s (). Eanaa()) = d( £ (), £ () ) for some m = 0, then

M{fzn{mlfm+1{aﬂ] = d{fm+1{m‘lfm+2{ﬁﬂ]}-
Using (3.19), we have

w(d{§2n+1{ml§2n+2{m]})
=F (le' (d{§2n+1{ml§2n +2(cﬂ]}), ¢ (d{‘fzn +1{m],§2n+={m]}))

= #’(d &-En c1lw). Erp i (w) })

Hence
F (#’ (d {‘Ezn +1(@) & 1n () ]) . (d {‘Ezn+1{ml‘fzn +2{m]])] =y (d{‘fzn +1{m:]*§2n+2{m]])

By the property of F, this implies that (d{fmﬂica],fz“z(m]}) =0org (d{fznﬂl{m],fm”(m]}) =0,
which is a contradiction. Therefore, for all n =0, d(£,, (), Fpn 2 () ) < d(Foy (@), Fopy s () ). Similarly,
we may show that d(&,, (), £o s (a) ) = d(£5 (), £3y s () ) for all m = 0. We deduce that

A Fpas (@), Fppalw)) < d(8,(w), &yl ¥vnz= 0w e, (3.21)
Hence, the sequence {6, (w):w € 0} given by &,(w) = d(£,(w).£,.,(w)) is a decreasing sequence of non-

negative real numbers, there exists [{c2} = 0, such that

limy_,.. 6,(w) = l{w),w e 0, (3.22)
We claim that [{w) = 0.w € 0. We have

limy,_,_ M(&, (@), £y, () ) = 1) (3.23)
Recall that
¥ (60020, £002 () 2 F (9 (3 (600, £0.2())) 0 (30 (£ ). s () ) (3.24)

Asn — @2, by continuity of F. i and @, we get
¥(1) = F (p(1()), o (1(w))) = p(1(w))
Using the properties of F. we have w(I{w)) = 0 or @(I(w) ) = 0; that is, I{ew) = 0. We conclude that
limy,_, .. 6,(w) = 0. (3.25)
Now, we will show that {f, (e} : co € 22} is a Cauchy sequence, it is sufficient to prove that {&;,(w)? is a

Cauchy sequence. We proceed by negation, suppose that {£, ()} is not a Cauchy sequence. Since m; = n; and

Eang—1(w) and £op, s (0] are comparable, then by (3.13), we get

(6 ean @9 £ @) = 9 (4 (7 (0E0cs() 8 (01ames @) )
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< 7 (8 (96 (Bons . Earcs @) 0 (36 (Bt @9, £ s @) (326)
where

M(fzni—j.(fﬂ]sf:mi—iim:])
= max {Ii (ﬁrzr_-i-j_{@]afzmi—j_{m]) .d (fzni—iifﬂl f (m, ﬁrzng—iim‘] ):] .

d[?f'ml-—:.r-ﬁ-':' ] [ﬁ-'- fzm;—1 [ﬁﬂ}:|'+d[?$;ml._1f.aﬂ.f [m_{m i‘ir"“':',:l}
Jdl:fml._,_(w],,g(m,fmi_l{@])) . —

= max {d (£an-1 (@), Eamy—1 (@) . 4 (£anpms (@), £an, () ).

a emL.-ir.m.eml.r.n.Jjnd[emi-J.meml.r.uﬂl}

. (fzmi—L{W]szmi [m]) .

!

By taking the limit as i — @@, from Lemma 18, we have

limge M (Eanpms (@), Erms (@) = max {(w), 0,0, L8558 = () (3.27)
Hence, from (3.26), we have
w(e@)) < F (p(el@)). o (e(w))) < p(elw))
That is,
F(#(e(@)), e(@))) = p(ele))
We conclude that 3(elw)) = 0 or @(elw)) =0, that is ele) = 0.0 € 2. a contradiction, we deduce that
£f.,(w)} is a Cauchy sequence in X and so is ££, ()} then there exists £{w): 0 — X such that
limy,_,.. £y (w) = £(aw), (3.28)
Now, we will distinguish the cases (i) and (ii) of Theorem 3.1.
(i). Without loss of generality, suppose that f is continuous. then
Elw) =limy o Eon oy ()
= limy,,. f(@, £, (@)
= flw.lim,__ £, (w))
= fle. £(w)).
From the beginning of the proof, we get flew,#(w)) = Flw) = glw, F(w)). The case that f is
continuous is treated similarly.

(ii). Now, if the condition (ii) is satisfied. We know that sequence i{f,(w)} is non-decreasing and
Folew) = Flw).w € 2in X; then by regularity of (X.d. =), £3,,, (w) = Flw),¥n € N. By (3.13)

¥ (¢ (Eanes ). 5(0.8)) ) =9 (@ (£ (0. 20 ). 5 (0.8)))

< 7 (y (30 (g2n @), £))) . (94 (620 @), £a2))
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where
M (£ (), £(w)) = max {d(£2 (@), £@)), d (2. F (0. £20 2)),
[ 3 el gl G} )+ (ot g L) 1)
d(f(w:],g{m,f(w]}),d Ll 1)) +dl| D1 ‘.}}
= mﬂ{d{f:ﬂ{@l 'E{@:] }, d{fzn{@l Ean +1.':f":':| },
[ T PO P ) J I I Y )
£ (£ g £Ca)) BB e w}
By taking the limit as n — 2, we have
lim, . M(Em (@), £()) = d(£@). gw. £)). (3.29)

Thus
¥ (4 (6. 9 (0. 6))) ) < limy. 5p ¥ (d (£2n.1@). g (w,£C))))

< lim,.. sup (¥ (30(620 (@), §))). 9 (30 (£20 (). £(0)) )
=F (t,.!: (a’. {E(aﬁhg{m, F () })J @ (d (E{mlg{m,f{m]})]]

= z,e;(d (E (e0). gle. E(m]}n

Hence
F (w (4 (5. g(w.£€))). @ (5D 9 (. £ })]) = (d (0. g (w.5)))

We conclude that t,f-'(l'i (E(mlg{m,f(m]}nzﬂ or qﬂ(d (E(m],_g{m,-f{m]}n:ﬂ: that s,

d(f{m],g{m,f{m]})=ﬂ and so F{w) = glw £(w)). From the beginning of the proof, we get

f{m, E{aﬂ} = Flw) =g{m,§(aﬂ }
The proof of the theorem is completed.
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