Volume No.07, Issue No.03, March 2018 www.ijarse.com

IJARSE ISSN: 2319-8354

STUDIES ON AZABICYCLO SYSTEMS - SYNTHESES AND PHARMACOLOGICAL EVALUATION OF 3BAMINO-9-METHYL-9-AZABICYCLO [3.3.1]NONANE ANALOGS

Jaswinder Kaur¹, Versha Parcha²

1 Department of Applied Sciences,

IIMT College of Engineering Greater Noida UP

2 Deptt. Of Pharm Sciences, S.B.S (PG) Institute of Biomedical Sciences & Research,

Balawala, Dehradun(UK)

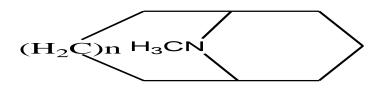
ABSTRACT

Introduction: The bicyclic systems, 8-methyl- 8-azabicyclo[3.2.1]octane and 9- azabicyclo[3.3.1]nonanes commonly known as tropane and N-methyl- granatane are found in number of therapeutically useful alkaloids. Their diazaanalogs have shown wide variety of pharmacological activities including antihypertensive, anti-inflammatory, antibacterial, ganglionic-blocking, antiserotonin, analgesic; antiarrhythmic, and antihistaminic activities.

Objective: The synthesis of various hydroxyamines and hydroxyphenoxides from 3β -(1',2'-epoxypropylamino)-9- methyl-9- azabicyclo[3.3.1]-nonane is being reported here. The compounds so synthesized have been further evaluated for their effects on CNS as well as their effect on spasmogenic activity of acetylcholine, adrenaline, and histamine. In continuation of our studies on bicyclic systems we had reported the syntheses and pharmacological studies of 3β -amino analogs of 9-methyl- 9-azabicyclo[3.3.1] nonane. In the present communication we now report the syntheses and pharmacological activities of some newer analogs of 3β -amino-9- methyl-9-azabicyclo[3.3.1]nonane.

Material and methods: Pseudopelletierine and its oxime, for this purpose were synthsized. The oxime on further reduction with metallic sodium and amyl alcohol yielded the desired amine. The amine was then, treated with epichlorhydrin to yield the epoxy analog. The epoxy analog on treatment with amines yielded the hydroxylamine. Treatment of epoxy analog with concentrated hydrochloric acid gave the hydroxychloro analog which on treatment with various phenols yielded the corresponding hydroxyphenoxide. All compounds were characterised on the basis of spectral studies.

Volume No.07, Issue No.03, March 2018 www.ijarse.com


ISSN: 2319-8354

Results and conclusion The results of studies showed that few of the compounds exhibit very good depressant, anticholinergic and antihistaminic activities which could be further investigated and may lead to a potent drug

KEY WORDS: Bicyclo Compounds; Azabicyclo[3.3.1]Nonanes; 3β-Amino N-Methylgranatane; Hydroxyamines Of Azabicyclononanes; Hydroxyphenoxides Of Azabicyclo-Amines;

I. INTRODUCTION

The bicyclic systems, 8-methyl-8-azabicyclo[3.2.1]octane and 9-methyl-9-azabicyclo[3.3.1]nonanes commonly known as tropane and *N*-methyl granatane, are found in number of therapeutically useful alkaloids. Their di-aza analogs have shown wide variety of pharmacological activities including antihypertensive, ^{1,2} antiinflammatory & antibacterial, ¹ ganglionic-blocking, ³ antiserotonin, ³⁻⁵ analgesic & antiarrhythmic, ⁴ and antihistaminic ⁵ activities. In continuation of our studies on bicyclic systems we had recently reported the syntheses and pharmacological studies of 3β-amino analogs of 9-methyl-9-azabicyclo[3.3.1] nonane (1) & (2). In the present communication we now report the syntheses and pharmacological activities of some newer analogs of 3β-amino-9-methyl-9-azabicyclo[3.3.1]nonane. Pseudopelletierine (7) and its oxime (8), for this purpose were obtained by the method of Razdan and Sharma. ⁷ The oxime on further reduction with metallic sodium and amyl alcohol ⁸ yielded the desired amine (9). The amine was then, treated with epichlorhydrin to yield the epoxy analog (10) (Scheme 1). The epoxy analog (10) on treatment with 1 ⁰ & 2 ⁰-amines yielded the hydroxylamine (11a-11h)(Scheme 2, Table 1). Treatment of epoxy analog (10) with concentrated hydrochloric acid gave the hydroxychloro analog (12)(Scheme 2) which on treatment with various phenols yielded the corresponding hydroxyphenoxide (Scheme 2, Table 2).

(1),
$$n = 2$$

(2), $n = 3$

Volume No.07, Issue No.03, March 2018

www.ijarse.com

IJARSE ISSN: 2319-8354

$$(H_{2}C)n$$
 NCH_{3} $N-R$
 $R = -C-R'; -C-(CH_{2})X - N$
 R''
 R''
 R''
 R''
 R''
 R''
 R''
 R''

$$(H_{2}C)_{3} H_{3}CN$$

$$(S)$$

$$(H_{2}C)_{3} H_{3}CN$$

$$(H_{2}C)_{3} H_{3}CN$$

$$(G)$$

II. MATERIAL AND METHODS

Melting points were taken in open capillary and are uncorrected. IR spectra was recorded on Thermo Nicolet 200IR Spectrometer. The ¹HNMR spectra was recorded on Brucker AC 300 FNMR Spectrometer 300 MHz. Mass spectra (m/z) of the synthesized compounds was taken on Brucker Daltonics Mass Spectrometer. The reactions were monitored by tlc on silica gel G using the solvent system chloroform: methanol (70:30).

Volume No.07, Issue No.03, March 2018

www.ijarse.com

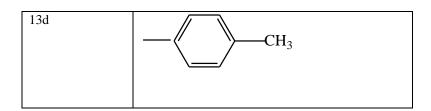
IJARSE ISSN: 2319-8354

2.1 Synthesis

General scheme of synthesis of various compounds are represented in scheme 1 and scheme 2

13a -13d Scheme 2

Volume No.07, Issue No.03, March 2018


www.ijarse.com

Compound	R	R'(Ar)	
11a	-H	-CH(CH ₃) ₂	
11b	-CH ₂ CH ₃	-CH ₂ CH ₃	
11c	-CH ₂ CH ₂ CH ₃	-CH ₂ CH ₂ CH ₃	
11d	-CH(CH ₃) ₂	-CH(CH ₃) ₂	
11e			
11f			
11g			
11h	Н		

13a	
13b	H_3C
13c	CH ₃

Volume No.07, Issue No.03, March 2018 www.ijarse.com

2.3 synthesis and analytical profile of the compounds

2.3.1 β-(1',2'-Epoxypropylamino)-9-methyl-9-azabicyclo[3.3.1]nonane (10) hydro-chloride

A solution of 10 mMol of 3β -amino-9-methyl-9-azabicyclo[3.3.1]nonane (9)⁸ in

10 ml of ethanol was treated with 1.06 ml of epichlorhydrin and refluxed for 6 hr. Next, the solvent was removed and the residue dissolved in water (20 ml), basified with potassium carbonate and extracted with chloroform (4x 20 ml). The chloroform extract after processing yielded a pale yellow sticky mass, which was converted to its hydrochloride, yield 1.73 g (70.18%), mp 232°C.

Anal: IR(KBr)cm⁻¹: 3490(N-H), 3292(N-H), 2925(C-H), 1260(C-N), 945(C-O-C, cyclic).

Mass(base) m/z (rel. int.): 210 $[M+1]^+$ (100), 138 $[M-72]^+$ (40).

¹HNMRCDCl₃ δ ppm: 3.68 (m,- C<u>H</u> – CH₂), 2.79 (s, 3H,N-C<u>H</u>₃), 2.92 (br s, 4H, \O /N-C<u>H</u>), 2.49 (m, 4H, N-CH₂), 1.95 (m, 2H, N-CH-CH₂), 1.93 (m, 2H, N-CH-CH₂), & (m, 2H, N-CH-CH₂-CH₂).

2.3.2 Synthesis of Amino Analogs of (11a - 11h) of 3β -(1',2'-Epoxypropylamino)-9-methyl-9-azabicyclo[3.3.1]nonane (10)

A solution of 3β-(1',2'-epoxypropylamino)-9-methyl-9-azabicyclo[3.3.1]-

nonane (10) hydrochloride (10.6 mMol) and amine (15.5 mMol) in 25 ml of

n-propanol was refluxed for 10 hr. After removal of the solvent, the residue was taken in chloroform, basified and extracted with chloroform (4 x 20 ml). The chloroform extract after processing yielded a residue which was converted to dipicrate.

2.3.3β-(1'-Isopropylamino-2'-hydroxypropylamino)-9-methyl-9-azabicyclo[3.3.1]- nonane (11a) dipicrate

Yield, 1.67 g(58.18%); mp(dipicrate), 218⁰-20⁰C(dec)(ethanol).

Anal:IR (Base) (Nujol) cm⁻¹: 3365 (O- H), 2929 (C-H), 1250 (C-N).Mass (Dipicrate) m/z (rel. int.): 727 [M]⁺ (0.1), 211 [M-458-58]⁺ (5), 138 [M-458-73-58]⁺ (100). HNMR(dipicrate) CDCl₃ δ ppm: 8.85 (d, J=1.2Hz, Ar

ISSN: 2319-8354

Volume No.07, Issue No.03, March 2018

www.ijarse.com

IJARSE ISSN: 2319-8354

 $\underline{\text{H}}$ -NO₂, 7.51 (br band N $\underline{\text{H}}$), 4.90 (br band N $\underline{\text{H}}$), 3.65 (s, 3H, N-C $\underline{\text{H}}_3$), 3.36 (s, 1 H, -(HO)C $\underline{\text{H}}$ -CH₂),2.90 (s, 1H, N-C $\underline{\text{H}}$), 2.58 (m, 1H,C $\underline{\text{H}}$ (CH₃)₂), 2.53 (m, 2H, C $\underline{\text{H}}_2$), 1.35 (d, J= 1.2 Hz,6H, -CH(C $\underline{\text{H}}_3$)₂).

2.3.4 3β-(1'-Diethylamino-2'hydroxypropylamino)-9-methyl-9-azabicyclo[3.3.1]-

Nonane (11b) dipicrate

Yield, 1.2g (40%); mp (dipicrate), 236-7⁰C(dec)(ethanol)

Anal:

IR (base) (Nujol) cm⁻¹: 3351 (O-H), 2901 (C-H), 1260(C-N).

Mass (Dipicrate) m/z (rel. int.): 7 41 [M]⁺ ().1), 284 [M+1-458]⁺ (5), 186 [M+2-458-27-72]⁺ (50), 138[M-458-145]+ (100).

¹HNMR(Dipicrate) CDCl₃ δppm: 8.8 (d, J=1.2Hz, ArNO₂), 3.74 (m,1H, -(HO)C<u>H</u>-CH₂), 3.22 (s, 3H, N-<u>CH</u>₃), 3.03 (s, 1H,N-C<u>H</u>), 2.95 (t, J= 3Hz, 2H, -(HO)CH-<u>CH</u>₂), 2.59 (br s, 1H, N-C<u>H</u>), 2.39(d, J= 1.2Hz,C<u>H</u>₂-CH-(OH)-), 2.25 (m, 4H, N-C<u>H</u>₂), & 1.67 (t, J= 2.8Hz, 6H, CH₂C<u>H</u>₃).

2.3.5 3β-(1'-Dipropylamino-2'hydroxypropylamino)-9-methyl-9azabicyclo[3.3.1]-

Nonane (11c) dipicrate

Yield, 1.66g (50%); mp (dipicrate), 228°C (dec) (ethanol).

Anal:

IR (base) (Nujol) cm⁻¹: 3388 (O-H), 2922 (C-H), 1265 (C-N).

Mass (Dipicrate) m/z (rel. int.): 769 [M]⁺ ().1), 186 [M+2-458-27-100]⁺(100),

138 [M-458-173]⁺(15).

¹HNMR (Dipicrate) CDCl₃ δppm: 8.73 (d, J=1.2Hz,ArH-NO2), 3.72 (m, 1H, -(HO)C<u>H</u>-CH2), 3.33 (s, 3H, N-C<u>H</u>₃), 3.16 (s, 1H, N-C<u>H</u>), 2.93 (t, J=3Hz, 2H, -(HO)-CH-C<u>H</u>₂), 2.58 (br s, 1H, N-C<u>H</u>), 2.31 (d, J=1.2Hz, 2H,

 $C\underline{H}_2$ -CH(OH)-), 2.14 (m, 4H, N-C \underline{H}_2), 1.71 (m, 4H, -C \underline{H}_2 CH₃), & 0.95 (t, J=2.8Hz,

6H, -CH₂CH₃).

Volume No.07, Issue No.03, March 2018

ISSN: 2319-8354

www.ijarse.com

2.3.6 3β-(1'-Diisopropylamino-2'-hydroxypropylamino)-9-methyl-9-azabicyclo[3.3.1]-nonane (11d)dipicrate

Yield, 1.33g (40%), mp (dipicrate), 192-4^oC (dec) (ethanol).

Anal:

IR (base) (Nujol) cm⁻¹: 3362 (O-H), 2944(C-H), 1243 (C-N).

Mass (Dipicrate) m/z (rel. int.): 769 [M]⁺().1), 186[M+2-458-27-100]⁺ (80),

138[M-458-173]⁺ (15).

¹HNMR (Dipicrate) CDCl₃ δppm: 8.91 (d, J=1.2 Hz, ArH-NO2), 3.67 (m, 1H,

(-(HO)CH-CH₂), 3.09 (s, 1H, N-CH), 2.93 (t, J=3Hz, 2H, -(HO)CH-CH₂),

1.25 (m, 12H, $CH(C\underline{H}_3)_2$).

2.3.7 3β-(1'-Pyrrolidino-2'-hydroxypropylamino)-9-methyl-9-azabicyclo[3.3.1]-nonane (11e) dipicrate

Yield, 1.13g (43%), mp (dipicrate), 196-8^oC (dec) (ethanol).

Anal:

IR (base) (Nujol) cm⁻¹: 3393 (O-H), 2925(C-H), 1050 (O-H).

Mass (Dipicrate) m/z (rel. int.): 739[M]⁺(5), 282[M-458+1]⁺ (80),

 $186[M+2-458-27-70]^{+}$ (40), $138[M-458-143]^{+}$ (100).

¹HNMR (Dipicrate) CDCl₃ δppm: 8.70 (d, J=1.2Hz, Ar H-NO₂),3.70 (m, 1H, -(HO)C<u>H</u>-CH₂), 3.59 (s, 3H, N-CH₃), 2.93 (s, 1H, N-CH), 2.75(t, J= 3Hz, 2H, -(HO)CHCH₂), 2.58 (br s, 1H, N-CH), 2.51 (d, J=1.2Hz, CH₂-CH(OH)-), 2.29 (m, 4H, N-CH2), & 1.77 (m, 2H, N-CH2-CH2).

2.3.7 3β-(1'-Piperidino-2'-hydroxypropylamino)-9-methyl-9-azabicyclo[3.3.1]-nonane (11f) dipicrate

Yield, 1.27g (40%), mp (dipicrate), 146-8^oC (dec) (ethanol).

Anal:

IR (base) (Nujol) cm⁻¹: 3392 (O-H), 2931(C-H), 1110 (O-H).

Mass (Dipicrate) m/z (rel. int.): 755 [M+2]⁺ (5), 296 [M+1-458]⁺ (85),

Volume No.07, Issue No.03, March 2018 www.ijarse.com

IJARSE ISSN: 2319-8354

186 [M+2-458-27-84]⁺ (87), 138 [M-458-157]⁺.

¹HNMR (Dipicrate) CDCl₃ δppm: 8.6 (d, J=1.2Hz, Ar-H-NO₂), 3.71 (m,1H,-(HO)-C<u>H</u>-CH₂), 3.61 (s, 3H, N-C<u>H</u>₃), 3.02 (s, 1H, N-C<u>H</u>), 2.94 (t,J=3Hz, 2H, -(HO)CH-C<u>H</u>₂), 2.58 (br s, 1H, N-C<u>H</u>), 2.54 (d, J=1.2Hz,C<u>H</u>₂-CH(OH)-, 2.31 (m, 4H, N-CH₂), 1.87 (m, 4H, N-CH₂-CH₂), & 1.50,(m, 2H, N-CH₂-CH₂).

2.3.8 3β-(1'-Morpholino-2'-hydroxypropylamino)-9-methyl-9-azabicyclo[3.3.1]-nonane (11g) dipicrate

Yield, 1.3g (40%), mp (dipicrate), 198-200°C (dec) (ethanol).

Anal:

IR (base) (Nujol) cm⁻¹: 3392 (O-H), 2925(C-H), 1296 (C-N), 1116 (C-O-C).

Mass (Dipicrate) m/z (rel. int.): 755[M]⁺ (0.1), 186 [M-458-27+2]⁺ (100),

138 [M-458-159]⁺(25). HNMR (Dipicrate) CDCl₃ δ ppm: 7.26(d, J=1.2Hz, Ar- H-NO₂), 4.72 (m, 1H,C<u>H</u>(OH)-CH₂), 3.68 (t, J=1.7Hz, 4H, OC<u>H</u>₂), 2.97 (s, 3H, N-C<u>H</u>₃), 2.92 (br s, 4H,

N-C<u>H</u>₂), 2.51 (m, 2H, NH-C<u>H</u>₂-CH(OH)-), 2.49 (m, 4H, N-C<u>H</u>₂), 1.95 (m, 2H, N-CH-C<u>H</u>₂), 1.93 (m, 2H, N-CH-C<u>H</u>₂), & 1.53 (m, 2H, N-CH-CH₂-C<u>H</u>₂).

2.3.9 3β-(1'-Anilino-2'-hydroxypropylamino)-9-methyl-9-azabicyclo[3.3.1]nonane (11h) dipicrate

Yield, 1.32 g (40%), mp (dipicrate), 109-10^oC (dec) (ethanol).

Anal:

IR (base) (Nujol) cm⁻¹: 3342 (O-H), 2936(C-H), 1265 (C-N).

Mass (Dipicrate) m/z (rel. int.): 304 [M+1-458]⁺ (65), 211 [M-458-92]⁺ (50),

138 [M-458-92-73]⁺ (100).

¹HNMR (Dipicrate) CDCl₃ δppm: 8.73 (d, J=1.2Hz, Ar-H-NO2), 8.3 (m, 5H, Ar-H),3.69 (m, 1H, -(HO)C<u>H</u>-CH₂), 3.36 (s, 3H, N-C<u>H</u>₃), 3.22 (s, 1H, N-C<u>H</u>), 2.94 (t, J=3Hz, 2H, -(HO)CH-C<u>H</u>₂), 2.58 (br s, 1H, N-C<u>H</u>), 2.27 (d, J=1.2Hz, CH₂-CH-(OH)-), & 2.15 (m, 4H, N-CH₂).

2.4 3β-(1'-Chloro-2'-hydroxypropylamino)-9-methyl-9-azabicyclo[3.3.1]nonane (12).

3β-(1',2'-Epoxypropylamino)-9-methyl-9-azabicyclo[3.3.1]nonane (10) (1g,

4.1 mMol) was treated with 5 ml of concentrated hydrochloric acid and refluxed for 4 hr. After removal of hydrochloric acid under vacuum, the residue was taken up in water (10 ml), basified with sodium carbonate, and

Volume No.07, Issue No.03, March 2018

www.ijarse.com

IJARSE ISSN: 2319-8354

extracted with chloroform (4 x 20 ml). The chloroform extract after processing yielded a residue (1.35 g, 50 %), mp 111-2°C, which was used further as such.

Anal:

IR (base) (Nujol) cm⁻¹: 3490(N-H), 3300(O-H), 3287 (N-H), 2918 (C-H), 1260

(C-N).

Mass (Base) m/z (rel. int.): 247 [M+1]⁺ (80), 196 [M-49]⁺ (20),

138 [M-108]⁺ (40).

¹HNMR (Dipicrate) CDCl₃ δppm: 2.92 (s, 2H, -(HO)-CH-C<u>H</u>₂-Cl), 1.95(m, 2H, N-CH-C<u>H</u>₂), 1.93 (m, 2H, N-CH-C<u>H</u>₂), & !.53 (m, 2H, N-CH-CH₂-C<u>H</u>₂).

2.4.1 Synthesis of Phenoxy Analogs (13a-13d) 3β -(1'-Chloro-2'-hydroxypropyl-amino)-9-methyl-9-azabicyclo[3.3.1]nonane (12).

To a solution of 3β -(1'-chloro-2'-hydroxypropylamino)-9-methyl-9-azabicyclo-[3.3.1] nonane (12) (1 g, 4.3 mmol) in ethanol (10 ml) was added a phenol (5 mMol) and anhydrous potassium carbonate (0.75 g) and the reaction mixture refluxed for 12 hr. Next, the solvent was removed and the residue taken up in water (15 ml) and extracted with chloroform (4 x 20 ml). The chloroform layer was next washed with 10 % sodium hydroxide solution (2 x 10 ml) and with water (2 x 10 ml). The chloroform layer after processing yielded a residue which was crystallized as picrate.

2.4.2 3β-(1'-Phenoxy-2'-hydroxypropylamino)-9-methyl-9-azabicyclo[3.3.1]nonane (13a) picrate

Yield, 0.74 g (60%), mp (dipicrate), 214-6^oC (dec) (ethanol).

Anal:

IR (base) (Nujol) cm⁻¹: 3335(O-H), 2933(C-H), 1245 (C-N), 1044(C-O-C).

Mass (Picrate) m/z (rel. int.): 533 [M]⁺ (0.1), 211 [M-229-93]⁺ (20),

138 [M-229-93-73]⁺ (80).

¹HNMR (Picrate) CDCl₃ δppm: 8.70 (d, J=1.2 Hz, Ar-H-NO₂), 7.8(m, 2H, ArH), 7.62 (br band N<u>H</u>), 7.46 (m, 3H, ArH), 4.71 (m, 1H, -(HO)C<u>H</u>-CH₂), 4.45 (br band N<u>H</u>), 3.71 (s, 2H, -OC<u>H</u>₂), 3.59 (s, 3H, N-C<u>H</u>₃), 2.94 (s, 1H, N-C<u>H</u>), 2.58 (br s, 1H, N-C<u>H</u>), & 2.35 (m, 2H, C<u>H</u>₂-CH(OH).

Volume No.07, Issue No.03, March 2018

www.ijarse.com

IJARSE ISSN: 2319-8354

$2.4.3 \qquad 3\beta - \{1\text{'-}(o\text{-Methylphenoxy}) - 2\text{'-hydroxypropylamino}\} - 9\text{-methyl-}9\text{-azabicyclo}[3.3.1] nonane \qquad (13b)$ picrate

Yield, 0.8 g (62 %), mp (dipicrate), 202°C (dec) (ethanol).

Anal:

IR (base) (Nujol) cm⁻¹: 3347(O-H), 2923(C-H), 1248 (C-N), 1044(C-O-C).

Mass (Picrate) m/z (rel. int.): 547 [M]⁺ (0.2), 211 [M-229-107]⁺ (65),

138 [M-229-73-107]⁺ (100).

¹HNMR (Picrate) CDCl₃ δppm: 8.77 (d, J=1.2Hz, ArH-NO₂), 7.0-7.26 (m, 4H, ArH), 3.69(s, 2H,O-C<u>H</u>₂), 3.65(m, 1H,-(HOC<u>H</u>-CH₂), 3.13(S,1H, N-C<u>H</u>), 2.93 (t,J=3HZ, 2H, -(HO)CH-C<u>H</u>₂), 2.59(br s, 1H, N-C<u>H</u>), 2.21(d, J=1.2Hz, CH₂-CH(OH)-), & 1.84 (s, 3H, ArCH₃).

$2.4.4 \qquad 3\beta-\{1\text{'-}(m\text{-Methylphenoxy})-2\text{'-hydroxypropylamino}\}-9\text{-methyl-}9\text{-azabicyclo}[3.3.1] nonane \qquad (13c)$ picrate

Yield, 0.6 g (42 %), mp (dipicrate), 210-2^oC (dec) (ethanol).

Anal:

IR (base) (Nujol) cm⁻¹: 3363(O-H), 2943(C-H), 1260 (C-N), 1030(C-O-C).

Mass (Picrate) m/z (rel. int.): 547 [M]⁺ (0.5), 211 [M-229-107]⁺ (30),

138 [M-229-73-107]⁺ (100).

¹HNMR (Picrate) CDCl₃ δppm: 8.77 (d, j=1,2 Hz, ArH-NO₂), 7.24 (br s,

1H, ArH), 7.20 (t, J=4Hz, 1H, ArH), 6.8 (m, 2H, ArH), 3.69 (s, 2H, O-CH₂),

3.65 (m, 1H, -(HOC $\underline{\text{H}}$ -CH₂), 3.13(s,1H, N-C $\underline{\text{H}}$), 2.93 (t, J=3 Hz, 2H, HO-CH-C $\underline{\text{H}}$ ₂),

2.59 (br s, 1 H, NCH), 2.21 (d, J=1.2 Hz, CH₂-CH-OH), & 1.89 (s, 3H, ArCH₃).

$2.4.5 \qquad 3\beta-\{1\text{'-}(p\text{-Methylphenoxy})-2\text{'-hydroxypropylamino}\}-9\text{-methyl-}9\text{-azabicyclo}[3.3.1] nonane \qquad (13d)$ picrate

Yield, 0.6 g (42 %), mp (dipicrate), 210-2°C (dec) (ethanol).

Anal:

Volume No.07, Issue No.03, March 2018

www.ijarse.com

ISSN: 2319-8354

IR (base) (Nujol) cm⁻¹: 3365(O-H), 2922(C-H), 1245 (C-N), 1046(C-O-C).

Mass (Picrate) m/z (rel. int.): 547 [M]⁺ (0.2), 211 [M-229-107]⁺ (25),

138 [M-229-73-107]⁺ (100).

¹HNMR (Picrate) CDCl₃ δppm: 8.76 (d, J=1.2 Hz, ArH-NO₂), 7.27 (br s, 1H, ArH),7.10 (t, J=4 Hz, 1H, ArH), 6.98 (m, 2H, ArH), 3.69 (s, 2H, $-OC\underline{H}_2$), 3.41 (m, 1H,(HO- $C\underline{H}$ -CH₂), 3.12 (s, 1H, N- $C\underline{H}$), 2.89 (t, J=3 Hz, 2H, HO-CH- $C\underline{H}_2$), 2.59 (br s, 1H, N- $C\underline{H}$), 2.23 (d, J=1.2 Hz CH₂-CH-OH), & 1.85 (br, s, 3H, ArCH₃).

III. PHARMACOLOGICAL STUDIES

The pharmacological studies involved the study of effects of synthesized compounds (10-13) (henceforth designated as Test compounds), on CNS-depressant activity, sleeping time, and the effect on spasmogenic activity of acetylcholine, adrenaline, and histamine.

3.1 Effect of test compounds on cns- depressant activity⁹

The effect of CNS-depressant activity was determined on mice using locomotion as the parameter on actophotometer. Normal saline was used as control and phenobarbitone as the standard. All the Test compounds and phenobarbitone were used at a dose level of 10mg/kg. The locomotion activity was measured by noting the count before and after the injection of control, standard, and the Test compounds for 10 min.

3.2 Sleeping Time¹⁰

The sleeping time¹⁰ of Test compounds which showed depressant activity more than phenobarbitone was determined on mice. Both standard and Test compounds were given intraperitonially at a dose level of 45 mg/kg in a concentration of 4.5 mg/ml. The sleeping time was noted by noting the time when they went to sleep and when they were awake.

3.3 Effect of compounds on the spasmogenic activity of acetylcholine, 11 adrenaline, 12 and histamine, 13

The effect of Test compounds on the spasmogenic activity of acetylcholine 11 (100 µg/ml), adrenaline 12 (10µg/ml), and histamine 13 (100µg/ml), was studied on rat ileum, rabbit ileum, and guinea pig ileum, respectively. The effect of Test compounds was determined by adding 0.1 ml, 0.2 ml, 0.4 ml and a maximum of 2ml of 1 mg/ml solution.

Volume No.07, Issue No.03, March 2018

www.ijarse.com

ISSN: 2319-8354

IV. RESULTS AND DISCUSSION

4.1 Pharmacological studies

4,1.1 locomotor activity and sleeping time (table 3 & 4) The results of studies of locomotor activity are given in Table 3.Test compounds 11f, 11g, 13c, 13d, when injected in animals resulted in death of animals. All other Test compounds showed depressant activity. Test compounds 11c, 11d, 11h, and 12 showed CNS-depressant activity less than phenobarbitone. The depressant activity of other Test compounds, namely, Test compound 10, 11a, 11b, 11e, and 13a was more than phenobarbitone. They were further investigated for sleeping time (Table 4). While Test compounds 11a, 11b, 11e, and 13a were lethal at the dose level of 45mg/kg. (Table 4). Test compound 10 showed sleeping time of 30 min, which was less than the standard phenobarbitone.

4.1.2 Effect of test compounds on the spasmogenic action of acetylcholine, adrenaline, and histamine (table 5)

None of the Test compounds showed any effect of their own on ileum of rat, rabbit, and guinea pig ileum.

The effect on spasmogenic action of acetylcholine, adrenaline, and histamine was studied on rat ileum, rabbit ileum, and guinea pig ileum, respectively (Table 5).

None of the Test compounds excepting 13c showed 100 % blockade of acetylcholine induced spasm (Table 5).

Test compounds 11b, 11h, and 12 did not show any blockade of adrenaline induced spasm of rabbit ileum. The blockade by other Test compounds varied from 11 % to 74 %.

Test compounds 11e and 11h showed a blockade of 68.42 % and 100 %, respectively, of histamine induced spasm of guinea pig ileum (Table 5). None of the other Test compounds showed any effect on the histamine induced spasm.

Preliminary pharmacological studies show that some of the compounds possess anticholinergic and antihistaminic activities which could be further investigated.

V. CONCLUSION

From the studies it can be concluded that most of the derivatives showed CNS-depressant activity more than phenobarbitone (standard drug). Preliminary pharmacological studies showed that some of the compounds possess anticholinergic and antihistaminic activities which could be further investigated. So further attempts could be made to extend the series and to achieve hopeful goal.

VI.CONFLICT OF INTERESTS

The authors declare that there is no conflict of interest..

Volume No.07, Issue No.03, March 2018

www.ijarse.com

IJARSE ISSN: 2319-8354

VII. ACKNOWLEDGEMENTS

The authors gratefully acknowledge to Director and Management of SBSPGI, Balawala, Dehradun, India for providing the necessary facilities during this experimental study.

REFERENCES

- [1] H,.A. Wagner, US Patent, 3, (1964),117,132 Chem Abstr., 60, 1964. 9297g
- [2] H. Amschler'., W.R Ulrich, E.C Dittman., Ger. Patent 1980, 2,945, 069 Chem, Abstr., 93, 1980 239441b).
- [3] H.E Zaugg, US Patent, 999 1961; ,091 Chem. Abstr, 56 1962., 474i
- [4] P. Donatsch, G Angel, B. Huegi, B.P Richardson, P Stadler, Ger. Offen DE3, 322 1983;,574 Chem. Abstr., 100 1984., 209629
- [5] B.Razdan, A.K Sharma, K. Kumari, R.B Bodla, B.L Gupta and G.K Patnaik, Eur. J. Med. Chem., 22, 1987. 573
- [6] J.Kaur . B Razdan, V. Ram, & G. Pant, Indian J. Het. Chem., 20 2011., 269
- [7] B. Razdan, A.K Sharma. Curr. Sci., 53 1984., 1183
- [8] A. Stoll, E. Jucke, r and A. Ebnothe, Helv. Chim. Acta, 38, 1955. 559
- [9] S.K Kulkarni., "Handbook of Experimental Pharmacology" 3rd ed Vallabh Prakashan, Delhi, 117,1999.
- [10] S.K.Kulkarni. "Handbook of Experimental Pharmacology" 3rd ed. Vallabh Prakashan, Delhi, 115,1999.
- [11] K.K. Pillay, "Experimental Pharmacology," 3rd ed CBS Publishers and Distributors, Delhi, 51. 2007.
- [12] K.K Pillay, "Experimental Pharmacology," 3rd ed CBS Publishers and Distributors, Delhi63.,2007
- [13] K.K, Pillay, "Experimental Pharmacology," 3rd ed CBS Publishers and Distributors, Delhi, 60 2007

TABLE 3: EFFECT OF PHENOBARBITONE (STANDARD) AND TEST COMPOUNDS ON LOCOMOTOR ACTIVITY* OF MICE AT A DOSE LEVEL OF 10MG/KG

S.No	Normal saline/Standard/Test Compound	Change in Locomotor
		Activity
1.	Normal Saline (Control)	11 % ↓
2.	Phenobarbitone (Standard)	22 % ↓
3.	Test Compound 10	25 % ↓
4.	Test Compound 11a	64.26 % ↓
5.	Test Compound 11b	57.01 % ↓
6.	Test Compoind 11c	5.17 % ↓
7.	Test Compound 11d	9.1 % ↓
8.	Test Compound 11e	71.14 % ↓

Volume No.07, Issue No.03, March 2018 www.ijarse.com

9.	Test Compound 11f	Lethal
10.	Test Compound 11g	Lethal
11.	Test Compound 11h	13.78 % ↓
12.	Test Compound 12	16.19 % ↓
13.	Test Compound 13a	25.57 % ↓
14.	Test Compound 13b	Lethal
15.	Test Compound 13c	Lethal
16.	Test Compound 13d	Lethal

^{*}Mean of 5 mice

TABLE 4 : SLEEPING TIME* OF PHENOBARBITONE AND TEST COMPOUNDS AT A DOSE LEVEL OF 45MG/KG

S.No	Standard/Test Compound	Duration in Minutes	
1.	Phenobarbitone (standard)	200 min	
2.	Test Compound 10	30 min	
3.	Test Compound 11a	Lethal	
4.	Test Compound 11b	Lethal	
5.	Test Compound 11e	Lethal	
6.	Test Compound 13a	Lethal	

^{*}Mean of 5 mice Lethal: Indicates death of animal

TABLE 5 : EFFECT OF TEST COMPOUNDS ON ACETYLCHOLINE (ACH), ADRENALINE (ADR), AND HISTAMINE (HIS) INDUCED SPASM OF ISOLATED RAT ILEUM, RABBIT ILEUM, AND GUINEA PIG ILEUM, RESPECTIVELY

S.No	Test Compound	Effect on Ach	Effect on Adr	Effect on His
		induced spasm	induced spasm of	induced spasm of
		of isolated rat	isolated rabbit	isolated guinea pig
		ileum	ileum	ileum
1.	Test Compound	No effect	56.53 %↓	No effect

ISSN: 2319-8354

[↓] Indicates depression Lethal : Indicates death of animals

Volume No.07, Issue No.03, March 2018 www.ijarse.com

IJARSE ISSN: 2319-8354

	10				
2.	Test	Compound	No effect	74 %↓	No effect
	11a				
3.	Test	Compound	No effect	No effect	No effect
	11b				
4.	Test	Compound	No Effect	11.78 %↓	No effect
	11c				
5.	Test	Compound	No effect	33.34 %↓	No effect
	11d				
6.	Test	Compound	No effect	No effect	68.42 %↓
	11e				
7.	Test	Compound	No effect	37.50 %↓	100 %↓
	11f				
8.	Test C	ompound 11g	No effect	56.53 %↓	No effect
9.	Test	Compound	No effect	No effect	No effect
	11h				
10.	Test	Compound	No effect	No effect	No effect
	12				
11.	Test	Compound	No effect	56.53 %↓	No effect
	13a				
12.	Test	Compound	No effect	60.88 %↓	No effect
	13b				
13.	Test	Compound	100 %↓	25.0 %↓	No effect
	13c				
14.	Test	Compound	No effect	No effect	No effect
	13d				
	1	11 1 1			

[↓] indicates blockade