International Journal of Advance Research in Science and Engineering Volume No.07, Special Issue No.01, March 2018 IJARSE ISSN: 2319-8354

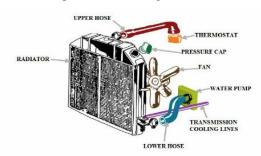
CFD ANALYSIS OF COMPOSITE RADIATOR FAN WITH THREE, FOUR AND SIX BLADES

S.U.Misal¹, Prof.G.S.Joshi², Dr.V.R.Naik³

¹PG student (PDD) Mechanical Department, DKTE TEI, (India)

²Prof.Mechanical Department, DKTE TEI, (India)

³Prof. & HOD Mechanical Department, DKTE TEI, (India)


ABSTRACT

In this paper, an axial flow fan is to be designed and modeled in 3D modeling software Pro/Engineer.In this Paper CFD analysis with the number of blades are changed to 3,4 and 6 is performed. Theoretical calculations are done to determine the blade dimensions, The design is to be changed to increase the efficiency of the fan and analysis is to be done on the fan by changing the no.of blades(3,4,6), angle of blade (30⁰,45⁰,60⁰) and speed of fan(750,1250,1750 rpm) for flow velocity and discharge. Analysis is done in finite element analysis ANSYS.

Keywords: Composite Material, Radiator Fan, CFD Analysis.

I. INTRODUCTION

The radiator fan is a device, which sucks the atmospheric air through the radiator panels and expels it to the atmosphere to cool the engine coolant after discharge from the engine and maintains an acceptable operating temperature by transferring heat from the engine to the atmospheric air. The cooling fan is part of the cooling system and their design to keep a cooler temperature in the engine.

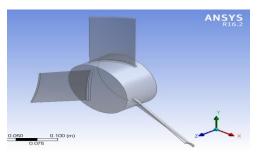
The Radiator performs the function of cooling, the coolant which has passed through the water jacket and becomes hot and is mounted in front of the vehicle. The radiator consists of an upper tank and lower tank, and a core which connects the two tanks ^[1]. The upper tank contains an inlet for coolant from the water jacket and a filler inlet. It also has a hose through which excess coolant can flow. The lower tank has an outlet and drain cock for the coolant. The core contains many tubes and cooling fins through which coolant flows from the upper tank to the lower tank so that coolant has been heated up as it passes through the water jacket is cooled by the air sucked through the radiator by the cooling fan.

Till the various researches done on the materials of the radiator fan. Such as material used for the fan are aluminum, FRP but due to the various problem occurred in the materials it was failed. The axial flow fans are conventionally designed with impellers made of aluminum or mild steel. The grey area today is the

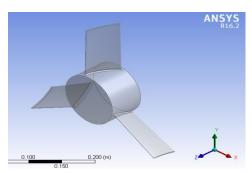
International Journal of Advance Research in Science and Engineering

Volume No.07, Special Issue No.01, March 2018

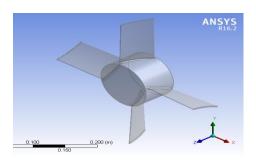
www.ijarse.com


IJARSE ISSN: 2319-8354

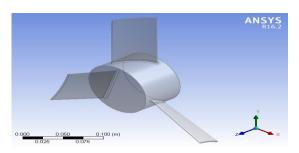
inconsistency in proper aerofoil selection & dimensional stability of the metallic impellers. This leads to high power consumption & high noise levels with lesser efficiency. In the present work, we use the glass fiber epoxy material for the manufacture cooling fan. The design is to be changed to increase the efficiency of the fan and analysis is to be done on the fan by changing the no.of blades(3,4,6), angle of blade (30⁰,45⁰,60⁰) and speed of fan(750,1250,1750 rpm) for flow velocity and discharge.


II.FINITE ELEMENT ANALYSIS- CFD

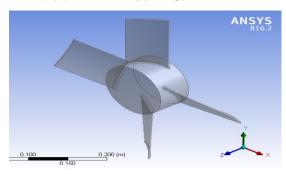
2.1 CAD Model


2.1.1 3 BLADE 30 DEG.

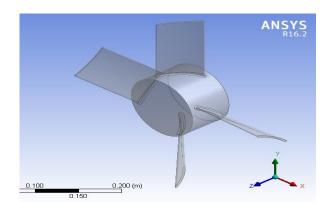
2.1.3 3 BLADE 60 DEG.



2.1.5 4 BLADE 45 DEG.

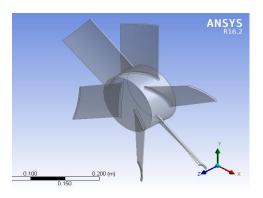


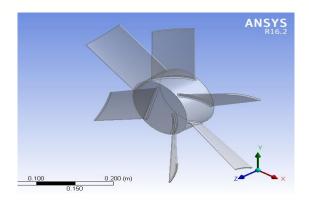
2.1.7 6 BLADE 30 DEG.


2.1.2 3 BLADE 45 DEG.

2.1.4. 4 BLADE 30 DEG.

2.1.6 4 BLADE 60 DEG.

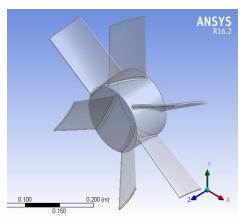


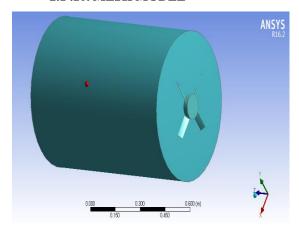

2.1.8. 6 BLADE 45 DEG.

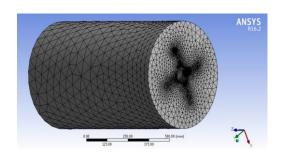
International Journal of Advance Research in Science and Engineering 🔑

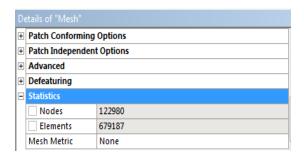
Volume No.07, Special Issue No.01, March 2018

www.ijarse.com




IJARSE

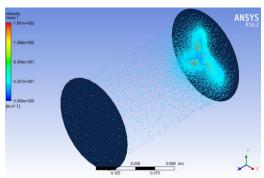

ISSN: 2319-8354


2.1 .9. 6 BLADE 60 DEG.

2.1 .10. MESH MODEL

2.1.11. DETAILS OF MESH

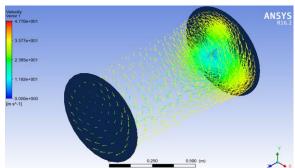
Supported 3D elements (TETRA_4, PYRA_5, PENTA_6 and HEXA_8).

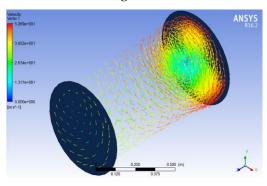

International Journal of Advance Research in Science and Engineering 🔑

Volume No.07, Special Issue No.01, March 2018

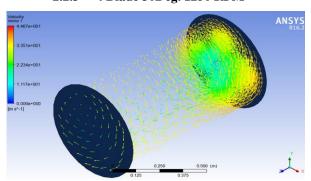
www.ijarse.com

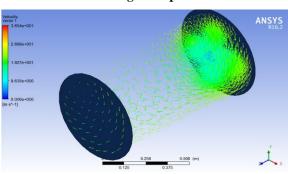
2.2 FEA-CFD Results

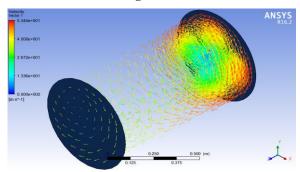

2.2.1 3 Blade 30Deg. 750RPM

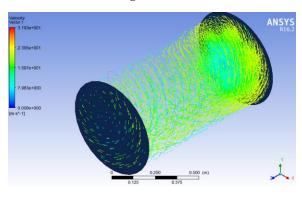

2.2.2 3 Blade 45Deg. 1250RPM

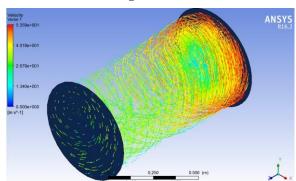
IJARSE


ISSN: 2319-8354


2.2.2 3 Blade 60Deg. 1750RPM


2.2.3 4 Blade 30Deg. 1250 RPM

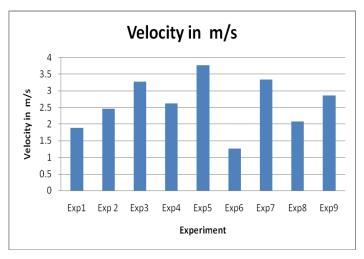

2.2.5 4 Blade 45 deg. 750 rpm


2.2.6 4Blade 60Deg. 1750 RPM

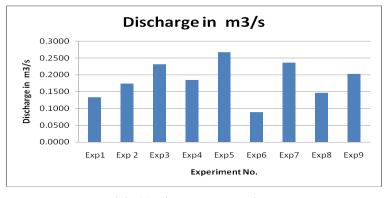
2.2.7 6 Blade 30Deg. 750 RPM

2.2.8 6 Blade 45Deg. 1250 RPM

International Journal of Advance Research in Science and Engineering 🔑 **IJARSE**


Volume No.07, Special Issue No.01, March 2018

www.ijarse.com


FEA Result Table

	No. Blade	Angle(0)	Speed (RPM)	Velocity (m/s)	Discharge Q(m3/s)
EXP 1	3	30	750	1.89	0.1335
EXP 2	3	45	1250	2.47	0.1745
EXP 3	3	60	1750	3.28	0.2317
EXP 4	4	30	1250	2.62	0.1851
EXP 5	4	45	1750	3.78	0.2671
EXP 6	4	60	750	1.26	0.0890
EXP 7	6	30	1750	3.34	0.2360
EXP 8	6	45	750	2.08	0.1470
EXP 9	6	60	1250	2.87	0.2028

Table 9.1 FEA Result Table

2.2 .10 Fig. Bar chart Velocity

2.2.11 Fig. Bar chart Discharge

ISSN: 2319-8354

International Journal of Advance Research in Science and Engineering Volume No.07, Special Issue No.01, March 2018 IJARSE WWW.ijarse.com ISSN: 2319-8354

III. CONCLUSION

- The design of Composite radiator fan and its CFD numerical modeling technique proves to be very useful in initiating further and more comprehensive numerical study of the engine cooling system which is currently in progress.
- In this paper, investigations on the effect of radiator fan parameters on performance has been presented thorough experiments and CFD simulations has been presented
- CFD results were presented in the form of velocity streamlines; it provides actual flow characteristic air around the fan for different number of fan blades and fan angles.
- According to FEA results in Experiment no. 5 (Combination: No. of Blade 4, Blade Angle 45⁰, Speed of Fan 1750 RPM) give the high airflow velocity of 3.40 m/s and calculated discharge of 0.24 m3/s.
- The study revealed that a fan with an optimum number of four fan blades gives maximum velocity of 3.78m/s (By FEA) Also blade tilting angle of 45⁰ gives remarkable effect on flow velocity.

REFERENCES

- [1.] Pawan S.Amrutkar, Sangram R.Patil, "Automotive Radiator Performance-Review" International Journal of Engineering and Advanced Technology, Volume 2, Issue 3, Feb 2013
- [2.] N.Saravanakumar, G. Vinoth Kumar, G. Arundeesh, "Performance Analysis of Carbon Steel Axial Fan" International Journal of Latest Engineering and Management Research, Volume 2, Issue 11, Nov 2017
- [3.] Avinash Gudimetla , S.Sambhu Prasad 'Optimum Material Evaluation of Fan Blades Using Reverse Engineering Approach' International Journal of Engineering Science Invention
- [4.] Ali Zare, Kannan M. Munisamy, Ali Najafzadeh, BehzadShahizare, Ahmad Ahmadi and Ahmed Ali Jaafari, "Finite Element Analysis of Axial Fan Blade with Different Chord Lengths".
- [5.] Mohd Yusof Sulaiman, ShamsulBahariAzraai, Wan Mokhtar Wan Abdullah, "CFD Modelling of Air Flow Distribution from a fan" Proceeding of International Conference on Applications and Design in Mechanical Engineering (ICADME), October 2009, Batu Ferringhi, Penang, Malaysia.
- [6.] M.Nagakiran and S.Srinivasulu," Analysis of Axial flow Fans", International Journal of Recent Trends in Mechanical Engineering, Volume 1.
- [7.] Gourav Gupta, Ankur Kumar, Rahul Tyagi, Sachin Kumar, "Application and Future of Composite Material", International Journal of Innovative Research in Science, Engineering And Technology, Volume 5, Issue 5, MAY 2016
- [8.] Hemant kumawat, "Modelling and Simulation of Axial Fan Using CFD", International Journal of aerospace and Mechanical Engineering, Volume 8, Nov 2014
- [9.] Bureau of Energy Efficiency FANS AND BLOWERS
- [10.] Amazing Comfortson S,Ahamed Faiyaz R,Mohamed Yousuf Afzal M R,Mohapilasha Nishath M, "Glass Fibre Reinforced Polymer Composite Ceiling Fan Blade"International Journal of Emerging Technology and Advanced Engineering Volume 4,Issue11,November 2014.
- [11.] Tushar Ambdekar, Shivprakash B.Barve, B.S.Kothavale, Nilesh Dhokane, "Design and Analysis of Engine Cooling Fan", International Journal of Current Engineering and Technology, Issue 3, April 2014

International Journal of Advance Research in Science and Engineering Volume No.07, Special Issue No.01, March 2018 IJARSE WWW.ijarse.com ISSN: 2319-8354

- [12.] Mahajan Vandana N, Shekhawat Sanjay P, "Analysis of Blades of Axial Fan Using ANSYS", International Journal of advanced Engineering Technology, Volume 2, Issue 2, April 2011
- [13.] Sudhir Mathapati, Tushar hawal, Prashant kakamari, Nikhil R, "Analysis and Characterization of tensile and compressive properties of chopped Strand Mat E glass Reinforced Epoxy Composites" International Journal of Advanced Engineering and Applied Sciences, July 2014
- [14.] Prof. N.V. Hargude, Prof. N.D.Patil, Prof. P.P. Awate, "Review of Composite Material Mono Leaf Spring", International Journal of Emerging Technology and Advanced Engineering, Volume 4, Issue 5, pp. 880-882, May 2014.
- [15.] Alen John, Sanu Alex, "A review of the composite materials used for the automotive bumper in passenger vehicles", Volume-4, Issue-4, pp. 98- 101, August-2014.
- [16.] Gururaja MN, A N Hari Rao, "A review on recent applications and future prospectus of hybrid composites", International Journal of Soft Computing and Engineering, Volume-1, Issue-6, pp. 352-355, January 2012.
- [17.] S.Prabhakaran, M.Senthil kumar, "Development of Glass fiber Reinforced Polymer Composite Ceiling Fan Blade" International Journal of Engineering Research and development, Volume 2, Issue 3, July 2012
- [18.] A. Dubbin, BASF Corporation, E. Homsi, BASF Corporation, Basic Guidelines For Plastic Conversion of Metal Axial Flow Fans"..
- [19.] Lecture notes of nptel composite material.
- [20.] Dongho kim, Iidoo chung, Guni Kim, "Study on Mechanical and Thermal Properties of fiber reinforced Epoxy/Hybrid silica Composite", volume 14, No 12, Aug 2013.
- [21.] Manish Dadhich, Sheetal Kumar Jain, Vikas Sharma, Sanjay Kumar Sharma, "Fatigue and Modal Analysis of a Centrifugal Fan" International Journal of Recent advances in Mechanical Engineering (IJMECH) Vol.4, No.2, May 2015