A Study of Some Topological Indices of Grid

Rachanna Kanabur

Department of Mathematics, BLDEA'S Commerce BHS Arts and TGP Science, College, Jamakhandi ,Karnataka, (India)

ABSTRACT

In this paper, computation of the Arithmetic-Geometric index (AG_1 index), SK index, SK_1 index and SK_2 index of grid is carried out without the aid of acomputer.

Keywords: Arithmetic-Geometric index (AG_1 index), SK index, SK_1 index, SK_2 index and grid.

I.INTRODUCTION

Mathematical chemistry is a branch of theoretical chemistry for discussion and prediction of the molecular structure using mathematical methods without necessarily referring to quantum mechanics. Chemical graph theory is a branch of mathematical chemistry which applies graph theory to mathematical modelling of chemical phenomena [3, 4]. This theory had an important effect on the development of the chemical sciences.

In mathematics chemistry, a molecular graph is a simple graph such that its vertices correspond to the atoms and the edges to the bonds. And also a connected graph is a graph such that there is a path between all pairs of vertices. Note that hydrogen atoms are often omitted [4].

Let G = (V, E) be a graph with n vertices and m edges. The degree of a vertex $u \in V(G)$ is denoted by $d_G(u)$ and is the number of vertices that are adjacent to u. The edge connecting the vertices u and v is denoted by uv [1].

II. COMPUTING THE TOPOLOGICAL INDICES OF GRID.

Motivated by previous research on grid, here we used to four new topological indices and computed their corresponding topological index value of grid [6].

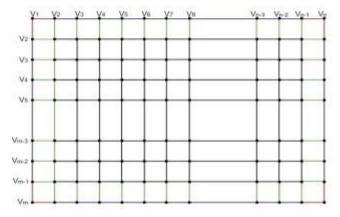


Figure 1

International Journal of Advance Research in Science and Engineering

Volume No.07, Special Issue No.(02), March 2018

www.ijarse.com

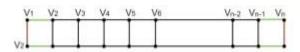


Figure 2

Figure 3

In [5,7,8,9 and 10], Shigehalli and Kanabur have put forward new degree based topological indices viz. arithmetic-geometric index, SK_1 index and SK_2 index. Which are defined as follows:

Definition 2.1: Arithmetic-Geometric (AG_I) **Index**

Let G = (V, E) be a molecular graph, and $d_G(u)$ is the degree of the vertex u, then AG_I index of G is defined as

$$AG_{I}(G) = \sum_{u,v \in E(G)} \frac{d_{G}(u) + d_{G}(v)}{2\sqrt{d_{G}(u).d_{G}(v)}}$$

Where, AG_l index is considered for distinct vertices.

The above equation is the sum of the ratio of the Arithmetic mean and Geometric mean of u and v, where $d_G(u)$ (or $d_G(v)$) denotes the degree of the vertex u (or v).

Definition 2.2: SK Index

The *SK* index of a graph G = (V, E) is defined as $SK(G) = \sum_{u,v \in E(G)} \frac{d_G(u) + d_G(v)}{2}$, where $d_G(u)$ and $d_G(v)$ are the degrees of the vertices u and v in G.

Definition 2.3: SK_1 **Index**

The SK_I index of a graph G = (V, E) is defined as $SK_I(G) = \sum_{u,v \in E(G)} \frac{d_G(u).d_G(v)}{2}$, where $d_G(u)$ and $d_G(v)$ are the product of the degrees of the vertices u and v in G.

ISSN: 2319-8354

Definition 2.4: SK₂ Index

The
$$SK_2$$
 index of a graph $G = (V, E)$ is defined as $SK_2(G) = \sum_{u,v \in E(G)} \left(\frac{d_G(u) + d_G(v)}{2} \right)^2$, where $d_G(u)$ and $d_G(v)$ are the degrees of the vertices u and v in G .

III.MAIN RESULTS

Theorem3.1: The AG_I index of grid with "(m-1)" rows and "(n-1)" columns is given by

$$AG_{I}(G) = \begin{cases} 2mn - 0.9793m - 0.9793n - 8.0829, & if \ m > 2 \ and \ n > 2 \\ 3n - 1.9174, & if \ m = 2 \ and \ n > 2 \\ 4, & if \ m = n = 2 \end{cases}$$

Proof: The topological structure of a grid network, denoted by G(m, n), is defined as the Cartesian product $P_m \times P_n$ of undirected paths P_m and P_n . The spectrum of the graph does not depends on the numbering of the vertices. However, here we adopt a particular numbering such that the edges has a pattern which is common for any dimension. We follow the sequential numbering from left to right as shown in the figure 1.

Consider a two-dimensional structure of grid with (m-1) rows and (n-1) columns as shown in the figure 1. Let $e_{i,j}$ denotes the number of edges connecting the vertices of degrees d_i and d_i .

Table1.

Row	e _{2,3}	e _{3,3}	e _{3,4}	e _{4,4}
1	4	n-3	n	n-3
2	0	2	2	2n-5
3	0	2	2	2n-5
4	0	2	2	2n-5
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
m-2	0	2	2	2n-5
m-1	4	n-3	n-2	0
Total	8	2m+2n-12	2m+2n-8	2mn-5m-5n+12

Table2.

Row	$\mathbf{e}_{2,2}$	e _{2,3}	e _{3,3}
1	2	4	(3n-8)

$$AG_{I}\left(G\right) = \sum_{u,v \in E\left(G\right)} \frac{d_{G}\left(u\right) + d_{G}\left(v\right)}{2\sqrt{d_{G}\left(u\right).d_{G}\left(v\right)}}$$

$$AG_{I}(G) = e_{2,3} \left(\frac{2+3}{2\sqrt{2.3}} \right) + e_{3,3} \left(\frac{3+3}{2\sqrt{3.3}} \right) + e_{3,4} \left(\frac{3+4}{2\sqrt{3.4}} \right) + e_{4,4} \left(\frac{4+4}{2\sqrt{4.4}} \right)$$

$$=8\left(\frac{5}{2\sqrt{6}}\right) + (2m+2n-12)(1) + (2m-2n-8)\left(\frac{7}{2\sqrt{12}}\right) + (2mn-5m-5n+12)(1)$$

$$= \frac{20}{\sqrt{6}} + 2m + 2n - 12 + (m + n - 4) \frac{7}{\sqrt{12}} + 2mn - 5m - 5n + 12$$

$$=2\text{mn-3m-3n+}\frac{7m}{\sqrt{12}}+\frac{7n}{\sqrt{12}}-\frac{28}{\sqrt{12}}$$

= 2mn-0.979m-0.979n-8.0829.

Now, we consider the following cases:

Case 1.Ifm>2 and n>2, Grid contains $e_{2,3}$, $e_{3,4}$ and $e_{4,4}$ only edges. In the figure 1 $e_{2,3}$, $e_{3,3}$, $e_{3,4}$ and $e_{4,4}$ edges are colored in red, blue, green and black respectively. The number of $e_{2,3}$, $e_{3,4}$ and $e_{4,4}$ edges in each row is mentioned in the following table 1.

The Arithmetic-Geometric index of grid for if m>2 and n>2

$$AG_1(G) = 2\text{mn} - 0.979\text{m} - 0.979\text{n} - 8.0829$$

Case 2.In this case Grid contains $e_{2,2}$, $e_{2,3}$, and $e_{3,3}$ edges. The edges $e_{2,2}$, $e_{2,3}$, and $e_{3,3}$ are colored in red, blue and black respectively as shown in the figure 2. The number of $e_{2,2}$, $e_{2,3}$, and $e_{3,3}$ edges in each row is mentioned in the table 2.

If m=2 and n>2

In this case grid contains $e_{2,2}$, $e_{2,3}$ and $e_{3,3}$ edges.

$$AG_{I}(G) = \sum_{u,v \in E(G)} \frac{d_{G}(u) + d_{G}(v)}{2\sqrt{d_{G}(u).d_{G}(v)}}$$

$$AG_{I}(G) = e_{2,2} \left(\frac{2+2}{2\sqrt{2.2}}\right) + e_{2,3} \left(\frac{2+3}{2\sqrt{2.3}}\right) + e_{3,3} \left(\frac{3+3}{2\sqrt{3.3}}\right)$$
$$= 2 (1) + 4 \left(\frac{5}{2\sqrt{6}}\right) + (3n-8) (1)$$

$$= 2 + \frac{20}{\sqrt{6}} + 3n - 8$$

$$= 3n-1.9174.$$

Case 3.If m = n = 2

In this case the number of $e_{2,2}$ edges is as shown in figure 3.

$$_{\circ}AG_{I}\left(G\right) =\sum_{u,v\in E\left(G\right) }\frac{d_{G}\left(u\right) +d_{G}\left(v\right) }{2\sqrt{d_{G}\left(u\right) .d_{G}\left(v\right) }}$$

$$AG_{I}(G) = e_{2,2} \left(\frac{2+2}{2\sqrt{2.2}} \right)$$
=4 (1)
= 4.

Theorem3.2: The SK index of grid with "(m-1)" rows of benzene rings and "(n-1)" columns is given by

$$SK(G) = \begin{cases} 8mn - 7m + 33n + 28, & \text{if } m > 2 \text{ and } n > 2\\ 9n - 10, & \text{if } m = 2 \text{ and } n > 2\\ 8, & \text{if } m = n = 2 \end{cases}$$

Proof: The topological structure of a grid network, denoted by G(m, n), is defined as the Cartesian product $P_m \times P_n$ of undirected paths P_m and P_n . The spectrum of the graph does not depends on the numbering of the vertices. However, here we adopt a particular numbering such that the edges has a pattern which is common for any dimension. We follow the sequential numbering from left to right as shown in the figure 1.

ISSN: 2319-8354

$$SK(G) = \sum_{u,v \in E(G)} \frac{d_G(u) + d_G(v)}{2}$$

$$\mathit{SK}\left(\mathit{G}\right) = \ e_{2,3} \left(\frac{2+3}{2}\right) + e_{3,3} \left(\frac{3+3}{2}\right) + e_{3,4} \left(\frac{3+4}{2}\right) + e_{4,4} \left(\frac{4+4}{2}\right)$$

$$=8\left(\frac{5}{2}\right)+2 \text{ (m+n-6)} \left(\frac{6}{2}\right)+2 \text{ (m+n-4)} \left(\frac{7}{2}\right)+\text{ (2mn-5m-5n+12)} \left(\frac{8}{2}\right)$$

= 20+6m+6n-12+7m+7n-28+8mn-20m+20n+48

= 8mn-7m+33n+28

Now, we consider the following cases:

Case 1. If m>2 and n>2, Grid contains $e_{2,3}$, $e_{3,4}$ and $e_{4,4}$ only edges. In the figure 1 $e_{2,3}$, $e_{3,3}$, $e_{3,4}$ and $e_{4,4}$ edges are colored in red, blue, green and black respectively. The number of $e_{2,3}$, $e_{3,4}$ and $e_{4,4}$ edges in each row is mentioned in the following table 1.

The SK index of grid for if m>2 and n>2

$$AG_1(G)=8mn-7m+33n+28$$

Case 2. In this case Grid contains $e_{2,2}$, $e_{2,3}$, and $e_{3,3}$ edges. The edges $e_{2,2}$, $e_{2,3}$, and $e_{3,3}$ are colored in red, blue and black respectively as shown in the figure 2. The number of $e_{2,2}$, $e_{2,3}$, and $e_{3,3}$ edges in each row is mentioned in the table 2.

If m=2 and n>2

In this case grid contains $e_{2,2}$, $e_{2,3}$ and $e_{3,3}$ edges.

$$SK(G) = \sum_{u,v \in E(G)} \frac{d_G(u) + d_G(v)}{2}$$

$$SK(G) = e_{2,2} \left(\frac{2+2}{2}\right) + e_{2,3} \left(\frac{2+3}{2}\right) + e_{3,3} \left(\frac{3+3}{2}\right)$$

$$=2\left(\frac{4}{2}\right)+4\left(\frac{5}{2}\right)+(3n-8)\left(\frac{6}{2}\right)$$

$$=4+10+9n-24$$

$$= 9n-10.$$

Case 3.If m=n=2

In this case the number of $e_{2,2}$ edges is as shown in figure 3.

$$SK(G) = \sum_{u,v \in E(G)} \frac{d_G(u) + d_G(v)}{2}$$

$$SK(G) = e_{2,2} \left(\frac{2+2}{2} \right)$$

$$=4\left(\frac{4}{2}\right)$$

= 8.

Theorem3.3: The SK_I index of grid with "(m-1)" rows of benzene rings and "(n-1)" columns is given by

$$SK_{1}(G) = \begin{cases} 16mn - 19m + 61n + 18, & \text{if } m > 2 \text{ and } n > 2\\ 13.5n - 20, & \text{if } m = 2 \text{ and } n > 2\\ 8, & \text{if } m = n = 2 \end{cases}$$

Proof: The topological structure of a grid network, denoted by G(m, n), is defined as the Cartesian product $P_m \times P_n$ of undirected paths P_m and P_n . The spectrum of the graph does not depends on the numbering of the vertices. However, here we adopt a particular numbering such that the edges has a pattern which is common for any dimension. We follow the sequential numbering from left to right as shown in the figure 1.

$$SK_{I}(G) = \sum_{u,v \in E(G)} \frac{d_{G}(u).d_{G}(v)}{2}$$

$$SK_{I}(G) = e_{2,3}\left(\frac{2\times3}{2}\right) + e_{3,3}\left(\frac{3\times3}{2}\right) + e_{3,4}\left(\frac{3\times4}{2}\right) + e_{4,4}\left(\frac{4\times4}{2}\right)$$

$$= 8\left(\frac{6}{2}\right) + 2 \left(m + n - 6\right) \left(\frac{9}{2}\right) + 2 \left(m + n - 4\right) \left(\frac{12}{2}\right) + \left(2mn - 5m - 5n + 12\right) \left(\frac{16}{2}\right)$$

= 24+9m+9n-54+12m+12n-48+16mn-40m+40n+96

= 16mn-19m+61n+18.

Now, we consider the following cases:

Case 1. If m>2 and n>2, Grid contains $e_{2,3}$, $e_{3,4}$ and $e_{4,4}$ only edges. In the figure 1 $e_{2,3}$, $e_{3,4}$ and $e_{4,4}$ edges are colored in red, blue, green and black respectively. The number of $e_{2,3}$, $e_{3,4}$ and $e_{4,4}$ edges in each row is mentioned in the following table 1.

The SK_1 index of grid for if m>2 and n>2

$$SK_{I}(G)=16mn-19m+61n+18$$

Case 2. In this case Grid contains $e_{2,2}$, $e_{2,3}$, and $e_{3,3}$ edges. The edges $e_{2,2}$, $e_{2,3}$, and $e_{3,3}$ are colored in red, blue and black respectively as shown in the figure 2. The number of $e_{2,2}$, $e_{2,3}$, and $e_{3,3}$ edges in each row is mentioned in the table 2.

If m=2 and n>2

In this case grid contains $e_{2,2}$, $e_{2,3}$ and $e_{3,3}\ edges.$

$$\circ SK_{I}(G) = \sum_{u,v \in E(G)} \frac{d_{G}(u).d_{G}(v)}{2}$$

$$SK_{I}(G) = e_{2,2}\left(\frac{2\times2}{2}\right) + e_{2,3}\left(\frac{2\times3}{2}\right) + e_{3,3}\left(\frac{3\times3}{2}\right)$$

$$=2\left(\frac{4}{2}\right)+4\left(\frac{6}{2}\right)+(3n-8)\left(\frac{9}{2}\right)$$

$$=4+12+13.5n-36$$

$$= 13.5$$
n-20.

Case 3.If m = n = 2

In this case the number of $e_{2,2}$ edges is as shown in figure 3.

$$SK_{I}(G) = \sum_{u,v \in E(G)} \frac{d_{G}(u).d_{G}(v)}{2}$$

$$SK_{I}(G) = e_{2,2}\left(\frac{2\times 2}{2}\right)$$

ISSN: 2319-8354

$$=4\left(\frac{4}{2}\right)$$

= 8.

Theorem3.4: The SK_2 index of grid with "(m-1)" rows of benzene rings and "(n-1)" columns is given by

$$SK_{2}(G) = \begin{cases} 32mn - 37.5m + 122.5n + 36, & \text{if } m > 2 \text{ and } n > 2 \\ 27n - 39, & \text{if } m = 2 \text{ and } n > 2 \\ 16, & \text{if } m = n = 2 \end{cases}$$

Proof: The topological structure of a grid network, denoted by G(m, n), is defined as the Cartesian product $P_m \times P_n$ of undirected paths P_m and P_n . The spectrum of the graph does not depend on the numbering of the vertices. However, here we adopt a particular numbering such that the edges has a pattern which is common for any dimension. We follow the sequential numbering from left to right as shown in the figure 1.

$$SK_{2}(G) = \sum_{u,v \in E(G)} \left(\frac{d_{G}(u) + d_{G}(v)}{2} \right)^{2}$$

$$SK_2(G) = e_{2,3} \left(\frac{2+3}{2}\right)^2 + e_{3,3} \left(\frac{3+3}{2}\right)^2 + e_{3,4} \left(\frac{3+4}{2}\right)^2 + e_{4,4} \left(\frac{4+4}{2}\right)^2$$

$$=8\left(\frac{25}{4}\right)+2 \text{ (m+n-6)} \left(\frac{36}{4}\right)+2 \text{ (m+n-4)} \left(\frac{49}{4}\right)+(2 \text{mn-5m-5n+12}) \left(\frac{64}{4}\right)$$

=50+18m+18n-108+24.5m+24.5n-98+32mn-80m+80n+192

=32mn-37.5m+122.5n+36

Now, we consider the following cases:

Case 1. If m>2 and n>2, Grid contains $e_{2,3}$, $e_{3,4}$ and $e_{4,4}$ only edges. In the figure 1 $e_{2,3}$, $e_{3,4}$ and $e_{4,4}$ edges are colored in red, blue, green and black respectively. The number of $e_{2,3}$, $e_{3,4}$ and $e_{4,4}$ edges in each row is mentioned in the following table 1.

The SK_2 index of grid for if m>2 and n>2

$$AG_1(G)=32\text{mn}-37.5\text{m}+122.5\text{n}+36$$

Case 2. In this case Grid contains $e_{2,2}$, $e_{2,3}$, and $e_{3,3}$ edges. The edges $e_{2,2}$, $e_{2,3}$, and $e_{3,3}$ are colored in red, blue and black respectively as shown in the figure 2. The number of $e_{2,2}$, $e_{2,3}$, and $e_{3,3}$ edges in each row is mentioned in the table 2.

If m=2 and n>2

In this case grid contains $e_{2,2}$, $e_{2,3}$ and $e_{3,3}$ edges.

$$SK_{2}(G) = \sum_{u,v \in E(G)} \left(\frac{d_{G}(u) + d_{G}(v)}{2} \right)^{2}$$

$$SK_2(G) = e_{2,2} \left(\frac{2+2}{2}\right)^2 + e_{2,3} \left(\frac{2+3}{2}\right)^2 + e_{3,3} \left(\frac{3+3}{2}\right)^2$$

$$=2\left(\frac{16}{4}\right)+4\left(\frac{25}{4}\right)+(3n-8)\left(\frac{36}{4}\right)$$

$$= 8+25+27n-72$$

$$= 27n-39.$$

Case 3. If m = n = 2

In this case the number of $e_{2,2}$ edges is as shown in figure 3.

$$SK_{2}(G) = \sum_{u,v \in E(G)} \left(\frac{d_{G}(u) + d_{G}(v)}{2} \right)^{2}$$

$$SK_2(G) = e_{2,2} \left(\frac{2+2}{2}\right)^2$$

$$=4\left(\frac{16}{4}\right)$$

$$= 16.$$

IV. CONCLUSION

A generalized formula for Arithmetic-Geometric index (AG_1 index), SK index, SK_2 index, SK_2 index of Grid is obtained without using computer.

REFERENCES

- [1] F. Harary, Graph theory, Addison-Wesely, Reading mass (1969).
- [2] I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86, 2013, 251-361.
- [3] M. V. Diudea, I. Gutman and J. Lorentz, *Molecular Topology*, Nova, Huntington (2001).
- [4] N.Trinajstic, Chemical Graph theory, CRC Press, Boca Raton (1992).
- [5] R. Kanabur, V.S. Shigehalli, QSPR Analysis of Degree-Based Topological Indices with physical properties of Benzenoid Hydrocarbons, *General Letters in Mathematics*, 2(3), 2017, 150-169.
- [6] R. Pradeep Kumar, Soner Nandappa D and M.R. Rajesh Kanna, Computation of Topological Indices of Mesh, Grid, Torus and Cylinder, Applied Mathematical Sciences, 11(28), 2017),1353-1371.
- [7] V.S. Shigehalli, R. Kanabur, New Version of Degree-Based Topological Indices of Certain nanotube, Journal of Mathematical Nano science, 6(1-2), 2016, 29-39.
- [8] V.S. Shigehalli, R. Kanabur, Computation of New Degree-Based Topological Indices of Graphene, *Journal of Mathematics*, 2016.
- [9] V.S. Shigehalli, R. Kanabur, Computing Degree-Based Topological Indices of Polyhex Nanotubes, Journal of Mathematical Nanoscience, 6(1-2), 2016,59-68.
- [10] V.S. Shigehalli, R. Kanabur, Computing Some Degree-Based Topological Indices of Graphene, *Indonesian Journal of Electrical Engineering and Informatics (IJEEI)*, 5(2), 2017, 155-161.