International Journal of Advance Research in Science and Engineering Volume No.07, Issue No.03, March 2018 IJARSE WWW.ijarse.com ISSN: 2319-8354

DESIGN OF SHIP PROPELLER BY USING MACROS TECHNIQUE

¹ Mr. S.D.V.V.S.B.Reddy, ²Miss P.Bhavya Sri

¹ Assistant Professor, Dept of Mechanical Engineering, Aditya Engineering College ² M.Tech Student, CAD/CAM,

ABSTRACT

In this paper, the ship propeller is designed using macros and the materials are compared. Expanded use of lightweight materials in the marine applications the epoxy composites was chosen which has high performance characteristics and a lightweight thermosetting matrix resin. Propeller is an essential component for underwater vehicles such as ship, submarines etc. This supports the vehicle to move at its operating speed. This works on the Bernoulli's principle and Newton's third law. In this paper, the propeller geometry is designed using macros. The solid model was created in CATIA software. The simulation and modal analysis are performed in ANSYS workbench. Then the material results are compared with the previous material. Finally, the better material for ship propeller is determined.

Keywords: Propeller design, Macros, Catia, Ansys workbench, Structural analysis.

I.INTRODUCTION

For the past few years there have been critical innovative work in the field of propeller designs in order to protect the safety of goods, travellers and the crew and in the mean time reducing the expenses and by improving the efficiency. Ship Propeller is used for propulsion regardless of their sort and size.

A propeller is a sort of whirling fan, which is used to move the ship or aircraft forward by utilizing the power created by the engine. The transmitted power is changed from rotational movement to produce a push or thrust which imparts energy to the fluid (i.e. water or air), bringing about a force that follows up on the ship and drives it forward. The pressure variation between the front and aft side of the blade creates acceleration in the water present behind the blade, which makes the ship start sailing. Propellers continually turn at a steady velocity, which increases the efficiency of the engine. Propellers create push through the generation of lift by their rotating blades.

The propeller whose name originates from the Latin word "propeller". A proficient screw propeller was innovated at the start of the nineteenth century as an efficient power source for the steam engine.

International Journal of Advance Research in Science and Engineering Volume No.07, Issue No.03, March 2018 IJARSE WWW.ijarse.com ISSN: 2319-8354

Principle of propeller:

- A ship propels based on Bernoulli's principle and Newton's third law.
- It works by pushing mass in the reverse direction we need to go, thereby following Newton's law, which produces equivalent, and reverse reaction.
- It is based on the concept of driving back and forth.

The propeller efficiency is inversely proportional to the number of blades. For 2 blade propeller the efficiency is high .But in order to accomplish more strength and considering the loads subjected on the ships 2 blade propeller are not utilized for trader ships.

Criteria	3-blade	4-blade	5-blade
Manufacturing cost	Low	Medium	High
Strength and durability	Low	Medium	High

II.OBJECTIVES OF THE WORK

- The main objective of the work is to design the propeller using macros. Here the program was written in macros and made to run the program. Then the design appears in the CATIA software.
- Analysis is done using ANSYS workbench for both the materials i.e. aluminium and inconel 625.
- Comparison of results between the two materials used and concluding the best one.

III.DESIGN METHODOLOGY

The Methodology followed in this undertaking project is as per the following:

Performing design calculations for the propeller.

- Create a 3D Model of the Existing boat propeller of 2D Drawings. The CATIA V5
 R21 programming is utilized to make 3D modelling.
- Convert the 3D model to form a solid model and import it into ANSYS to execute the finite element analysis.
- Perform the static analysis of the propeller by applying the allowed loads.
- Perform Modal Analysis of the propeller and figure the natural frequencies in the field of activity.
- The investigation is performed to confirm the best material (Inconel and aluminum) for the propeller at the most extreme load conditions which breaks down the static and dynamic conditions.

IV.MACROS

With reference to computers, a macros is a programmable design which decodes a set of sequence of input into a set of output. Macros can be utilized to make tasks less iterative by representing a complicated series of keystrokes, mouse movements, commands, or different sorts of information. Macros are a device which enable a designer to re-utilize code. The macro statement contains the name of the macro definition and usually some

International Journal of Advance Research in Science and Engineering Volume No.07, Issue No.03, March 2018 IJARSE ISSN: 2319-8354

variable parameter information. Macros will be helpful especially when a series of instructions is utilized for a number of times (and possibly by different programmers working on a project).

V.MACROS VB SCRIPTING

Language="VBSCRIPT"

Sub CATMain()

Set partDocument1 = CATIA.ActiveDocument

Set part1 = partDocument1.Part

Set hybridBodies1 = part1.HybridBodies

Set hybridBody1 = hybridBodies1.Item("Geometrical Set.1")

Set sketches1 = hybridBody1.HybridSketches

Set originElements1 = part1.OriginElements

Set sketch1 = sketches1.Add(reference1)

Set reference1 = originElements1.PlaneYZ

Dim arrayOfVariantOfDouble1(8)

arrayOfVariantOfDouble1(0) = 0.000000

arrayOfVariantOfDouble1(1) = 0.000000

arrayOfVariantOfDouble1(2) = 0.000000

arrayOfVariantOfDouble1(3) = 0.000000

arrayOfVariantOfDouble1(4) = 1.000000

arrayOfVariantOfDouble1(5) = 0.000000

arrayOfVariantOfDouble1(6) = 0.000000

arrayOfVariantOfDouble1(7) = 0.000000

arrayOfVariantOfDouble1(8) = 1.000000

 $sketch 1. Set Absolute Axis Data\ array Of Variant Of Double 1$

part1.InWorkObject = sketch1

 $Set\ factory 2D1 = sketch 1. Open Edition()$

Set geometricElements1 = sketch1.GeometricElements

Set axis2D1 = geometricElements1.Item("AbsoluteAxis")

Set line2D1 = axis2D1.GetItem("HDirection")

line 2D1.ReportName = 1

Set line2D2 = axis2D1.GetItem("VDirection")

line 2D2.ReportName = 2

Set point2D1 = factory2D1.CreatePoint(-51.685165, 34.387375)

point2D1.ReportName = 3

Set point2D2 = factory2D1.CreatePoint(51.685150, 34.387375)

point2D2.ReportName = 4

Set line2D3 = factory2D1.CreateLine(-51.685165, 34.387375, 51.685150, 34.387375)

line 2D3. Report Name = 5

International Journal of Advance Research in Science and Engineering

Volume No.07, Issue No.03, March 2018

www.ijarse.com

line2D3.StartPoint = point2D1

line2D3.EndPoint = point2D2

Set point2D3 = factory2D1.CreatePoint(51.685150, -46.623390)

point2D3.ReportName = 6

Set line2D4 = factory2D1.CreateLine(51.685150, 34.387375, 51.685150, -46.623390)

line 2D4. Report Name = 7

line2D4.EndPoint = point2D2

line2D4.StartPoint = point2D3

Set point2D4 = factory2D1.CreatePoint(-51.685165, -46.623390)

point2D4.ReportName = 8

Set line2D5 = factory2D1.CreateLine(51.685150, -46.623390, -51.685165, -46.623390)

line2D5.ReportName = 9

line2D5.StartPoint = point2D3

line2D5.EndPoint = point2D4

Set line2D6 = factory2D1.CreateLine(-51.685165, -46.623390, -51.685165, 34.387375)

line 2D6. Report Name = 10

line 2D6. EndPoint = point 2D4

line2D6.StartPoint = point2D1

Set constraints1 = sketch1.Constraints

Set reference2 = part1.CreateReferenceFromObject(line2D3)

Set reference3 = part1.CreateReferenceFromObject(line2D1)

Set constraint1 = constraints1.AddBiEltCst(catCstTypeHorizontality, reference2, reference3)

constraint1.Mode = catCstModeDrivingDimension

Set reference4 = part1.CreateReferenceFromObject(line2D5)

 $Set\ reference 5 = part 1. Create Reference From Object (line 2D1)$

Set constraint2 = constraints1.AddBiEltCst(catCstTypeHorizontality, reference4, reference5)

constraint2.Mode = catCstModeDrivingDimension

Set reference6 = part1.CreateReferenceFromObject(line2D4)

Set reference7 = part1.CreateReferenceFromObject(line2D2)

Set constraint3 = constraints1.AddBiEltCst(catCstTypeVerticality, reference6, reference7)

constraint3.Mode = catCstModeDrivingDimension

Set reference8 = part1.CreateReferenceFromObject(line2D6)

Set reference9 = part1.CreateReferenceFromObject(line2D2)

Set constraint4 = constraints1.AddBiEltCst(catCstTypeVerticality, reference8, reference9)

constraint4.Mode = catCstModeDrivingDimension

sketch1.CloseEdition

part1.InWorkObject = hybridBody1

part1.UpdateObject sketch1

ISSN: 2319-8354

International Journal of Advance Research in Science and Engineering

Volume No.07, Issue No.03, March 2018

www.ijarse.com

Set bodies1 = part1.Bodies

Set body1 = bodies1.Item("PartBody")

part1.InWorkObject = body1

part1.InWorkObject = body1

Set shapeFactory1 = part1.ShapeFactory

Set pad1 = shapeFactory1.AddNewPad(sketch1, 20.000000)

Set limit1 = pad1.FirstLimit

Set length1 = limit1.Dimension

length 1. Value = 50.000000

part1.UpdateObject pad1

Set sketches2 = body1.Sketches

 $Set reference 10 = part 1. Create Reference From Name ("Selection_RSur: (Face: (Brp: (Pad. 1; 0: (Brp: (Sketch. 1; 5))); No. 10 - (Sketch. 1; 5))); No. 10 - (Sketch. 1; 5) - (Sketch. 1; 5)); No. 10 - (Sketch. 1; 5) - (Sketch. 1; 5)); No. 10 - (Sketch. 1; 5) - (Sketch. 1; 5)); No. 10 - (Sketch. 1; 5) - (Sketch. 1; 5)); No. 10 - (Sketch. 1; 5) - (Sketch. 1; 5)); No. 10 - (Sketch. 1; 5) - (Sketch. 1; 5)); No. 10 - (Sketch. 1; 5) - (Sketch. 1; 5)); No. 10 - (Sketch. 1; 5) - (Sketch. 1; 5)); No. 10 - (Sketch. 1; 5) - (Sketch. 1; 5)); No. 10 - (Sketch. 1; 5) - (Sketch. 1; 5)); No. 10 - (Sketch. 1; 5) - (Sketch. 1;$

ne:();Cf11:());Pad.1_ResultOUT;Z0;G4074)")

Set sketch2 = sketches2.Add(reference10)

Dim arrayOfVariantOfDouble2(8)

arrayOfVariantOfDouble2(0) = 0.000000

arrayOfVariantOfDouble2(1) = 0.000000

arrayOfVariantOfDouble2(2) = 34.387375

arrayOfVariantOfDouble2(3) = 1.000000

arrayOfVariantOfDouble2(4) = 0.000000

arrayOfVariantOfDouble2(5) = 0.000000

VI.MODELLING OF PROPELLER

CALCULATIONS:

Geometric specification of propeller

Diameter : 60 mm

Number of blades : 3

Hand of operation : Left hand

Type of propeller : Controllable pitch propeller

ISSN: 2319-8354

International Journal of Advance Research in Science and Engineering

Volume No.07, Issue No.03, March 2018

www.ijarse.com

ISSN: 2319-8354

Calculations:

Total Area Of the circle = $\pi R2$

 $= 3.141 \times 302$

= 2826.9 mm2

Total Blade Area

 $=\pi r2 \times DAR$

=2826.9X0.92

=2600.748 mm2

(DAR = TBA/TAC = 2600.748/2826.9 = 92 %)

Therefore DAR = Disc area Ratio

Relationship between Pitch & Pitch Angle

Pitch (P) $= 2\pi r X Tan a$

Where: (θ) = pitch angle

R = radius

 $\Pi = 3.14159$

Pitch Angle (θ) = 120°

Pitch (P) = $2x \pi x30xTan 120^{\circ}$

=326.422 mm

Speed = (RPM/Ratio)(Pitch/C)(1-S/100)

Assume Ratio =1/2, Gear ratio(C) = 1 Slip(S) =0

Speed = (1000/0.5X326.316/1)(1-0/100)

Speed = 652844X60/106

=39.17064km/hr

The thrust (T) is equal to the mass flow rate (.m) times the difference in velocity (V).

T = m x (VB-VA)

Mass Flow Rate per hr(m) = area of blade x speed of the boat

= 2600.74 x 10-6 x39.17064 x 103

= 101.872 m 3 / hr

Thrust (T) = $m \times (VB-VA)$

= 101.840 x 39.1581 x 103

Thrust(T) = 4990416.91 N

VII.FUTURE SCOPE

The present work consists of only design of ship propeller using macros technique. There is also a scope of future work to be carried out for static and dynamic analysis of ship propeller using different types of materials.

International Journal of Advance Research in Science and Engineering Volume No.07, Issue No.03, March 2018 IJARSE WWW.ijarse.com ISSN: 2319-8354

VIII.CONCLUSION

All the above work deals with design of ship propeller using macros. Firstly, all the information is collected and the previous works were outlined. Propeller 3D model is modelled in CATIAV5R21 using macros technique

REFERENCES

- [1.] Dr.Y.Seetharama Rao," stress analysis of composite Propeller by using finite Element analysis" International Journal of Engineering Science and Technology (IJEST) Vol. 4 No.08 August 2012
- [2.] Chang-sup lee, yong-jik kim,gun-do kim and in-sik nho."Case Study on the Structural Failure of Marine Propeller Blades" Aeronautical Journal, Jan 1972, pp87-98.
- [3.] W.J.Colclough and J.G.Russel. "The Development of a Composite Propeller Blade with a CFRP Spar" Aeronautical Journal, Jan 1972, pp53-57.
- [4.] VB Scripting For CATIA V5, Nick Weisenberger. Modeling and Analysis of Propeller Blade for its Strength, International Journal of Engineering Research & Technology (IJERT) Vol. 3 Issue 2, February 2014.
- [5.] " Static And Dynamic Analysis Of Composite Propeller Of Ship Using FEA " -International Journal of Engineering Research & Technology (IJERT) Vol. 2 Issue 7, July 2013 by M. Venkaiah And Dr. D. Sunil