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I.INTRODUCTION

The existence of fixed points for self-mappings in partially ordered sets has been consideredin [1,2], where
some applications to matrix equations are presented. This resultwas extended byNieto et al.[3] and Nieto and
Rodriguez-Lopez [4, 5] in partially orderedsets and applied to study ordinary differential equations.

The problem of fixed points for random mappings was initiated by the Prague school of probability research.
The first results were studied in 1955-1956by §paEek and Han£ in the context of Fredholm integral equations
with random kernel. In a separable metric space, random fixed point theorems for contraction mappings were
proved by Hang [8, 9], Hang and Spaek [10] and Mukherjee [11, 12]. Then random fixed point theorems of
Schauder or Krasnosel’skii type were given by Mukherjea (cf. Bharucha-Reid [6], p. 110), Bharucha-Reid [13]
and Itoh [14]. Now it has become a full-fledged research area and a vast amount of mathematical activities have
been carried out in this direction (see, for examples, [15-18]). The existence of a random fixed point for
mappings in partially ordered metric spaces and partially ordered probabilistic metric spaces was studied, for
example, in [19, 20].In 2014, Ansari [1] introduced the concept of C-classfunctions and proved the unique fixed

point theorems for certain contractive mappings with respect to theC'-class functions.
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The goal of this paper is to establish a common random fixed point results in partially ordered complete
separable metric spaces for weakly increasing self mappings satisfying (. @’}-contractions via the concept of C-

class functions. Some corollaries are also presented for particular cases of the C-function.

Il. MATHEMATICAL PRELIMINARIES

The triple(¥. d. =Jis called a partially ordered metric space if {X.=J}is a partially ordered set and(X.d)is a
metric space. Further, if(X.d} is complete metric space, and then the triple(X. &, =} is called a partially ordered
complete metric space.

Definition 2.1Let (X.d) be a metric space endowed witha partial order =. Let {x,land zbe in X. (X.d. =)is
said tobe regular if x; = = and [x . Jdis non-decreasing; then x, = zfor all n € M,

Let (X, By be a separable Banach space, where Byis a o-algebra of Borel subsets of X, and let (12, 3. )} denote
a complete probability measure space with measure uand fbe a -algebra of subsets of 12.

Definition 2.2A measurable mapping £: 42 — Xis said to be an X-valued random variable if the inverse image
under the mapping xof every Borel set Bof Xbelongs to &, that is, £~*(B) € gfor all B € S.

Definition 2.3A measurable mapping £: 2 = X is said to be a finitely-valued random variable if it is constant
on each finite number of disjoint sets 4; € fand is equal to 0 on 12 — (UF_, 4). £is called a simple random
variable if it is finitely valued and pfew: I (w) Il = 0} < co,

Definition 2.4A measurable mapping £: 2 = Xis said to be a strong random variable if there exists a sequence
{7, (w)}of simple random variables which converges to #(w) almost surely, that is, there exists a set
Ag € Bwith u(A;) = 0 such that

rEl-,T: Flw) = Flw), w € 2 — A,

Definition 2.5A measurable mapping £: £ — Xis said to be a weak random variable if the function £* (£ (e} is
a real-valued random variable for each £* € X7, the space X~ denoting the first normed dual space of X.
Definition 2.6Let ¥ be another Banach space. A measurable mapping f : 12 % X — ¥is said to be a random
mapping if f(w. £) = ¥(w) is a V-valued random variable for every £ € X.

Definition 2.7A measurable mapping f : 12 = X = ¥is said to be a continuous random mapping if the set of all
e £ f2for which f (. £} is a continuous function of £has measure one.

Definition 2.8A mapping measurablef : 11 = X = Yis said to be demi-continuous at thef £ X if

IE, — £l = 0 implies £(w,£,) o f(w.)

almost surely.

Definition 2.9An equation of the type f(w.&(w)) = £(w), where f: 1 xX — Xis a random mapping, is
called a random fixed point equation.

Definition 2.10Anymeasurable mapping £ : £ — X¥which satisfies the random fixed point equation

Flew E(w)) = £(w) almost surely is said to be a wide sense solution of the fixed point equation.
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Definition 2.11AnyX-valued random variable £ (e} which satisfies

afew : fw E(w)) ={{w)} =1

is said to be a random solution of the fixed point equation or a random fixed point of f.

Definition 2.12A measurable mapping £:42 = X is called a random fixed point of a random operator
Fil x X = Xif £(e) = fle, £(w) ) for every w € 10,

Definition 2.13A measurable mapping £:12 = X is called a random coincidence of random operators
T.f:iNxX—Xif

T(c, £(e)) = flles, E(ws)) for every w € 2.

Definition 2.14A measurable mapping £:42 — X is called a random common fixed point of random operators
Fog:xX-=Xif

(e, £(e)) = fllas, E(e)) = E(a) for every w € 12,

Example 2.15Let Xbe the set of all real numbers and let Ebe a non-measurable subset of X. Let
f:2 x X — ¥be a random mapping defined as

flw &(w)) = (a) + £(w)-1

for all @ £ 12, In this case, the real-valued function £{e), defined as £{t} = 1 for all & € 12, is a random fixed

point of f. However, the real-valued function ¥ () defined as

. — _1.1 WEEJ
y(e) = 1 wekE

is a wide sense solution of the fixed point equation f (. £ (w)) = £ {w)without being a random fixed point of f.
Definition 2.16Let (X, =, d} is a partially ordered separable metric space.
(1) Arandom operator f:12 % X — Xis said to be monotone non-decreasing if for all x.¥ € X,
=2y 2 floxlw)) < floyle)) een

(2) Two random operators f.g:42 = X — X is said to be weakly increasing if for all x € Xand w € 12,

Floxw)) < g (m,f{m,x(m] })and gl xl(w)) = F (m,g{w,x{m]}).

Ansari [21] introduced the class of C-functions whichcovers a large class of contractive conditions.
Definition 2.17[21] A mapping F:[0.22)* — R is called C-class function if it is continuous and satisfies
following axioms:

(1) Fls. t) < sforall .t € [0, 00):

(2) Fis. £) == implies that either s = 0 or £ = 0 for all 5 ¢ € [0, o2},
Mention that any C-function Fverifies F (0. 0 = 0. We denote by [Ithe set of C-class functions.
Example 2.18[21] The following functions F: [0,)* — R are elements of C. For all s, t & [0, ), consider

(1) Fls.t) =s-&

(2) Fls,t) =ms,0 =m < 1;

(3) Fls.t) = s/(1 + £)", where r € (0, c0);

I+

@) Fs.t) = log; (5).a > 1
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(5) Fis.£) = {ﬂgc (1+:E::|;

_t
(6) Fis.t) = (s + Duser — LI > 1,r € (D, o0);
(7) Fls.t) =slogp,za.a > 1;

® Fls.0) =5 — (ZX) (X))

I+2 1+t

(9) Fis.£) = s8(s) where §: [0, 52} — [0.1} is continuous;
r

(10) Fls.8) =5 —-—;

(11) Fis.t) =5 — pls).where @: [0.c0) — [0, o) is a continuous function such that ¢t} =0 < t = 0;

(12) Fis.t) = shis,t), where h:[0, 02} x [0,c0) — [0,¢0) is a continuous function such that h(t.s) = 1

forall t.5 = 0;

(13) Fis.t) =s — (l’] t:

1+1
(14) Fls.t) =3In(l +s™)
(15) Fls.t) =pls), where @:[0.00) = [0,00) is a is a upper semi-continuous function such that
@(0) = 0and @lt) <t fort =0
(16) F(s.t) =

3
(L+2)T

.r e (0,00).

(17) Fls.t) = 8(s), where #: R* x R* — Rjs a generalized Mizoguchi-Takahashi type function;

&

ri1f2)

JT ﬁ dx,where Iis the Euler Gamma function.

(18) Fis.t) =

I11. MAIN RESULT

First, we introduce an auxiliary lemma as follows.

Lemma 3.1Let(R.I. ulis a complete probability measure space,(X.d) be a separable metric
space,and{Z, (@) : w € N}be asequence ofmeasurable mappings from 0 to X such that {d(#,(w), &, , (=) )}is
decreasing and

limy,__ d(£, (), £y, () ) = 0 (3.1)

If {£2, (]} is not a Cauchy sequence, then there exist an £{w) = 0 and {m;},{n; }of positive integers such that
the four sequences {d {E:ni{aﬂ, Em, () :I} {d {.,f:nl._l{m:l, £ 1m, () )} {d {E:ni{aﬂ, .f:ml._lf(m])} and
{d (E:ﬂi_l{m],fz mL._L{m])} tend to €{e) when i — oo,

Proof:Assume thatif,, (w): e € 2}is not a Cauchy sequence, it is sufficient to prove that {£;, (=]} is a Cauchy
sequence. So there exist £(w) = 0 for which we can find two subsequences of positive integers {m;} and {n;}
for positive integer i. we

my = o= 6 d(fzni{m:],.f:mi{m:l) zelw), izl,wel (3.2

Further, we can choose ;to be smallest integer with m; = #n; for which (3.2) holds. Then
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d (&1, (@), £ 2 (@) ) < elw) (3.3)
Using (3.2), (3.3) and the triangle inequality, we obtain
e(w) < d(Ezn, (@), £2m, ()
< d (0, @), Eamy2 (@) ) + d (Exmy2(0) Egpy—1 ()
+d (£ s (), Egy, () )
= elw) + Gy 2 (00) + 63—y () (3.4)
On letting the limit as i — <2 in the above inequality and using (3.1), we get
lim; e d (£2n, (@), £, (@) ) = e(w), wE O (3.5)
addition, by the triangle inequality, we have
d (£20, (@), £, (@) £ 0 (£, (@), Eanes () ) + @ (2o (@), g ()
+ 0 (Egmem1 (@), £, ()
= Syn1 (@) + d (Egnyy (@) Eyr1 @) ) + By (@) (3.6)
d (Eanm s () Ermes (@) ) = @ (Eanms (@), £20, (@) ) 4 d (£, (), £y, ()
+ 0 £y, (@), Egyy (@))
= Gy (@) + d (E30, (@), By (@) + B33 (@) 3.7)
Letting the limit as i — o= in the above two inequality, using (3.1) and (3.5), we get
1im; e d (£ 1 (@), Epr 1 (@) = €(@), w € 0 (3.8)
Also
|d (£2mp-1 (@), Eamy (@) ) = d (E2n, (@), Eam (@) )| = d (E30, (@), £z () (39)
| (£2n, @), E2my () ) = (E2n, (02), £z (@) )] = @ (B (@) Epry—1 (@) ) (3.10)
On letting the limitas i — 2 in (3.9) and (3.10), using (3.1) and (3.5), we get
|tom; .. @ (Ezme-1 (@), £z, (@) — )| < 0,
|tim; . @ (£2n, (@), Eomy—s (@) — )| = 0.
Hence
i e @ (E2ppm1 (@), £y, () ) = €], @ €02 (3.11)
1im; e 6 (F2 (@), Ezg1 (@) ) =€), w € 0 (3.12)
We denote® = {y:[0, %) — [0, 2)is continuous, nondecreasing and §*({0}) = {0}},

and¢ = {:p : [0, 02) — [0, o2)is lower semicontinuous, nondecreasing, and @ ~1({0}) = {U}}.

Now, we state and prove our main result in the following way.
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Theorem 3.2Let (02, L. ulis a complete probability measure space,(X.d. =) be a separable complete partially
ordered metric space. Let f. g: 2 = X — X be two mappings such that

(@). flw..) and gle..) are continuous for all @ & 0;

(b). fC.xJ) and gC..x) are measurable mapping for all x € X;

(c). The pair (f.g) is weakly increasing such thatthere exist ¥.¢ € Wand F & C such that for all

comparable x.¥ £ X and for all @ € {Lwe have
¥ (d(Flw.x). glw.y))) = F (p (3G 1)), o (32 (x.3))) (3.13)

where

2

d(x g(w.y)) + d(v. f (w,
Mx,y, @) = max {d{ﬂfs}’ld{xsf(w:ﬂld{)ug(w:yl] ). alo )+ dnfte ﬂ}}

Suppose that one of the following two cases is satisfied:
(i). for gis continuous;
(ii). (X.d.=)is regular.

Then the mapsf and g have a common random fixed point.

Proof:Assume that £ (e}, @ € Qis a fixed point of f. Taking * = ¥ = £in (3.13), we have
v (@ (Fl0.6@). 5. £))) ) = F (0 (30 (5. £))) o (0 (5w). £)) ) 3.22) where
M(E(w), () = max | d(£w). £#w)).d (£, f(w.£))).d (). g(w. £())

d(£(w), g(w. £@))) +d (£w), f (0. £(w) })]

2

o [”’”’ o (5.5 e 50) 25 ““’3})}

= ¢ (£ (@). g0, £(w))) (3.15)

Hence, from (3.14), we get
W (d (E{m],g{m, Elw) })] = (d (f{m F(ew) }g{m E(m]}))

=F (1,!: (d (£ (). glw. 7 })J P (d (f{‘dj*ﬂ{“"*f{“’]}n)

< p(a (5. g(w.)))) (3.16)
We deduce
F (z,e: (d (.,f (), glleo, E{m]})) . (d (E(m],g{m, £ () })U =y (d (E(m],g{ca, E(m]})]. By the property of

F, we have

¥ (a (5. g (w.£8))) = tor ¢ (a (5. glw. 5))) ) = 0.

203|Page




International Journal of Advance Research in Science and Engineering
Volume No.07, Issue No.03, March 2018 IJARSE

www.ijarse.com ISSN: 2319-8354
The functions and ware in ¥, so d ({ {m],gl[m,f{m]}) = 0; that is, £{w) = glw, £(w)); that is, £lwlis a

common fixed point of fand g. Now, if £(w)is a fixed point ofg, similarly, we get that £{c} is also fixed point
of f.
Let the function &,(w): 12 — Xbe an arbitrary measurable mapping. We can define a sequence ofmeasurable

mappings £, (ca) Hfrom 12 to Xas following:

Eansr (@) = flo. 5 @),

Fanaz(@) = gl Fppy(w))weln=012,.. (3.17)
Since the pair (f. g} is weakly increasing mappings, we have
ACES(CRAGIEFICHICRAD])

= glw. & (W) = &),

£(0) = f(0.8@) = g (o f(w.£w))

= glw &) = &),

Continuing this process, we get

Ean (@) = fl0. 520 (@) = g (0. f (@, £ ()

= gla Eanvs (@) = Epnsaa),

Eanez(@) = fleo Eanas (@) 2 g (0, 0 Eppas (@)))
= gl E2n42(@) = Epnual@)

Thus for all n = 1, we have
'En {I’.’Li'] ﬂ 'Enq.]_{m]. (3.18)
Without loss of the generality, we can assume that &, (e = &, (@) and since £3,(w) and Fzn.q(ew) are

comparable, applying (3.13), we have
¥ (@2, £2002@))) = 9 (2 (0020 0)), 9 (0. £20.1 ()

= F (3 (30(E20 ). £2n i @) @ (4620 @), 1n: @) (319)
where

M (En (@), Exnas (@) = max {2 (En(e). Epns (). d (E2n (). e, En (@) ).

d (£20 ). gl Ea s (@))) + d (Eras (). F 0, Ezn(ﬁcﬂ})}
2

d (‘E!n+1{mlg{m4 E!n+1{m] }) *

= max{d(fzn(m], Erpay () },d(fzn(cd], EMH(MJ},

d{fmiﬁd‘l fznuiﬁ‘-’].} + d{52n+1{“ﬂ#fzn+1(‘ﬂ]_}}
2

d{fzn +1{W]szr_- +2 (ea) },

d{fzn(fﬂl Eanta (ca) J}

= e ) o)) B 0, ), T
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= max{d{.f:ﬂ{m:l, Eon +1.':C'="':| }, d{f:ﬂ_,_,_':w:], ‘:r:ﬂ+:{f‘:':] },
d{%—:ﬂ{wl £an +1{“'-"':] } + dl{L'E:rHl{@:]J £an +:{"5':] }}

2

= max{d (£ (@), £2n s 1 (@) ), 8 (Eanss (@), Erp 12 (w) )} (3.20)
If (&30 (60), Eappa () ) = (&g (), £aps o (0} ) fOr some n = 0. then
M(Ezn (). Ern sy (@) ) = d(E2n 01 (@), Ernez (@),

Using (3.19), we have

W {d{':r:r! +1.':f'5':]- Eanen ':ﬁd:]})
< 7 (1 (601 @) En12@)), 0 (dEons @), ez @)

< (A (Eanrs @), Eanaa @)

Hence
F (1 (2 (Eans 16, E2n120)) 0 (@ (Eams ), E2n ) ) = ¥ (@Ezn 16, 22 )

By the property ofF, this implies that qﬁ:(d{f;ml{ca],fm,,:{w]}) = Dor ¢ (d{.,fm,,l{a:-],fm,,:{m] }) =0,
which is a contradiction. Therefore, for all n = 0, d(£,, .4 (), F3n 2 (es) ) < d(Fop (@), F1pyy () ). Similarly,
we may show that d(&,, (e, &5y ,s (a) ) < d( £ (), £y o () ) for all n = 0. We deduce that
dlfn, 4 (w), Fpyalw)) < d (8, (@) 8 (@) ¥ n= 0w e Q. (3.21)
Hence, the sequence{s,(w):w € Dlgiven by &,(w) = d(£,(w).&,.,(w) Jisa decreasing sequence of non-

negative real numbers, there exists (@) = 0, such that

limy o 6 (o) = Hewl, w € 0. (3.22)

We claim that [ () = 0. € . We have

l[mﬂ—imM{Eﬂ{w]JEﬂ+l{m]} = I{w) (3.23)

Recall that

¥ (A1) £ 2 @) 2 F (v (20 (600D, s @) 0 (20 (6, @), £101 () ) (3.24)

Asn — @2, by continuity of F.iand @, we get

w(llw)) = F (t,i:{.[(a:-] ). o (1) }:l = (1))

Using the properties of F. we have w(I{w)) = 0 or @(1(w) ) = 0; that is, I{ew) = 0. We conclude that

limy_, . 6p () = 0. (3.25)

Now, we will show thatt, (w): w € 2}is a Cauchy sequence, it is sufficient to prove that {£;, ()7 is a Cauchy

sequence. We proceed by negation, suppose that {fz;{w]} is not a Cauchy sequence. Since m; = m;and

Fn,—1 (@) and Z3m,_; () are comparable, then by (3.13), we get

¥ (d (E2n @) Eam @) = (d (7 (s @) g (0.8 e@))

205|Page




International Journal of Advance Research in Science and Engineering ﬂéf

Volume No.07, Issue No.03, March 2018 IJARSE

www.ijarse.com ISSN: 2319-8354
= :F(T.f" (:""f (.f:ni_j_{m:],.f:mi_l{m] ])‘P(M (':r:nl-—j.':@]ﬂ:r:mi—j.':@] )J) (3.26)

where

M (E:n,;—j_':ﬁ-:."l E:mg—l{@] )
= max {Ii (-,r: i’!,;—:l_{ﬁd:].- -f:mi_,_':m:]) .d (f:ﬂi_l{@]s f (m, ‘:r:r!g—j.':ﬁ-":] )] .

i), g\, Epp (e S 0 I il P20 SN ).
,d(&m_lw,g(m,fzmimng(aL1 (0o @)) + ¢ (Frm s @, (0o ))}

2

= max (d (£2n,0 (), Eamy—s @) .8 (Ean,m () £an, () ).
d (E:i‘![—].{m:]-' E:m[{m:]) + d (‘E: rr.l:—j_{@:].-fzni{fﬂ:] )]

,d(.f:ml._,_{ca],.fmi ':'fﬂ':]:lJ 2

By taking the limit as i — @@, from Lemma 18, we have

lim;, . M {f:ni_l{wl f:mi_l"(cd]) = max {E(m], 0.0, M} = &) (3.27)

Hence, from (3.26), we have

p(e@)) < F (p(ew)). o (e(w))) < p(elw))

That is,

F (t,ﬁ:{f{cd] ). o elew) }) = ylelw))

We conclude thaty:(elw)) = 0 or @lelw)) =0, that is (ew) = 0.w € N.a contradiction, we deduce that
{Z,, (@] }is a Cauchy sequence in Xand so is {&, (wl}, then there exists £(e): 2 — X such that

limg,_, . &plw) = Elw). (3.28)

Now, we will distinguish the cases (i) and (ii) of Theorem 3.1.

(i). Without loss of generality, suppose that f is continuous. then

) = lim £2n.2(w)

= lim flw. £z ()

= £ (. lim £2,(c))
= flw.£w)).
From the beginning of the proof, we get flw,£(w)) = F(w) = g(w £(w)).The case that [lis
continuous is treated similarly.

(ii). Now, if the condition (ii) is satisfied. We know that sequence i{f,{ew}} is non-decreasing and

Folew) = Flw), @ € 2 in X:then by regularity of (X.d. =), &, (w) = Flw), ¥vn € M, By (3.13)
¥ (4 (Eames . 5(0.8))) =9 (@ (£ (0 2 ). 5 (.8)))
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< 7 (¥ (8 (Ean ), £2)) 9 (98 (£ @), £0))
where

M(£20(0). £(@)) = max {d(£,(). £)). d (30 @), f 0. £ ).

alewld, gleo, Ele) (o), e E5p ()
(o g1, s ED) £ 2l50) 1 JJ}

= max{d(£, (w), £(w)), d(£2n (@), 1y (),
d (&), g(w. £w))) + d[ﬂwlfmu(w]}}

d({[m],g{w,f(m]}), 5

By taking the limit as n — o2, we have
limy e M (£ (@), £(w)) = d (£(w), g(w.£(w))). (3.29)

Thus

P (d (f{mlg{m,f{m] }D = &Ln; supt,ir(d (fm+1(mlg{m,§{m] ]D

< lim sup.fl‘:'(t,fr (2 (E2nl). £())). o (e {Em'iwlf'iw]}))
< F (zp (d («E (o0, g0, ) })] @ (d (g{@],_g{m,ﬂm]}))j

= p(a (6w, 5(0.5)))

Hence

F (w (6. 9. 6@))). o (a (E(m],g{m,f(m]}))j = (2 (f). g(w £)))

We conclude that T,fl'(li (E(ml,g{m,f(m]}))=ﬂ or rp(d (f{m],g{m,f(m]}))=ﬂ: that s,
d(f(m],g{m,fim]}):ﬂ and so flw) = glw &(w)). From the beginning of the proof, we get
flw.86)) = £w) = g(w. ).

The proof of the theorem is completed.
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