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ABSTRACT

When Turbo coding is employed with BPSK signaling, it execute very fine. Also its performance is very close
with Shannon’s limit. Although BPSK is straightforward to put into operation and we know all about its
performance. Although BPSK is not efficient alone for in terms of bandwidth. Basic BPSK broadcasts one
bit/signaling interval. Also when Turbo coding is employed, with BPSK as our theoretical result shows the
spectral efficiency improved even further.
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I.INTRODUCTION

The Turbo code employed in this section having the transmission rate of 1/3 bits per signaling interval.
Puncturing a Turbo coded bit stream and then using BPSK signaling for transmission improves the spectral
efficiency efficiently. If we want to increase transmission period, the puncturing matrix is must to use in coding
like turbo code which increase spectral efficiency by 1/3 per period. Although if we used BPSK alone its rate
always remain smaller than one bit per period but it is not sufficient in terms of satellite communication. So if
we want rate smaller than one bit per period there is need of turbo coding over which we directly use puncturing
matrix, which is responsible for variation in rate. The main drawback of puncturing is that we get deteriorate the
interpretation of the Turbo code, means increasing the rate degradation in the Turbo code performance .For the
purpose to improve the interpretation of turbo code ,symbol-based (non-binary) turbo coding is an alternative,
and if there are more transitions between different states and by using large interleaver size the decoding turn
out to be more complex and also takes long time for decoding, but we get good interpretation of Turbo codes.
Consider the of BPSK, the size of interleaver can vary in any size, let it would be N, although large quantity of

interleavers are typically used to attain better performances.

The proposed work comprises of two identical Recursive systematic convolution encoders i.e. RSC encoders
,then the signal is passed through Direct sequence spread spectrum ,If the encoding initiates and finished at a

identified state, the decoder for each code performs better at every interleaver.
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Fig 1.1 Proposed block diagram for performance improvement
The S, represents circulation state and given by
Cs = (I+G"'F, (1.1)
Where
C, = Circulation state of encoder
Fe = Final state of encoder
N = number of couples of data bits
101
G =[1 0 IZI]
010

I = Identity matrix

Transmitter

Fig. 1.2 Proposed Turbo coding with DSSS
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In a distinctive turbo decoding, two decoders function iteratively and go by their conclusions and all iteration

responsible for results. The soft outputs are produced by decoders for the improvement of the decoding

interpretation and such decoder is called SISO ,imagine that the encoded information is broadcast at additive

white Gaussian noise (AWGN) channel, and we obtained a corrupted sequence, let broadcast sequence X, and

corrupted sequence as Y, consider binary case ,in which each decoder based on the calculation of log-likelihood

ratio (LLR) for the t™ data bit d, as follows .

V=
oo -too[ 2] o

R(dy) = log-likelihood ratio (LLR)

di=k" data bit

Y = received sequence

The LLR can be decomposed into three independent terms as:
R(di) = Papi(di) + C(di) + E(dW)  (1.3)

R(dy) = log-likelihood ratio (LLR)

Papriak) = earlier sequence of dy

C(dy) = medium dimension

E(dy) = exchanged outer message among decoders

Recieved
output

Reciever

Fig. 1.3 Proposed Turbo coding with de spread DSSS
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I11.MAP ALGORITHM

MAP is the optimal but computationally complex algorithm. According to this algorithm, LLR values for each

information bit can be calculated as:

2 22y 1 Y1 (-1 Zi)e(Zp_1)BIZy)
L(dy) =1In - - -
Ezk Ezk_l Yol Zp— 1Tl el B Zy)

(1.4)

o = forward state matric

B = backward state matric

v = branch matric

Z,= trellis state at time instant k

Where « is the forward state metric, Py the backward state metric,¥; (Z,_;, Z ) the branch metric, andz, is the

trellis state at time instant k. At state k, the forward state metric,a,(Sy) is given by:
ak(Zi) = Zj’:u g (Zim1)¥; (Zm1, Z3)(15)

The backward state metric, By (Zy) is given by:

Bi(SK) = Li=0 Bres1(Zis1)¥; (Z1Z1e21) (1.6)

For each possible transition the branch metric can be calculated as:

¥i i1, Zi) = CT el ZiDexp [ 0F2EQ) +
Yixk ':iaza-uzic]:l]
(1.7)

where
¥, (Z,_1,Z,.) = branch matric
Cy= constant

x; = transmitted systematic data at transmitter side
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x,'*:: parity bits at transmitter side

V£, vi =received noisy bits at receiver side

Log-MAP algorithm

Log-MAP performs the calculations in the logarithmic domain by replacing the logarithm by the map* operator

as follows

map*(x,y) = mn(e* + ¥) = map(x,y) + log(1 + e™™) (1.8)

Where the correction function having term log (1 + e ™) can be measured using look-up table.
Max-Log-MAP algorithm

It approximates the computation of map* operator in Log-MAP algorithm by omitting the correction term, log(1

+eP)  to become as follows:
In(e* + &) = map(x,y) (1.9)
RCS Decoder Structure

Two types of symbols are possible, either 0 or 1 in binary case. The decoding process involves duo binary
values and symbols for turbo encoding and transmitted as, (00, 01, 10, or 11) as a sequence. The equivalent

probability is given as

T(dp=o0/¥) T(dp=00/y). T(dp=00]

(dy=00/y) _ 1.10
Tidy=oo/¥) r(dk:uuf}-}, r.:d;‘_,zlllﬂl} ( )
T[l:l'.;f:tl‘_.'"_'!.‘j _ r':l'l';(:ﬂ'l."r}':" l"l:ﬂ.';{:ﬂlll (1 11)
Tidy =00/ ¥ T(dp=00/¥). T{dp=00) '

Tidp=20/y) _ Tldp=10/y]). Tidy=10) (1.12)
T(dp=o0/¥) T(dy=00/y). T(dy=00) '

Tldp=11/¥) — T(dp=11/y). T(dp=11} (1 13)

Tid=o0/¥] T(dy=00/y). T(dp=00)

di= transmitted symbol at time instant k

y= received continuous valued noisy symbol
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Single log-likelihood ratio requires duo binary code for decoders which further require three log- likelihood

ratios. The likelihood ratios for information couple (CGy) can be symbolize in the form

TiCp=c.Cp=g
T(Cp=0.63=0)

Acy(Cr,Gy) = log (1.14)

Cc4(C.Gy) = likelihood ratios of information couple (Cy, Gy)

where (C, G) can be (0, 1), (1, 0), or (1, 1).Now let y, (Z, *Z;) denote the branch metric corresponding to state
transition Z, ~Z; at time k. The branch metric depends on the information and parity couples that label the
branch all beside the channel observation and extrinsic information at the decoder input. In particular, if

transition Z, ~Z; is labelled by (Cy,G, Wi, Y1) = (¢,9,w, y) then the branch metric y, (Z, ~Z;) is given by:

Vi(Zio 7) =A%) (€ G i) + wA(W) + yA(Yy) (1.15)

¥«(Zi— Z;) = branch matric

A(C) =log[P(C = 1)/P(C = 0)]

The forward recursion is represented by

ok+1(Z)) = map*{ o(Z)) + ¥(Zi— Z)} (1.16)

The forward metrics are normalized regarding metrix stored in state zero after computing the forward recursion

for all Zj at time k+1as follows
0k+1(Z)) =0s1(Z;) -oe1(Zo) (1.17)

Again, let fx.1(Zj) indicates the normalized backward metric at trellis state k+1 and state Zj andf,(Z,) denote the

backward metric at trellis state k and state Z, prior to normalization. The backward recursion is given by:
Br(Zi) = map*{ B(Z)) + ¥(Zi— Z;)H1.18)

The backward metrics are normalized regarding metrix stored in state zero after computing the backward

recursion for all Z, at time k as follows

B(Zi) = B(Z)) - Bu(Zo) (1.19)
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The sets of forward and backward metrics are then stored and employ to get the LLR values accordingly. For

each branch the likelihood ration be capable of calculation as follows
H(Zi— Z)) = a(Zi) + v(Zi— Z)) + Prea(Z)) (1.20)
For information pair (Cy,Gy) = (c, g) the likelihood is calculated as:

t«(c,g) = map™ {Hy} (1.21)

Zi— Z; : (c,0) And the possible values for (c,g) are 01, 10, or 11. At the decoder output, the LLR value is given
by:

AL (€ G = t (6, 9) — ,(0,0)  (122)
ﬁiﬁ (Cy. Gy )= LLR at decoder output

After the iteration process is completed, either by fixed amount of iterations or stand on several convergence

criterion, the LLR of each bit in the couple (Cy, Gy) is computed to take the final decision by comparing them to:

(ad )] )] (o)
ﬁ(cl{j = map* {ﬁlﬁ(ck!ﬁkjrﬁlﬁtckrij}_ map*{ﬁDJD(Ckr ijrﬁ[:._lltckrskj}
(1.23)
_ (ad )] )] (o)
A(Gy) =map* {Ay; (€, G )AL (Cr, Gy )} map*{A, (€, Gy ) AL (6 G )
(1.24)

Where.f‘h.'ﬂ(ck, Gy=0

when we choose larger interleaver, the code word sequence which is having information posses weight of two,
so to avoid that type of scenario in coding like Turbo the role of interleaver is important because interleaver is
responsible for bit error probability . This property of turbo codes capable of use to find the approximate value
of the bit error probability at upper bound, which is accurate when long interleavers are employed. The bound
estimation utilizes only those terms that have a foremost effect on the overall interpretation. Based on this a
hasty technique to calculate the significant expressions of a turbo encoder transfer function are extended. The
proposed process is applied with the concenated DSSS with punctured codes so it is more suitably called pseudo

sequence punctured code. By this result become more accurate result. The systematic weight is given as:
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ulk,m) = u(m) = 2t (1.25)
and the parity check weight is gives as:

h(k,m) = khTil + 2t, . (1.26)

core

We get h;’;':,f’ = hi,..and t1 110 = t2,m,because puncturing pattern has periodic. Computation ofh(k,m)

and, consequently, G(w = 2, U, H), requires numerical calculation of the L values of h;’y}tﬁ However, the

hm+1

assumption of pseudo-random puncturing can further simplify the computation of ;...

In order to express h;"’;‘:.gl in a close-form, we first need to consider the autocorrelation function 0(i) of a

sequence of length L, which is defined as

(i) =4 2¥ -1, ifi=0 (1.27)
-1, ifl<i<L

On expansion is becomes
L
8(i) = Z[4x}-x}-+i — 2x; — 2x;,; + 1)
=1

= 4%y xp - 28— 2By + L

= 4) xpx - 2029 20259 + (2° — 1)
j=1

\= 48w —2° -1

If we update h;’;ﬁj accordingly, it becomes

(1.28)

m = 2 ame1 )

K270 4 28 . if2=2m=2Y-1

We observe that h(k,m) can assume three distinct values, namely k2'? k2'2? + 2, and k2", in order of

magnitude, but only when v> 2. Invoking the properties of PN sequences, and also only 2¥* — 1 out of the2" —
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1 elements t,,,, of the puncturing vector T, are equal to 0. If the memory size is v =2, we find that t,,,assumes
the zero value only once, and this happens when m = 1. Consequently, the value ofh(k, m) for a memory size of
2 caneitherbe2kifm=1,ork+2ifm>1.

The rate of a punctured RSC encoder depends upon the number of codeword bits, both systematic and parity
check, transmitted during the puncturing period M. We know that in the case of pseudo-randomly punctured
RSC codes, vector Tz = [ty); ... t,,m] contains 2" non-zero elements, hence 2" parity check bits evade puncturing
and, consequently, at least 2""'codeword bits are transmitted for every M = 2¥ — 1 input information bits. The
rate of the code can be reduced by increasing the numeral of non-zero elements in the vector T = [t; ; ... ti ,ml,
which determines which systematic bits are eliminated during the puncturing period M. The dominant
conditional weight enumerating function. The dominant conditional weight enumerating functionB(w = 2,U,H)

can be obtained as follows

liw—13/ r2¥-13]

¥-1 ) N
Glw=20.H = Z Z GR.mUiA'.rrJHxl.mrrJ
k=1 m=1

whereGy nassumes the form

Gk,m -
{ " ]J —k, ifrem(N,2¥—1)<m

A _
&

{ al J —k+1, otherwise

2¥—1

BER V/S SNR for BPSK modulated signal

BER

Theoretical
Simulation

i " i i 1 i
0 1 2 3 4 5 6 7 8 9

(129) SNR(dB)

Fig 1.4 BPSK modulation in Channel
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BER V/S SNR for Spread Spectrum with BPSK modulation

simulation |4
2 —theaoretical

BER

1 i
5 B 7

i
0 1 2 3 4
SNR(dB)

Fig. 1.5 DSSS performance with BPSK

Fig 1.4 shows BPSK modulation in AWGN channel and result is compared in terms of BER and SNR
performance. Using this technique we can achieve only up to 10 * dB and SNR has gone beyond the limit. Fig
1.5 shows that direct sequence spread spectrum is applied with binary phase shift keying as the result shows
there is improvement in the result in terms of Bit error rate and Signal to noise ratio and there is much better
improvement in SNR and it is approximate 7 dB.

Fig 1.6 Turbo Coding Applied with BPSK

Turbo Coding with DSSS performance

[| = DSSS with Iteration 1
DSSS with Iteration 2
—— DSSS with lteration 3
DSSS with lteration 4

Turbo Coding performance for £
T T

! 5 : 2 & 4
4 il A s SNR(E)

SNR(dE)

Fig 1.7 Combined performancewith Turbo Coded DSSS

Fig 1.6 shows turbo coding along with iteration is applied with Binary phase shift keying ,after each and every
iterations there is an improvement in BER as well as SNR .Fig 1.7 shows that using the same modulation
technique i.e. BPSK both the turbo coding and DSSS is applied, this scheme is shown in the form of graph at fig
1.7
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IV. RESULT AND CONCLUSION

Analysis of different figures in this work the result is provided in table 1.1

Table 1.1
Proposed Technique with 4 iterations with code rate 1/3

S| Proposed | Modulatio | Desired | Desired | Channe

N Techniqu | n BER SNR@ | |
e B)

1| Turbo BPSK 10* 8 AWGN
iteration Modulatio
1with n
DSSS

2| Turbo BPSK 10 6 AWGN
iteration Modulatio
2 with | n
DSSS

3| Turbo BPSK 10% 4 AWGN
iteration Modulatio
3with n
DSSS

4| Turbo BPSK 10° 3 AWGN
iteration Modulatio
4  with | n
DSSS

V.CONCLUSION

A new approach of turbo code along with DSSS is presented which overall provide good and secured

communication among two stations. The modulation scheme is remain same for the above technique by using
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BPSK modulation scheme we reduce the complexity of system. USSS scheme is used instead of Frequency
hopping scheme which result in enhancement of counter-jamming capabilities. The scenario given for this
dissertation is that there is advanced knowledge of the communicating parties in the form of secret keys and
after proper establishment of between two parties the further communication is possible. In this work we
concentrated over satellite link between earth station and transponder. The main threats like Jamming,
interference , spoofing and intrusion considered only and approach used here is focused to reduce MIJI attacks
jointly and no single and individual method to reduce these threats are used in this dissertation. The counter
measure technique at GNSS system requires new technology because threats are become advance according to
present technique which more adversely affect the system. This dissertation has discussed many aspects of
threat their analysis and mitigation technique separately. For this we analyze these threats from their origin and
their originators. Although our result is only on analytical based and practically some of the parameters may

vary.
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