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ABSTRACT     

Highly charged dust grains immersed in plasma exhibit charge fluctuations. The impact of these charge 

fluctuations is investigated on modulational instability of a lower hybrid wave in complex plasma. It is shown 

that these effects enhance the frequency and growth rate of unstable mode. The growth rate of the unstable 

mode is also found proportional to pump amplitude.   
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I.  INTRODUCTION 

The study of parametric instabilities of large amplitude electrostatic [1-5] and electromagnetic [6-7] waves in a 

plasma have been an active field of research for the last few decades for their relevance to radio frequency 

current drive, heating of fusion plasmas [1,8,9] laser driven fusion [10], small scale laboratory experiments [11-

13] and ionospheric modification experiments.  

In recent years, considerable interest has been given in studying electrostatic waves in dusty plasmas[14-18].
 

Barkan et al.[16]
  
have found experimentally that the presence of negatively charged dust grains enhanced the 

growth rate of current driven electrostatic ion-cyclotron (EIC) wave in a dusty plasma. Chow et al.[17-18]
 
have 

studied the effect of dust charged fluctuations on the collisionless EIC instability using Vlasov theory. They 

have found that in presence of negatively charged dust grains as the ratio of positive ion density to electron 

density increased, the critical electron drift velocity (vde) for the excitation of wave decreased showing that the 

mode was more easily destabilized in plasma containing negatively charged dust grains.  

The dust has been noted to influence a three-wave parametric process in unmagnetized [19-21]
 
and magnetized 

plasmas[22]. Liu and Tripathi[8] considered MI of lower hybrid waves in infinite plasma. Konar et al.[23]
 
have 

studied MI of a lower hybrid wave in a plasma slab without dust grains. In this paper, we examine the influence 

of dust charge fluctuations and dust dynamics on the MI of lower hybrid waves in a plasma slab. 

In section II, we carry out the instability analysis using fluid treatment. We obtain growth rate of the instability 

using first order perturbation theory. We incorporate a model of dust charge fluctuations by following Whipple 

et al.[14], Jana et al.[15]
 
Results and discussions are given in section III. Conclusion part is given in Sec. IV. 
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II. INSTABILITY ANALYSIS 

Consider a plasma slab filled with homogeneous dusty plasma that is infinite in Z-direction and bounded b/w 

x=0 and x=a0. It is immersed in a static uniform magnetic field ˆ
s sB B k


. In equilibrium, the densities, charge, 

mass and temperature of the three species electrons, ions and dust grains in the plasma slab are denoted by ( ne0, 

-e, me, Te), ( ni0, e, mi, Ti) and ( nd0,-Qd0, md,Td) respectively. We assume the potentials of the four waves of the 

form  

 0 0 0 0( )exp zx i t k z        , 

 1 1 1 1( )exp zx i t k z       , 

 2 2 2 2( )exp zx i t k z       , 

 ( )exp zx i t k z       . 

The mode structure equation for the lower hybrid pump wave can be obtained from the linear 

dispersion relation 
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are lower

 hybrid, 

electron plasma , ion plasma and electron cyclotron frequency respectively.

 The parallel component of the ponderomotive force (Fpz) exerted by lower hybrid pump wave 

and the sidebands ( 1,2 ) on the electrons is given by 
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pz z pF iek  
                                                                                                          (2) 

where   
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Electron response to 

p  and self-consistent potential    turns out to be  
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where 1en  is the perturbed density of electrons. 

The ion density perturbation at (ω, k) can be written as 
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                                                                                                            (5)                                              

 

Similarly the dust density perturbation is given by  
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The dust charge fluctuation is given by, 
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 .                                                                  

In Eq. (7), we assume that the wave period  1
 is nearly equal to the dust charging time 

 1 . 
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Substituting the value of ne1 and ni1 from Eqs. (4) and (5) in Eq. (7),   we obtain 
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 In equilibrium, there is overall charge neutrality, i.e., 
0 0 0 0 0i e d den en Q n                                                                                                                                                                                                                                                                                                                                                                        
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Using  Eqs.  (4), (5), (6) and (8) in the Poisson’s equation,  

    
2

1 1 0 1 0 14 [ ]e i d d d dn e n e n Q Q n      , we get  

 

 
1

,

e p

d

i

i


 

 




 
  

 


                                                                            (9) 
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 is the coupling parameter. e , ,i d are 

electron, ion and dust susceptibility respectively while pd

 

is the dust plasma frequency. 

Nonlinear lower and upper sideband electron density perturbation is given by 
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where 1 0   and 2 0  . 

Using  equations (10) and (11) in the Poisson’s equation, we get the following nonlinear 

mode-structure equations for lower and upper sidebands: 
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and 

   

2 4 22
2 *0 02
2 2 0 1 0 22 2 2

0

1 1 1
4

z e
d i d

e d

e k k i i
K

i ix m M

   
      

     

                          

          

(13)

 

where  

   

2
2 2
1 12

2 1
1 2 2 2

2 2 2
1 1

1

1 1 1

pi i
z z

e
d

pe pi pd

ce

m i
k k

m i
K

i i

i i

 

 

   

      

 
  

 
   

       
    

,                             (14) 

 

 

   

2
2 2
2 22

2 2
2 2 2 2

2 2 2
2 2

1

1 1 1

pi i
z z

e
d

pe pi pd

ce

m i
k k

m i
K

i i

i i

 

 

   

      

 
  

 
   

       
      

 and                                 (15) 



 

842 | P a g e  
 

   

2 2 2

2 2 2
0 0

1 1 1
pe pi pd

ce

i i
M

i i

   

      

   
        

    

. 

If the R.H.S of  Eqs.(12) and (13) are zero, then these equations represents 

   

the linear response at 1,2 1,2
( , )k  and solutions are represented by 1 1n

 and 1
2

n
  respectively. 

Expanding the solutions of  Eqs.(12) and (13) i.e., 1
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In the absence of the pump wave, Eq. (12) becomes 
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Now subtracting Eq. (18) from Eq. (12), we 
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Substituting the values of  1
 and 2

  from Eqs. (16) and (17), we get
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Taking only   one value n1=m1 , we get 
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Multiplying Eqs.(20) and (21) and taking n1=n2=n i.e., the mode number for lower and upper 

side bands to be same, non-linear dispersion relation for four coupled waves becomes 
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Now assuming r i     
 
 and using the condition for modulational instability i.e.,
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Now we will discuss two cases of interest:

 

Case I: In the presence of dust charge fluctuations i.e., dust charging rate η is finite . 

Case II: In the absence of dust charge fluctuations i.e.,
1

0dQ   when dust charging rate 

η→∞. In the absence of dust grains i.e., δ=1and β=0, we recover the dispersion relation of 

Konar et al .[23]
 
(cf. pages 3799 and 3800). 

III. RESULTS AND DISCUSSIONS 

We solve Eqs. (25) and (26) numerically to obtain real frequency ( ωr ) and  growth rate ( ) of the unstable 

mode using following parameters:  ni0=5.0x10
10

cm
-3

, 
4 3

0 2.0 10dn cm  , Te=Ti=0.2eV, mi/me   7.16x10
4 
 

(Potassium), a=10
-4

cm,
 

9
0 7.0 10 /sec.,rad    k0z=3.25cm

-1
 and klz=0.035cm

-1
 and Bs=2KG. We vary δ 

from 1.0 to 5.0.   

 Fig. 1 shows the variation of ωr (rad./sec.) of the unstable mode with  / eoion n   in presence and absence 

of dust charge fluctuations . It can seen from Fig. 1 that ωr increases with   in both the cases and gets saturated 

for higher values of   and increase is more significant in case of  dust charge fluctuations. Fig. 2, depicts the 

variation of 
 
(sec.

-1
) as a function of δ for the pump amplitude

0 0.023   esu. Fig. 2, shows that 
 
increases 

by a factor ~1.73 (for Bs=2KG) [in presence of dust charge fluctuations]  as δ is varied from one to four. The 

growth rate results are consistent with the experimental finding of Barkan et al. [16] where growth rate becomes 

appro. twice under similar circumstances. In Eq. (26), 1 2    and since B1 is positive, the growth is only 

possible when 1 2 1B   and this condition is satisfied when 2 2 ,r piI  where 1 .
( )

i
I

i



  
 


 
The 

growth rate is found  proportional to pump amplitude as 1 2   and 1 2 .B   Thus the presence of dust 

charge fluctuations make the lower hybrid pump more modulationally unstable to low frequency quasimode for 

a particular value of  δ. 
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  FIGURE CAPTIONS 

Fig.1 : Dispersion curves of the unstable  mode as a function of the density ratio  of negatively charged dust 

grains to electrons  0 0
/

i e
n n   in presence and absence of  

            dust charge fluctuations. The parameters are given in the text.  

Fig.2: Growth rate   (rad./sec) of the unstable  mode as a function of  0 0
/

i e
n n   for the    

            same parameters as in Fig.1 and in presence and absence of dust charge fluctuations. 
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