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ABSTRACT 

Due to elevated number of spectral channels and large information of size, classification of Remote sensing data are 

difficult to be processed and classified with high accuracy and less computational time. In general, large quantity of 

data collected from the GIS namely satellite, aerial sensors, and telescope. Numerous classification techniques have 

been designed for the analysis of Remote sensing data. In this context, analyzing the best classification algorithm is 

big issue in Image processing field. In this literature survey, summarize the advanced techniques which are based on 

Clustering and SVM. Moreover we have provided the guidelines to future researchers to enhance further 

algorithmic developments in Remote sensing applications. 
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I.INTRODUCTION 

Remote sensing is the techniques which provide the modern information about an area such as Land cover 

classification, climate, minerals, vegetation, marine resources, urban monitoring, forestry, disaster management, robot 

navigation and many others with the help of sensors but without having any direct contact with the objects. When we 

classifying the remote sensing data, the necessary algorithm were implemented to carry out the interpretation and 

analysis of Electromagnetic spectrum. The major steps of image classification involve image preprocessing, detection 

and extraction of object, feature extraction, selection of training samples, algorithms and accuracy assessment. For 

remotely sensed scene analysis, images of the earth's surface arc captured by sensors in remote sensing satellites or by a 

multi-Spectra) scanner housed in an aircraft and then transmitted to the Earth Station for further processing [3, 4]. In this 

paper we have summarized some of the traditional algorithms which are based on SVM and Clustering. Clustering is the 

process of organizing the objects into groups. Support vector machine is a nonparametric statistical method for 
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addressing supervised classifications and regression problems. In SVM, kernel functions that accurately reflect the 

similarity among the samples and also satisfy the Mercer’s condition are linear kernel, polynomial kernel, radial basis 

function kernel and sigmoid kernel. The rest of the paper organized as follows. Section 2 describes the overview and 

analysis of Clustering, section 3 deals with the classification model based on SVM. Section 4 illustrates the performance 

measures of Remote sensing data finally section 5 concludes the article. 

II.CLUSTERING 

Clustering is the process of organizing the objects into groups. In generally is classification methodology is carried 

out of some the characteristics such as Data collection, Initial screening, representation, clustering tendency, cluster 

strategy, validation and interpretation.  Based on above characteristics classification is carried out two aspects such as 

supervised classification and unsupervised classification.   Clustering has become a widely studied problem in a 

variety of application domains, such as in data mining and knowledge discovery [1], [2] statistical data analysis [3], 

[4] data classification and compression [6], medical image processing [5] and bioinformatics [6]. Several algorithms 

have been proposed in the literature for clustering [7], [8]. A. L. Abul is explained about Cluster Validity Analysis 

Using Sub sampling [10]. The objective of all clustering algorithms is to divide a set of data points into subsets so that 

the objects within a subset are similar to each other and objects that are in different subsets have diverse qualities [11], 

[12], [13]. Bradley and Fayyad have proposed an algorithm for refining the initial cluster centers. Not only are the true 

clusters found more often, but the clustering algorithm also iterates fewer times. Some clustering 176 methods 

improve performance by reducing the distance calculations. For example, Judd et al. proposed a parallel clustering 

algorithm P-CLUSTER which uses three pruning techniques. Ming-Chuan Hung, explained about an Efficient k-

Means Clustering Algorithm Using Simple Partitioning based on Remote sensing data. The Table1 describes the 

analysis of clustering Algorithms. 

Table 1 : Clustering Algorithms 

Algorithms RS Data References 

K-Means 

Clustering 

Multispectral, 

Hyper spectral 

[2] 

Fuzzy C-Means  Multispectral, 

Hyper spectral 

[4] 

Fast and Exact 

K-means  

Multispectral, 

Hyper spectral 

[8] 

K-Means based 

mixture model 

Multispectral, 

Hyper spectral 

[5] 

Boosting Multispectral, [34] 
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Clustering Hyper spectral 

Affinity 

propagation 

Multispectral, 

Hyper spectral 

[15] 

StrAP Multispectral, 

Hyper spectral 

[18] 

Median Fuzzy C-

Means 

Multispectral, 

Hyper spectral 

[33] 

Fuuzy AP Multispectral, 

Hyper spectral 

[40] 

ED Algorithm Multispectral, 

Hyper spectral 

[31] 

MD Algorithm Multispectral, 

Hyper spectral 

[56] 

CD Algorithm Multispectral, 

Hyper spectral 

[21] 

Fuzzy 

possiblistic 

Multispectral, 

Hyper spectral 

[4] 

Modify Fuzzy 

possiblistic 

Multispectral, 

Hyper spectral 

[56] 

Kernel Fuzzy 

possiblistic 

Multispectral, 

Hyper spectral 

[25] 

Modify kernel 

fuzzy possiblistic 

Multispectral, 

Hyper spectral 

[23] 

 

IV.SUPPORT VECTOR MACHINE 

SVMs are nonparametric statistical approaches for addressing supervised classification and regression problems. In 

this context, SVM determine a hyper plane that discriminates data set into set of classes for classifying the remote 

sensing data. The SVM approach has been applied first to the classification of hyper spectral data without reducing 

the dimensionality. In this survey, we have focus on SVM-based approaches, including active SVMs, S
3
Vs, and 

composite SVMs methods for addressing the remote sensing problem. In this article we have analyzed the following 

machine learning methods. 

a. Active Machine Learning 
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b. Semi supervised SVMs 

c. SVMs integrated with other approaches   

The table 2 describes machine learning methods based Algorithm for classifying different kinds of RS Data. 

Algorithms RS Data References 

Active SVM Multispectral [55] 

Adaptive kernel Hyperspectral [56] 

Bootstrapped 

SVM 

Multispectral [57] 

Batch mode 

active SVM 

MODIS [60] 

TSVM Hyperspectral [75] 

RVM Hyperspectral [78] 

P-SVM Hyperspectral [80] 

Primal SVM Multispectral [67] 

LapSVM Hyperspectral [87] 

S3VM Multispectral [99] 

Cluster based 

SVM 

Hyperspectral [100] 

GA and SVM Hyperspectral [95] 

FCM and SVM Multispectral [90] 

PSO and SVM Hyperspectral [98] 

Fuzzy clustering 

and SVM 

Hyperspectral 

& multispectral 

images 

[90] 

 

V.PERFORMANCE MEASURES 

A. MEAN SQUARE ERROR 

MSE measures the average of the square ―error" between the five remote sensing images. The error is the amount 

by which the estimator differs from the quantity to be estimated. The difference occurs because of randomness or 
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because the estimator doesn't account for information that could produce a more accurate estimate. The formula for 

mean square is given as 

MSE =  
1

𝑀𝑁
 

𝑀 − 1
𝑖 = 0

 
𝑁 − 1
𝑗 = 0

 𝑓  𝑖, 𝑗 − 𝑓 𝑖, 𝑗  
2
 

1/2

 

Where M*N is the size of the image, 𝑓 (i, j) and f (i, j) are the matrix element of the fused and the original image at 

(i, j) pixel. To compare the performance, an objective image quality assessment, Mean Square Error (MSE) results 

of remote sensing images are shown in Table. 

B.  PEAK SIGNAL TO NOISE RATIO (PSNR) 

PSNR for remote sensing images are calculated by using fusion Techniques.  

         PSNR = 10log10  
𝑀𝑥𝑁

𝑅𝑀𝑆𝐸
  

Here remote sensing is original image and noise in error is fused image. In general, a good fused image is one with 

low MSE and high PSNR [26]. That means that the image has low error. To compare the performance, an 

objective image quality assessment, Peak Signal-to-Noise Ratio (PSNR) results of five remote sensing images are 

shown in Table. 

C. NORMALIZED CROSS CORRELATION 

NCC in which the brightness of the image and template can vary due to tighting and exposure conditions, the 

images can be first normalized. This is typically done at every step by subtracting the mean and dividing by the 

standard deviation. That is the cross correlation of the template, t(x, y) with sub image f(x, y) is 

  𝑁𝐶𝐶 =  
1

   𝑛
   

 𝑓 𝑥, 𝑦 − 𝑓 ( 𝑡 𝑥, 𝑦 − 𝑡)

𝜎𝑓𝜎𝑡
𝑥,𝑦

 

Where n is the number of pixels in t(x, y) and f(x, y), 𝑓 is the average of f and 𝜎𝑓  is standard deviation of f. In 

functional analysis terms, can be thoughts of as the dot product of two normalized vectors, that is if  F (x, y) = t (x, 

y) – 𝑓 and T (x, y) = t (x, y) - 𝑡 Then the above sum is equal to F and T is real matrices of Normalized Cross 

Correlation. 

D.  AVERAGE DIFFERENCE 

The average number of a set is the total of those numbers divided by the number of items in that set and the 

average brightness of a region is defined as the sample mean of the pixel brightness within that region. The 
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difference in visual properties that makes an object distinguishable from other objects. The formula for average 

difference is given as 

𝐴𝐷 =    (𝑥𝑗 ,𝑘

𝑁

𝑘=1

𝑀

𝑗 =1

− 𝑥𝑗 ,𝑘
′ )/  𝑀 𝑁 

 

E.  MAXIMUM DIFFERENCE 

As expected the metrics that are responsive to distortions are also almost always responsive to the image set. 

Conversely, the metrics that do not respond to variation of the image set are also not very discriminating with 

respect to distortion types. The fact that the metrics are sensitive, as would be expected, to both the image content 

and distortion artifacts does not eclipse their potential as quality metrics. 

 

F.  NORMALIZED ABSOLUTE ERROR 

Normalization is the process of isolating statistical error in repeated measured data. Absolute error is the 

uncertainty in a measurement, which is expressed using the relevant units. Also, absolute error may be used to 

express the inaccuracy in a measurement. Normalized absolute error formula is given as. 

𝑁𝐴𝐸 =
  | 𝑥𝑗 ,𝑘

𝑁
𝑘=1

𝑀
𝑗=1 − 𝑥𝑗 ,𝑘

′ |

  | 𝑥𝑗 ,𝑘
𝑁
𝑘=1

𝑀
𝑗=1 |

 

G.  KAPPA ANALYSIS 

 Kappa coefficients are widely used as classification accuracy assessment for remote sensed data, the result of 

performing Kappa Analysis is a KHAT statistic (an estimate of Kappa), which are computed as 

^
𝐾

=  
𝑁  𝑥𝑖𝑖 −  (𝑥𝑖+. 𝑥+𝑖)

𝑟
𝑖=1

𝑟
𝑖=1

𝑁2 −  (𝑥𝑖+
𝑟
𝑖=1 . 𝑥+𝑖)

 

Where 𝑟 is the number of rows in the error matrix (also called the confusion matrix), 𝑥𝑖𝑖  is the number of 

observations in row 𝑖 and column 𝑖, 𝑥𝑖+ and 𝑥+𝑖 are the marginal totals of row 𝑖 and column 𝑖, respectively, and N is 

the total number of observations.   

VI.CONCLUSION 

In this review article, we have provided a quick reference of the compendium of recently developed SVM-based 

techniques in RS applications. We also pointed out traditional methods used for image classification. Most of the 

findings indicate that there is sufficient empirical evidence to support the adoption of these processing algorithms.  
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