International Journal of Advance Research in Science and Engineering Q

Volume No.07, Special Issue No.03, February 2018 IJARSE

www.ijarse.com ISSN: 2319-8354

TRADITIONAL APPROACH TO AGILE APPROACH
IN SOFTWARE DEVELOPMENT

Sampada Chaudhari,Prateeksha Chouksey?,

Priyanka Lonkar®

123Dept. of Computer Engg., BSCOER, Pune , (India)

ABSTRACT

Selecting the right approach for software development has many factors like the project quality, costs and
schedule. Traditional approaches suffice when projects are based on rigidly followed processes to ensure
quality output. But such methods do not encompass or cannot changes until the whole cycle is complete. To be
able to sustain in such an environment of constant transformation, a business needs to be adaptive. The key
solution is to adopt agile methodologies for business architecture and information technology. With such an
approach, organizations can quickly respond to customer demands and efficiently adapt to market changes. It
dramatically increases flexibility and decreases development time. This paper mainly focuses on the comparison
between traditional approach and agile approach in terms of development, management and adaptation of new

technologies along with its effects.

I.INTRODUCTION

The system development life cycle (SDLC) is a conceptual model used to develop information systems with
well-defined phases. The phases are: user requirements definition, system, requirements definition, analysis and
system design, system development, testing, implementation and maintenance. Some of the models use rare
Waterfall, Spiral and Rapid Prototyping. These models are called plan-driven, lying on end of the “planning
emphasis”. At the other end of this are Agile methods, which are considered adaptive rather than predictive. A
software system is built in such a way that it can perform complex tasks and computations on the behest of the
user. The process of building software requires a rigorous attention to detail and a general guiding algorithm.
The traditional and agile processes essentially are manifestos for software development ideologies, more than
anything else. They can be further subdivided into more specific processes that form the basic plan of each
unique software development life cycle. The agile methodology post-dates the traditional one in the evolution of
the software development processes.

1.1 Traditional Software Development

Traditional methodologies are characterized by a sequential series of steps like requirement definition, planning,
building, testing and deployment. First, the client requirements are carefully documented to the fullest extent.
Then, the general architecture of the software is visualized and the actual coding commences. Then comes the

various types of testing and the final deployment. The basic idea here is the detailed visualization of the finished

212 |Page

International Journal of Advance Research in Science and Engineering Q

Volume No.07, Special Issue No.03, February 2018 IJARSE

www.ijarse.com ISSN: 2319-8354

project before the building starts, and working one’s way through to the visualized finished structure.Traditional
methodologies are plan driven in which work begins with the elicitation and documentation of a complete set of
requirements, followed by architectural and high level design development and inspection. Due to these heavy
aspects, this methodology became to be known as heavyweight. Some practitioners found this process centric
view to software development frustrating and pose difficulties when change rates are still relatively
low.Traditionally, the process of software development included rigid software development models. Processes
included a structured layout of a step by step approach from requirements gathering to final testing and release
of the product. Well, the processes were mostly aimed towards creating a flawless product in accordance to
software quality standards.There are two major ways to accomplish a successful project — SDLC (Software
Development Life Cycle) and PDLC (Project Development Life Cycle). PDLC is a set of activities that go hand
in hand and control the projects.

1.2. Agile Software Development

As its name suggests, the agile method of developing software is a lot less rigorous than the former. The crux
here is incremental and iterative development, where phases of the process are revisited time and again. Agile
developers recognize that software is not a large block of a structure, but an incredibly organic entity with
complex moving parts interacting with each other. Thus, they give more importance to adaptability and constant
compatibility testing.

I.LITERATURE SURVEY

Several Software Development Lifecycle Models (SDLCs) are in existence. Over the time different people have
proposed different models to meet the industrial demands. Any SDLC process model should be a repeatable,
clearly documented, highly-effective and must be based on the best industrial practices. The traditional SDLC
process models provide very insightful theory and helpful best practices, but do not provide the practical details
for daily application. SDLC pro-cess models are rarely used by organizations for the purpose they are designed
and developed for. Another primary reason for not using these models is due to lack of their suitability for real
life projects - which led to software crisis [1]

We lack well defined characteristic parameters for any SDLC model. Without applying the process model in
real project, we do not have adequate metric to analyze the suit-ability and goodness of such models. As
requirements are changed frequently, there is a need of streamlined flexible approach to manage these
requirement changes within the SDLC model. To develop quality software on a predictable schedule, the re-
quirements must be established and maintained with reasonable stability throughout the development cycle.
Changes will have to be made, but they must be managed and introduced in an orderly way. Hence, change
management is a critical part of any SDLC model [3].

If large numbers of people are involved and scattered over different development centres, the process model

must provide mechanism for better coordination among the project stakeholders. Additional costs and overheads

213 | Page

International Journal of Advance Research in Science and Engineering Q

Volume No.07, Special Issue No.03, February 2018 IJARSE

www.ijarse.com ISSN: 2319-8354

are the primary barrier in process model implementation. For this reasons, many organizations do not implement
or follow any process model.

In most of the common process model, there is no direct communication among customer, development team or
project management team throutout the development process. In traditional models, management plays the vital
role. As a result always there remains some communication gap and some missing or hidden information yet to
convey to the development team but with the management. As a result, often proper requirements remain
unspoken or hidden to the development team. Even conveyance of information might cause a loss of knowledge,
as great amount of data remains with its carrier and never get handed off to others. The lack of direct contact
between the development team and the customers could encumber the process of specifying requirements for the
future. In turn, handoffs among functions can cause delays and increasing risks of information being
misunderstood. Level of details is varying depending on representatives between customer and developer. As a
result, the developed system is frequently not satisfactory or even lead to project failure [6].

The process model must focus on identifying the errors in the same or closest phase of the SDLC process to
avoid or reduce the redo-work and cost. Most of the existing traditional SDLC process models don’t involve
management team directly with the development team. Hence, the project management team does not have
direct communication with the development and associated members. The management just remains as a silent
intermediate communication body. Thus, proper management observation and control is hidden in the
development process. As a result, the development process lacks proper management supervision and controls.
In addition, the project has to suffer from resource shortage, risk handling, coordination and many other
conflicts and problems [5].

Testing phase is the highest risky phase. Thus, all problems, bugs, and risks are discovered too late when the
recovering from these problems. It requires large rework which consumes time, cost, and effort. A potential
source of risk resides in the relatively long stages of any process model, which makes it difficult to estimate,

time, cost, and other resources required to complete each stage successfully.

I11.CHARACTERISTICS OF TRADITIONAL AND AGILE METHODOLOGIES

1.1 Traditional Methodologies Characteristics
Traditional methodologies have been around for a very long time. They impose a disciplined process upon
software development with the aim of making software development more predictable and more efficient. They

have not been noted to be very successful and are even less noted for being popular.

1.1.1 Predictive approach — Traditional methodologies have a tendency to first plan out a large part of the
software process in great detail for a long span of time. This approach follows an engineering discipline
where the development is predictive and repeatable. A lot of emphasis is put on the drawings focusing on
the need of the system and how to resolve those needs efficiently. The drawings are then handed over to

another group who are responsible for building the system. It is predicted that the building process will

214 |Page

International Journal of Advance Research in Science and Engineering Q

Volume No.07, Special Issue No.03, February 2018 IJARSE

www.ijarse.com ISSN: 2319-8354

follow the drawings. The drawings specify how they need to build the system; it acts as the foundation to
the construction process. As well, the plan predicts the task delegation for the construction team and
reasonably predicts the schedule and budget for construction.

1.1.2 Comprehensive Documentation — Traditional software development view the requirements document as
the key piece of documentation. A main process in traditional methodologies is the big design upfront
(BDUF) process, in which a belief that it is possible to gather all of a customer’s requirements, upfront,
prior to writing any code. Again this approach is a success in engineering disciplines which makes it
attractive to the software industry. To gather all the requirements, get a sign off from the customer and
then order the procedures (more documentation) to limit and control all changes does give the project a
limit of predictability. Predictability is very important in software projects that are life critical.

1.1.3 Process Oriented - The goal of traditional methodologies is to define a process that will work well for
whoever happens to be using it. The process would consist of certain tasks that must be performed by the
managers, designers, coders, testers etc. For each of these tasks there is a well-defined procedure.

1.1.4 Tool Oriented — Project management tools, Code editors, compilers, etc. must be in use for completion

and delivery of each task.

1.2 Agile Methodologies Characteristics
The following principles of agile methodologies are seen as the main differences between agile and
traditional:

1.2.1 People Oriented- Agile methodologies consider people — customers, developers, stakeholders, and end
users — as the most important factor of software methodologies. If the people on the project are good
enough, they can use almost any process and accomplish their assignment. If they are not good enough,
no process will repair their inadequacy.

1.2.2 Adaptive — The participants in an agile process are not afraid of change. Agilists welcome changes at
all stages of the project. They view changes to the requirements as good things, because they mean that
the team has learned more about what it will take to satisfy the market. Today the challenge is not
stopping change but rather determining how to better handle changes that occur throughout a project.

1.2.3 Conformance to Actual — Agile methodologies value conformance to the actual results as opposed to
conformance to the detailed plan. Each iteration or development cycle adds business value to the
ongoing product. For agilists, the decision on whether business value has been added or not is not given
by the developers but instead by end users and customers.

1.2.4 Balancing Flexibility and Planning — Plans are important, but the problem is that software projects
cannot be accurately predicted far into the future, because there are so many variables to take into
account. In this view one of the main sources of complexity is the irreversibility of decisions. The
consequence for agile design is that designers need to think about how they can avoid irreversibility in

their decisions.

215 | Page

International Journal of Advance Research in Science and Engineering Q

Volume No.07, Special Issue No.03, February 2018 IJARSE

www.ijarse.com ISSN: 2319-8354

1.2.5 Empirical Process — Agile methods develop software as an empirical (or nonlinear) process. In
software development it cannot be considered a defined process because too much change occurs
during the time that the team is developing the product.

1.2.6 Decentralized Approach — Integrating a decentralized management style can severely impact a
software project because it could save a lot of time than an autocratic management process. Agile
software development spreads out the decision making to the developers. This does not mean that the
developers take on the role of management. Management is still needed to remove roadblocks standing
in the way of progress. However management recognizes the expertise of the technical team to make
technical decisions without their permission.

1.2.7 Simplicity — Agile teams always take the simplest path that is consistent with their goals. Never
produce more than what is necessary and never produce documents attempting to predict the future as
documents will become outdated.

1.2.8 Collaboration — Agile methods involve customer feedback on a regular and frequent basis. The
customer of the software works closely with the development team, providing frequent feedback on
their efforts. As well, constant collaboration between agile team members is essential. Due to the
decentralized approach of the agile methods, collaboration encourages discussion.

1.2.9 Small Self-organizing teams — An agile team is a self-organizing team. Responsibilities are
communicated to the team as a whole, and the team determines the best way to fulfill them. Agile
teams discuss and communicate together on all aspects of the project. That is why agility works well in

small teams.

I11.DIFFERENCES BETWEEN TRADITIONAL AND AGILE DEVELOPMENT
Table- Difference between Traditional and Agile Aproach

Traditional development Agile development
Fundamental Systems are fully specifiable, | High quality adaptive software is
hypothesis predictable and are developed | developed by small teams that use

through extended and detailed | the principle of continuous
planning improvement of design and testing

based on fast feed-back and change

Management style Command and control Leadership and collaboration
Knowledge Explicit Tacit

management

Communication Formal Informal

216 |Page

International Journal of Advance Research in Science and Engineering jé

Volume No.07, Special Issue No.03, February 2018

www.ijarse.com

IJARSE

ISSN: 2319-8354

Development model

Life cycle model (waterfall, spiral

or modified models)

Evolutionary-delivery model

Organizational Mechanic (bureaucratic, high | Organic (flexible and participative,
structure formalization), targeting large | encourages social cooperation),
organization targeting small and medium
organizations
Quality control Difficult planning and strict | Permanent control or requirements,
control. Difficult and late testing design and solutions. Permanent
testing
User requirements Detailed and defined before | Interactive input
coding/implementation
Development direction Fixed Easily changeable

Testing

After coding is completed

Every iteration

Client involvement

Low

High

Developers

Oriented on plan, with adequate

abilities, access to external

knowledge

Agile, with advanced knowledge,

co-located and cooperative

Requirements

Very stable, known in advance

Emergent, with rapid changes

Remodeling

Expensive

Not expensive

Size

Large teams and projects

Small teams and projects

Primary objectives

High safety

Quick value

IV.CONCLUSION

No matter what model is chosen for developing software applications, this activity involves complex processes
that are often predisposed to errors. That is why, beyond agility or traditionalism, an important role goes to
testing and validation. Any high quality software system, with professional development and implementation
must be tested and validated before going into production. The client must know that the system was developed
and implemented according to the project specifications. Also, the client must be sure the project functionality is

correct.

217 |Page

International Journal of Advance Research in Science and Engineering Q

Volume No.07, Special Issue No.03, February 2018

IJARSE
www.ijarse.com ISSN: 2319-8354
REFERENCES
[1] ArdhenduMandal and S. C. Pal, “ Investigating and Analysing the Desired Characteristics of Software

[2]
[3]

[4]
[5]

[6]

[7]
8]
[9]
[10]

[11]
[12]

Development Lifecycle (SDLC) Models”, INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING
RESEARCH & PRACTICES VOL.2, ISSUE 4, OTOBER, 2012.
http://www.techopedia.com/definition/22193/software-development-life-cycle-sdic
Martin Michlmayr, Francis Hunt, David Probert, “Quality Practices and Problems in Free Software
Projects”, Proceedings of the First International Conference on Open Source Systems Genova, 11th-15th
July 2005
http://www.tutorialspoint.com/sdlc/sdlc_overview.htm
Barry Boehm, Richard Turner, "Management Challenges to Implementing Agile Processes in Traditional
Development Organizations”, Published by the IEEE Computer Society, 0740-7459/05/$20.00 © 2005
IEEE.
Andrei Antanovich, Anastasia Sheyko& Brian Katumba, “Bottlenecks in the Development Life Cycle of a
Feature, Bachelor of Science in Software Engineering and Management”, Thesis Report No. 2010:012
ISSN: 1651-4769.
http://istgbexamcertification.com/whatare-the-software-development-models/
http://www.slideshare.net/J. T.A.JONES/software-development-life-cycle-model-1392777
http://www.tutorialspoint.com/sdlc/sdic_overv iew.htm
S. Nerur, R. Mahapatra, G. Mangalaraj, Challenges of migrating to agile methodologies, Communications
of the ACM (May) (2005) 72— 78.

Get Ready for Agile Methods, with Care,BarryBohem, IEEE lanuarie 2002, tabel 1, pg. 68

http://www.producao.ufrgs.br/arquivos/disciplinas/507_artigo_3_empirical_systematic_revew.pdf

218 |Page

