

212 | P a g e

TRADITIONAL APPROACH TO AGILE APPROACH

IN SOFTWARE DEVELOPMENT

Sampada Chaudhari
1
,Prateeksha Chouksey

2
,

Priyanka Lonkar
3

1,2,3
Dept. of Computer Engg., BSCOER, Pune , (India)

ABSTRACT

Selecting the right approach for software development has many factors like the project quality, costs and

schedule. Traditional approaches suffice when projects are based on rigidly followed processes to ensure

quality output. But such methods do not encompass or cannot changes until the whole cycle is complete. To be

able to sustain in such an environment of constant transformation, a business needs to be adaptive. The key

solution is to adopt agile methodologies for business architecture and information technology. With such an

approach, organizations can quickly respond to customer demands and efficiently adapt to market changes. It

dramatically increases flexibility and decreases development time. This paper mainly focuses on the comparison

between traditional approach and agile approach in terms of development, management and adaptation of new

technologies along with its effects.

I.INTRODUCTION

The system development life cycle (SDLC) is a conceptual model used to develop information systems with

well-defined phases. The phases are: user requirements definition, system, requirements definition, analysis and

system design, system development, testing, implementation and maintenance. Some of the models use rare

Waterfall, Spiral and Rapid Prototyping. These models are called plan-driven, lying on end of the “planning

emphasis”. At the other end of this are Agile methods, which are considered adaptive rather than predictive. A

software system is built in such a way that it can perform complex tasks and computations on the behest of the

user. The process of building software requires a rigorous attention to detail and a general guiding algorithm.

The traditional and agile processes essentially are manifestos for software development ideologies, more than

anything else. They can be further subdivided into more specific processes that form the basic plan of each

unique software development life cycle. The agile methodology post-dates the traditional one in the evolution of

the software development processes.

1.1 Traditional Software Development

Traditional methodologies are characterized by a sequential series of steps like requirement definition, planning,

building, testing and deployment. First, the client requirements are carefully documented to the fullest extent.

Then, the general architecture of the software is visualized and the actual coding commences. Then comes the

various types of testing and the final deployment. The basic idea here is the detailed visualization of the finished

213 | P a g e

project before the building starts, and working one’s way through to the visualized finished structure.Traditional

methodologies are plan driven in which work begins with the elicitation and documentation of a complete set of

requirements, followed by architectural and high level design development and inspection. Due to these heavy

aspects, this methodology became to be known as heavyweight. Some practitioners found this process centric

view to software development frustrating and pose difficulties when change rates are still relatively

low.Traditionally, the process of software development included rigid software development models. Processes

included a structured layout of a step by step approach from requirements gathering to final testing and release

of the product. Well, the processes were mostly aimed towards creating a flawless product in accordance to

software quality standards.There are two major ways to accomplish a successful project – SDLC (Software

Development Life Cycle) and PDLC (Project Development Life Cycle). PDLC is a set of activities that go hand

in hand and control the projects.

1.2. Agile Software Development

As its name suggests, the agile method of developing software is a lot less rigorous than the former. The crux

here is incremental and iterative development, where phases of the process are revisited time and again. Agile

developers recognize that software is not a large block of a structure, but an incredibly organic entity with

complex moving parts interacting with each other. Thus, they give more importance to adaptability and constant

compatibility testing.

II.LITERATURE SURVEY

Several Software Development Lifecycle Models (SDLCs) are in existence. Over the time different people have

proposed different models to meet the industrial demands. Any SDLC process model should be a repeatable,

clearly documented, highly-effective and must be based on the best industrial practices. The traditional SDLC

process models provide very insightful theory and helpful best practices, but do not provide the practical details

for daily application. SDLC pro-cess models are rarely used by organizations for the purpose they are designed

and developed for. Another primary reason for not using these models is due to lack of their suitability for real

life projects - which led to software crisis [1]

We lack well defined characteristic parameters for any SDLC model. Without applying the process model in

real project, we do not have adequate metric to analyze the suit-ability and goodness of such models. As

requirements are changed frequently, there is a need of streamlined flexible approach to manage these

requirement changes within the SDLC model. To develop quality software on a predictable schedule, the re-

quirements must be established and maintained with reasonable stability throughout the development cycle.

Changes will have to be made, but they must be managed and introduced in an orderly way. Hence, change

management is a critical part of any SDLC model [3].

If large numbers of people are involved and scattered over different development centres, the process model

must provide mechanism for better coordination among the project stakeholders. Additional costs and overheads

214 | P a g e

are the primary barrier in process model implementation. For this reasons, many organizations do not implement

or follow any process model.

In most of the common process model, there is no direct communication among customer, development team or

project management team throutout the development process. In traditional models, management plays the vital

role. As a result always there remains some communication gap and some missing or hidden information yet to

convey to the development team but with the management. As a result, often proper requirements remain

unspoken or hidden to the development team. Even conveyance of information might cause a loss of knowledge,

as great amount of data remains with its carrier and never get handed off to others. The lack of direct contact

between the development team and the customers could encumber the process of specifying requirements for the

future. In turn, handoffs among functions can cause delays and increasing risks of information being

misunderstood. Level of details is varying depending on representatives between customer and developer. As a

result, the developed system is frequently not satisfactory or even lead to project failure [6].

The process model must focus on identifying the errors in the same or closest phase of the SDLC process to

avoid or reduce the redo-work and cost. Most of the existing traditional SDLC process models don’t involve

management team directly with the development team. Hence, the project management team does not have

direct communication with the development and associated members. The management just remains as a silent

intermediate communication body. Thus, proper management observation and control is hidden in the

development process. As a result, the development process lacks proper management supervision and controls.

In addition, the project has to suffer from resource shortage, risk handling, coordination and many other

conflicts and problems [5].

Testing phase is the highest risky phase. Thus, all problems, bugs, and risks are discovered too late when the

recovering from these problems. It requires large rework which consumes time, cost, and effort. A potential

source of risk resides in the relatively long stages of any process model, which makes it difficult to estimate,

time, cost, and other resources required to complete each stage successfully.

III.CHARACTERISTICS OF TRADITIONAL AND AGILE METHODOLOGIES

1.1 Traditional Methodologies Characteristics

Traditional methodologies have been around for a very long time. They impose a disciplined process upon

software development with the aim of making software development more predictable and more efficient. They

have not been noted to be very successful and are even less noted for being popular.

1.1.1 Predictive approach – Traditional methodologies have a tendency to first plan out a large part of the

software process in great detail for a long span of time. This approach follows an engineering discipline

where the development is predictive and repeatable. A lot of emphasis is put on the drawings focusing on

the need of the system and how to resolve those needs efficiently. The drawings are then handed over to

another group who are responsible for building the system. It is predicted that the building process will

215 | P a g e

follow the drawings. The drawings specify how they need to build the system; it acts as the foundation to

the construction process. As well, the plan predicts the task delegation for the construction team and

reasonably predicts the schedule and budget for construction.

1.1.2 Comprehensive Documentation – Traditional software development view the requirements document as

the key piece of documentation. A main process in traditional methodologies is the big design upfront

(BDUF) process, in which a belief that it is possible to gather all of a customer’s requirements, upfront,

prior to writing any code. Again this approach is a success in engineering disciplines which makes it

attractive to the software industry. To gather all the requirements, get a sign off from the customer and

then order the procedures (more documentation) to limit and control all changes does give the project a

limit of predictability. Predictability is very important in software projects that are life critical.

1.1.3 Process Oriented - The goal of traditional methodologies is to define a process that will work well for

whoever happens to be using it. The process would consist of certain tasks that must be performed by the

managers, designers, coders, testers etc. For each of these tasks there is a well-defined procedure.

1.1.4 Tool Oriented – Project management tools, Code editors, compilers, etc. must be in use for completion

and delivery of each task.

1.2 Agile Methodologies Characteristics

The following principles of agile methodologies are seen as the main differences between agile and

traditional:

1.2.1 People Oriented- Agile methodologies consider people – customers, developers, stakeholders, and end

users – as the most important factor of software methodologies. If the people on the project are good

enough, they can use almost any process and accomplish their assignment. If they are not good enough,

no process will repair their inadequacy.

1.2.2 Adaptive – The participants in an agile process are not afraid of change. Agilists welcome changes at

all stages of the project. They view changes to the requirements as good things, because they mean that

the team has learned more about what it will take to satisfy the market. Today the challenge is not

stopping change but rather determining how to better handle changes that occur throughout a project.

1.2.3 Conformance to Actual – Agile methodologies value conformance to the actual results as opposed to

conformance to the detailed plan. Each iteration or development cycle adds business value to the

ongoing product. For agilists, the decision on whether business value has been added or not is not given

by the developers but instead by end users and customers.

1.2.4 Balancing Flexibility and Planning – Plans are important, but the problem is that software projects

cannot be accurately predicted far into the future, because there are so many variables to take into

account. In this view one of the main sources of complexity is the irreversibility of decisions. The

consequence for agile design is that designers need to think about how they can avoid irreversibility in

their decisions.

216 | P a g e

1.2.5 Empirical Process – Agile methods develop software as an empirical (or nonlinear) process. In

software development it cannot be considered a defined process because too much change occurs

during the time that the team is developing the product.

1.2.6 Decentralized Approach – Integrating a decentralized management style can severely impact a

software project because it could save a lot of time than an autocratic management process. Agile

software development spreads out the decision making to the developers. This does not mean that the

developers take on the role of management. Management is still needed to remove roadblocks standing

in the way of progress. However management recognizes the expertise of the technical team to make

technical decisions without their permission.

1.2.7 Simplicity – Agile teams always take the simplest path that is consistent with their goals. Never

produce more than what is necessary and never produce documents attempting to predict the future as

documents will become outdated.

1.2.8 Collaboration – Agile methods involve customer feedback on a regular and frequent basis. The

customer of the software works closely with the development team, providing frequent feedback on

their efforts. As well, constant collaboration between agile team members is essential. Due to the

decentralized approach of the agile methods, collaboration encourages discussion.

1.2.9 Small Self-organizing teams – An agile team is a self-organizing team. Responsibilities are

communicated to the team as a whole, and the team determines the best way to fulfill them. Agile

teams discuss and communicate together on all aspects of the project. That is why agility works well in

small teams.

III.DIFFERENCES BETWEEN TRADITIONAL AND AGILE DEVELOPMENT

Table- Difference between Traditional and Agile Aproach

 Traditional development Agile development

Fundamental

hypothesis

Systems are fully specifiable,

predictable and are developed

through extended and detailed

planning

High quality adaptive software is

developed by small teams that use

the principle of continuous

improvement of design and testing

based on fast feed-back and change

Management style Command and control Leadership and collaboration

Knowledge

management

Explicit Tacit

Communication Formal Informal

217 | P a g e

Development model Life cycle model (waterfall, spiral

or modified models)

Evolutionary-delivery model

Organizational

structure

Mechanic (bureaucratic, high

formalization), targeting large

organization

Organic (flexible and participative,

encourages social cooperation),

targeting small and medium

organizations

Quality control Difficult planning and strict

control. Difficult and late testing

Permanent control or requirements,

design and solutions. Permanent

testing

User requirements Detailed and defined before

coding/implementation

Interactive input

Development direction Fixed Easily changeable

Testing After coding is completed Every iteration

Client involvement Low High

Developers Oriented on plan, with adequate

abilities, access to external

knowledge

Agile, with advanced knowledge,

co-located and cooperative

Requirements Very stable, known in advance Emergent, with rapid changes

Remodeling Expensive Not expensive

Size Large teams and projects Small teams and projects

Primary objectives High safety Quick value

IV.CONCLUSION

No matter what model is chosen for developing software applications, this activity involves complex processes

that are often predisposed to errors. That is why, beyond agility or traditionalism, an important role goes to

testing and validation. Any high quality software system, with professional development and implementation

must be tested and validated before going into production. The client must know that the system was developed

and implemented according to the project specifications. Also, the client must be sure the project functionality is

correct.

218 | P a g e

REFERENCES

[1] ArdhenduMandal and S. C. Pal, “ Investigating and Analysing the Desired Characteristics of Software

Development Lifecycle (SDLC) Models”, INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING

RESEARCH & PRACTICES VOL.2, ISSUE 4, OTOBER, 2012.

[2] http://www.techopedia.com/definition/22193/software-development-life-cycle-sdlc

[3] Martin Michlmayr, Francis Hunt, David Probert, “Quality Practices and Problems in Free Software

Projects”, Proceedings of the First International Conference on Open Source Systems Genova, 11th-15th

July 2005

[4] http://www.tutorialspoint.com/sdlc/sdlc_overview.htm

[5] Barry Boehm, Richard Turner, ”Management Challenges to Implementing Agile Processes in Traditional

Development Organizations”, Published by the IEEE Computer Society, 0740-7459/05/$20.00 © 2005

IEEE.

[6] Andrei Antanovich, Anastasia Sheyko& Brian Katumba, “Bottlenecks in the Development Life Cycle of a

Feature, Bachelor of Science in Software Engineering and Management”, Thesis Report No. 2010:012

ISSN: 1651-4769.

[7] http://istqbexamcertification.com/whatare-the-software-development-models/

[8] http://www.slideshare.net/J.T.A.JONES/software-development-life-cycle-model-1392777

[9] http://www.tutorialspoint.com/sdlc/sdlc_overv iew.htm

[10] S. Nerur, R. Mahapatra, G. Mangalaraj, Challenges of migrating to agile methodologies, Communications

of the ACM (May) (2005) 72– 78.

[11] Get Ready for Agile Methods, with Care,BarryBohem, IEEE Ianuarie 2002, tabel 1, pg. 68

[12] http://www.producao.ufrgs.br/arquivos/disciplinas/507_artigo_3_empirical_systematic_revew.pdf

