Volume No.07, Issue No.02, February 2018 www.ijarse.com

IJARSEISSN: 2319-8354

PERFORMANCE ANALYSIS OF PAPR REDUCTION IN OFDM USING SLM & PTS TECHNIQUE

Farha Deeba¹, Mr. Amarjeet Kumar Ghosh²

¹M.TECH Scholar Department of Electronics & Communication Engg, VITS, BHOPAL ² Asst.Prof. Department of Electronics & Communication Engg, VITS, BHOPAL

ABSTRACT

OFDM (Orthogonal Frequency Division Multiplexing) has been raised a new modulation technique. Due to its advantages in multipath fading channel e.g. robust against ISI, ICI and some other advantages like best QoS for multiple users, efficient usage of bandwidth it is suggested to be the modulation technique for next generation 4G networks e.g. LTE. But along with all its advantages there are some disadvantages also e.g. High PAPR (Peak to Average Power Ratio) at the transmitter end and BER (Bit Error Rate) at the receiving end. Since OFDM is only used in the downlink of 4G networks. To reduce the problems of OFDM some techniques e.g. SLM, PTS, Clipping, Coding, & Pre-coding etc are suggested but none of them is reduce the PAPR and BER to an acceptable value. This Paper will discuss some techniques of PAPR & BER reduction, and their advantages and disadvantages in detail.

KEYWORDS: PAPR, OFDM, SLM, DHT, DCT

I INTRODUCTION

OFDM is a new and attractive modulation scheme with strongly efficient in bandwidth usage, immune to multipath fading environment, less ICI and ISI, better spectral efficiency, and power efficiency [1] [2]. Due to the recent advances in Digital Signal Processing, OFDM gain more popularity with its advantages. Most high speed wireless communication standards adopt OFDM or adopting OFDM for transmission e.g. IEEE 802.11, IEEE 802.16, IEEE 802.20, European Telecommunication Standards Institute, BRAN (Broadcast Radio Access Networks) committee [3].

Amongst all attractive advantages of OFDM, there are some disadvantages of OFDM e.g. high PAPR (Peak to Average Power Ratio) and BER (Bit Error Rate). The sensitivity of devices used in OFDM transmitter such as DAC (Digital to Analogue Convertor) and HPA (High Power Amplifier) is very harsh to the signal processing loop, which may impair system performance. To achieve high output power efficiency, most radio based system operates HPA at or near its saturation region. The high PAPR may prevent HPA to used in its linear region and may cause OOB (Out of Band radiation), and IB (In Band) distortion. Since this high PAPR may degrade OFDM performance, BER and expensive transmitters [4]. To overcome this problem of OFDM based systems,

Volume No.07, Issue No.02, February 2018 www.ijarse.com

IJARSE ISSN: 2319-8354

1.1 OFDM Basic

An OFDM the entire bandwidth is divided into sub channels or subcarriers, the se subcarriers are transmitted parallel to achieve high data rates, and to increase symbol duration and reduce ISI [5] [6]. An OFDM signal is the sum of all independent subcarriers, modulated onto the sub for receiver to detect the original symbol correctly, this is also called the orthogonal constraints of OFDM symbol, since becomes orthogonal to each others [7].

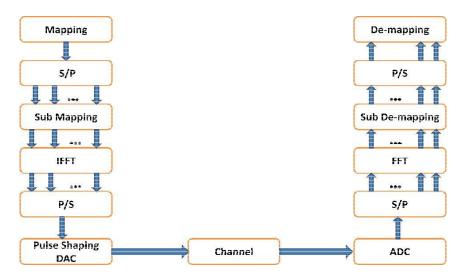


Figure 1: OFDM Block Diagram.

1.2 Subcarriers

Two signals will be orthogonal if the integral of their products is zero at a specific time period. This is proven at the equation below for both continuous and discrete signals cases:

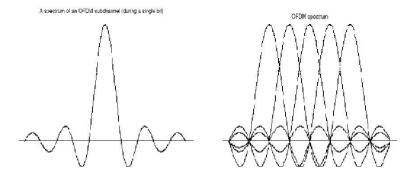


Figure 2: OFDM Subcarrier

Each sub-carrier in an OFDM system is a sinusoid with a frequency that is an integer multiple of a fundamental frequency. Each sub-carrier is like a Fourier series component of the composite signal, an OFDM symbol. The sub carrier's waveform can be expressed as:

1.3 PAPR

Due to IFFT process at the transmitter end, this sums N sinusoids with superposition, some combination of these sinusoids creates large peaks. These peaks creates problem at different stages of OFDM system e.g. word length

Volume No.07, Issue No.02, February 2018

www.ijarse.com

IJARSE ISSN: 2319-8354

of IFFT/ FFT, DAC, ADC, and mostly the HPA (which design to handle irregular occurrences of large peaks). Peaks created caused HPA to operate in the saturation region. Saturation creates both IB distortion which causes BER increasing, and OB distortion which causes ACI. The PAPR of an OFDM system is derived as:

II PROBLEM

As discussed in the previous section as PAPR is the main problem of OFDM, it also increased the BER of OFDM signal. A lot of work is done in the literature but still no one bring the PAPR and BER curve to an acceptable level. This paper discusses some of PAPR reduction techniques described in the literature, there advantages and disadvantages and results. Remaining paper is organized as: section iii) define the criteria for PAPR reduction in OFDM, section iv) literature review, section v) discuss the conclusion, and section vi) discuss a proposal for future work

3.2 Low Average Power

A technique must reduce PAPR as well as the average power of the signal not increased from an acceptable region. If so it will require a large linear region for operation in HPA, which will increase the BER rate of the OFDM system.

3.3 Low Complexity

The technique should also not increase the complexity of the overall system. Complexity includes both time and hardware requirements for implementation of the system.

3.4 Less Bandwidth Expansion

Some techniques e.g. scrambling techniques needs side information, which increase the bandwidth usage. Some coding techniques also expand the bandwidth due to code rate generation. A technique must not increase the bandwidth to value which causes degradation in the throughput.

3.5 Less BER Performance Degradation

The main goal of the PAPR reduction technique is to gain better performance including BER as compared to conventional OFDM system.

3.6 Less Additional Power Need

The technique must no need of additional power for PAPR reduction, as it will degrade BER performance of the system plus power efficiency is the main goal of wireless based systems.

3.7 Good Spectral Efficiency

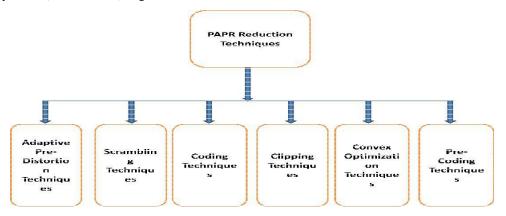
If a technique destroy the ICI, or, immunity to multipath fading or some other advantage related to spectrum should not be considered a good PAPR reduction technique.

3.8 Other Factors

Some other factors like nonlinear devices such as ADC/ DAC convertors, and H PA should be kept into consideration as PAPR reduction avoid nonlinear distortion due to these memories-less devices. Another factor is the co st of these devices.

Volume No.07, Issue No.02, February 2018

www.ijarse.com


IJARSE ISSN: 2319-8354

IV LITERATURE REVI EW

In the literature, a large number of PAPR Reduction Techniques have been proposed. These techniques may be divided in 6 major categories which are:

- a) Clipping Techniques
- b) Scrambling Techniques
- c) Adaptive Pre Distortion Techniques
- d) Convex Optimization Te chniques
- e) Coding Techniques
- f) Pre Coding Based Techn iques

The illustrations of these techniques are shown in Figure 3. All these techniques are relatively different and impose different co nstraints e.g. bandwidth expansion, complex optimizations, OOB (out-of-band) radiation, IB (in-b and) distortion, side-information, high transmitted p ower, spectral efficiency reduction, computational complexity, BER (bit-error-rate) degradation and data-rate loss etc.

Figure 3: PAPR Reduction Techniques

4.1. Clipping Techniques

Papers [8] [9] described clipping techniques. A Clip or nonlinear saturation is empl oy around the peaks to reduce the peaks before HPA to reduce PAPR. This technique is called Clipping Technique. This is simple technique but introduce OOB Radiation and IB Distortion in OFDM Signal. It also destroys the O rthogonality of OFDM subcarriers [10] [11]. Si mple clipping technique, joint clipping and filtering technique, peak windowing technique, block-scaling technique, peak cancellation technique and nonlinear companding transform etc ar e the types or variation of clipping technique. The signal parts which are above the allowed region are clipped in a simple clipping technique. Joint clipping and filtering technique reduce OOB radiation but IB distortion are still there since this method degrades OFDM system performance e.g. spectral efficiency and BER. Another PAPR reduction technique is Peak Windowing with improved spectral efficiency but it increas e OOB radiation and BER [12]. For PSK (Phase Shift Keying) Modulation Envelop Scaling is u sed for PAPR reduction due to equality envelop properties of all

Volume No.07, Issue No.02, February 2018

www.ijarse.com

IJARSE ISSN: 2319-8354

subcarriers input [13]. For QAM (Quadrature Amplitude Modulation) based OFD M system this techniques increases the BER. Non Linear Companding transform is discussed in papers [14] [15] is a good PAPR due to best performance e.g. no bandwidth expansion, less BER deg radation, and less complexity. But this technique give worst performance due to boost in average power of transmit signal beyond the saturation region of HPA (High Power Amplifier). Since this technique is not applicable for P APR reduction.

4.2. Scrambling Techniques

Scrambling Techniques uses the concept of phase rotation. These techniques inncluded SLM (Selective Mapping Technique) & PTS (Partial Transmit Technique), discussed in papers [16] [17] [18] [19] [20] [21]. These t echniques are very popular technique for PAPR reduction but if number of phase rotation increased these techniques increased complexity. Side information also needed for receiver to decode signal in these techniques.

4.2.1. SLM (Selective Mapping)

A set of V dissimilar data blocks are created at the receiver side which con sist identical information and a block with minimum PAPR is selected for transmission. This tech nique is used in SLM [16] [17] [18] which is shown in figure 4. The figure shows that each data block is

multiplied with dissimilar phase sequence V of length N. v = 1, 2...V), its result an altered data block. Lets an altered data block for vth phase is,

$$v=1, 2... V.$$

Now each data block should be defined as:

, n=0, 1, 2...
$$N-1$$

Where v = 1, 2... V with all data blocks v = 1, 2... V; the data block with mi nimum PAPR should be selected for transmiss ion. Side information of the selected phase (v^{th} ph ase) must be sent to receiver for decoding the received signal.

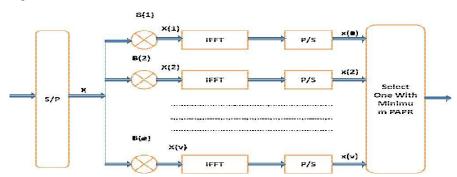


Figure 4: SLM Technique for PAPR Reduction

Volume No.07, Issue No.02, February 2018 www.ijarse.com

IJARSE ISSN: 2319-8354

4.1.2. PTS (Partial Transmit S equence)

In the literature PTS is another popular PAPR reduction technique, it partitioned t he input data blocks into dissimilar data blocks of N symbols then weighted these subcarriers diss imilar blocks with phase sequence. The block diagram of PTS based OFDM system is shown in figure 5. PTS is described in papers [19] [2 0] [21] these papers defined the PTS as it redu ces PAPR of combined (OFDM signal & dis similar data blocks) with proper selection of phase factors. PTS system divides the X data blocks into dissimilar M sub data blocks as follow:

g(1) X(1) X(1) N Point IEET g(2) X(2) N Point X(2) IFFT S/P Blocks Mapping X(M) N Point Phase

Figure 5: Block Diagram of PTS based OFDM system

4.1.3. TR (Tone Reservation)

A data block dependent time d omain signal is added to the original multi carrier signal at the transmitter end, which reduces p eaks. In this technique transmitter does not send s mall subset of data for PAPR optimization [22] [23]. The main goal is to find a proper time domain signal which

reduces PAPR. Lets a we have a frequency domain vector, and an original multi carrier signal, then new time domain signal will be the original signal and time domain signal must be disjoint, i.e. if then

This is good technique for PAPR reduction as not destroy Orthogonality but increase searching complexity of time domain signal and band width wastage problem arises due to some unused subcarrier.

4.1.4. TI (Tone Insertion)

The main idea of this technique is to expand the constellation so that each point in the original constellation map with several e quivalent points in the expanded constellation [22]. Thus we have some extra number of mapping points which used for PAPR reduction. This techn ique increase complexity for finding the appropriate symbols space, it also increase the signal power due to injected signal.

Volume No.07, Issue No.02, February 2018

www.ijarse.com

IJARSE ISSN: 2319-8354

4.2. Adaptive Pre-distortion Technique

These techniques are described in papers [24] [25] [23] these techniques could reduce the high PAPR problem of OFDM system or in other words compensates the non linear effects of HPA (High Power Amplifier). Through automatic adjusting of the input constellation with the help of least hardware; the non linear HPA deviation could be handled. The convergence time of pre-distorter and the MSE (Mean Square Error) can be decreased through broadcasting techniques with the help of suitable training signal design.

4.3. Convex Optimization Technique

These techniques are described in papers [26] [27] [28]. These techniques the constellation errors and constraints on permissible OOB (Out of Band) noise make a convex optimization problem. Some known algorithms are used to achieve global optimal results with low complexity. With this technique first of all the PAPR gain is defined then constraints are described for the transmitted OFDM symbol, which should be detected by the receiver.

4.4. Coding Techniques

Coding techniques are popular techniques for PAPR reduction as these techniques does not initiate any OOB radiation and IB distortion. These techniques are described in papers [29] [30] [31]. The disadvantages of coding techniques are increased complexity in case subcarrier increased; and also if the code rate is reduced, these techniques suffer from bandwidth efficiency.

4.5. Pre-Coding Techniques

The most popular and attractive techniques for PAPR reduction in OFDM and OFDMA based system. These techniques are defined in papers [32] [33] [34] [35] [36] [37] [38] [39] [40]. Pre-coding based techniques include: WHT (Walsh Hadamard Transform), DHT (Discrete Hartly Transform), DCT (Discrete Cosine Transform), ZCT (Zadoff Cho Transform) etc. the description of these techniques are described in the below section.

4.5.1. Walsh Hadamard Transform

This is an orthogonal linear transform and could be implemented as a butterfly structure of FFT. It means that Hadamard Transform does not increase the system complexity. Mathematically Hadamard Transform [41] could be written as:

are used in the pre-coding blo ck as a matrix A of dimensions. This matrix is multiplied with parallel data blo cks before IFFT operation to reduce the correlation amongst all

sub carriers. If is a complex vector of size L after S/P bloc k, and a pre-

coder matrix A of size is multiplied with this matrix, the new vector of size L could

be $Y=AX=[Y_0, Y_1, Y_2, Y_{L-1}]^T$, and Y is:, and

means m^{th} row and l^{th} column of matrix A. Now with N subcarriers complex base band signal is described as:

Pre-coding based techniques are merged with scrambling techniques, clipping tech niques, ACE etc to get best performance.

International Journal of Advance Research in Science and Engineering Volume No.07, Issue No.02, February 2018

www.ijarse.com

IJARSE ISSN: 2319-8354

V CONCLUSION

In this paper, a survey on PAP R reduction techniques has been discussed. Each technique of PAPR reduction in OFDM bas ed system are different from each other and im pact different constraints e.g. bandwidth ex ansion, OOB radiation, IB distortion, reduction of spectral efficiency, BER reduction, high peak power, high average power, and overall system complexity. This is concluded that Scram bling techniques give good performance but it needs side information for receiver to recover original data block, also it increases complexity. Pre-coding based techniques results good with no need of side information and works with less complexity. Hybrid techniques Pre-coding plus other give best result for PAPR reduction.

VI FUTURE WORK

A survey paper on PAPR reduction in OFDM based system is presented in this paper. In future a Pre-coder will be combined with any Scrambling technique and the system performance will be compared with already work done for Next Generation Vehicular Ad-hoc Networks (NG-VANET).

REFERENCES

- [1] Y.Wu and W. Y. Zou, "Orthogonal frequency division multiplexing: A multi-carrier modulation scheme," IEEE Trans. Consumer Electronics, vol. 42. no. 3, pp. 392-399, August 1995.
- [2] W. Y. Zou and Y. Wu, "COFDM: An overview," IEEE Trans. Broadcasting, vol. 41 no.1, pp. 1-8, March 1995.
- [3] JAE HONG LEE SEUNG HEE HAN, "AN OVERVIEW OF PEAK-TO-AVERAGE POWER RATIO REDUCTION TECHNIQUES FOR MULTICARRIER TRANSMISSION," IEEE Wireless Communications, pp. 56-65, April 2005.
- [4] Yiyan Wu Tao Jiang, "An Overview: Peak-to-Average Power Ratio Reduction Techniques for OFDM Signals," IEEE TRANSACTIONS ON BROADCASTING, VOL. 54, NO. 2, JUNE 2008, vol. 54, no.2, pp. 257-268, June 2008.
- [5] Jr L. J. Cimini, "Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing," IEEE Trans. Communication, vol. COM-33, no. 7, pp. 665-675, July 1985.
- [6] Y. G. Li and G. Stüber, "Orthogonal Frequency Division Multiplexing for Wireless Communications," Boston, MA: Springer-Verlag, January 2006.
- [7] Chenyang Yang, Gang Wu, Shaoqian Li, and Geoffrey Ye Li Taewon Hwang, "OFDM and Its Wireless Applications: A Survey," IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, vol. 58, NO. 4, pp. 1673-1694, May 2009.
- [8] R. O'Neill and L. B. Lopes, "Envelope Variations and Spectral Splatter in Clipped Multicarrier Signals," IEEE Processing PIMRC 95 Toronto, Canada, pp. 71-75, September 1995.
- [9] X. Li and Jr L. J. Cimini, "Effect of Clipping and Filtering on the Performance of OFDM," IEEE Communication Letter, vol. 2, no. 5, pp. 131-133, May 1998.

International Journal of Advance Research in Science and Engineering Volume No.07, Issue No.02, February 2018 IJARSE ISSN: 2319-8354

- [10] D. Kim and G. L. Stüber, "Clipping Noise Mitigation for OFDM by Decision–Aided Reconstruction," IEEE Communication Letter, vol. 3, no. 1, pp. 4-6, January 1999.
- [11] H. Saeedi, M. Sharif, and F. Marvasti, "Clipping Noise Cancellation in OFDM Systems Using Oversampled Signal Reconstruction," IEEE Communication Letter, vol. 6, no. 2, pp. 73-75, February 2002.
- [12] Sungkeun Cha, Myonghee Park, Sungeun Lee, Keuk-Joon Bang, and Daesik Hong, "A new PAPR reduction technique for OFDM systems using advanced peak windowing method," IEEE Transactions on Consumer Electronics, , vol. 54, no. 2, pp. 405-410, May 2008.
- [13] P. Foomooljareona nd W.A.C. Fernando, "PAPR Reduction in OFDM Systems," Thammasat Int. J. Sc. Tech, vol. 7, no. 3, pp. 70-79, December 2002.
- [14] Jiang Tao and Guangxi Zhu, "Nonlinear companding transform for reducing peak-to-average power ratio of OFDM signals," IEEE Transactions on Broadcasting, vol. 50, no. 3, pp. 342-346, September 2004.