International Journal of Advance Research in Science and Engineering Q

Volume No.07, Special Issue No.02, February 2018 IJARSE

www.ijarse.com ISSN: 2319-8354

DESIGN OF HIGH PERFORMANCE LOW POWER 32

BIT RISC PROCESSOR

K. Maneesh',A.Uday Kumar®

PG Student, Dept. of ECE, SVCET, Srikakulam, AP, (India)

?Associate Professor,Dept. of ECE, SVCET, Srikakulam, AP, (India)
ABSTRACT
This paper presents 32-bit RISC processor with floating point unit to be designed using pipelined architecture;
through this we can improve the speed of the operation as well as overall performance. This processor is
developed especially for Arithmetic operations of both fixed and floating point numbers, branch and logical
functions. The proposed architecture is able to prevent pipelining from flushing when branch instruction occurs
and able to provide halt support. Floating point operations are widely used these days for many applications
ranging from graphics application to medical imaging. In this we are using 5-stage pipelining. The 5stages are
Fetch, Decode, Execute, Memory and WriteBack. During the design process we are including variouslow power
techniques in architectural level also.
Keywords:Processor, RISC, VHDL, Xilinx

I.INTRODUCTION

Now-a-days, computer and mobile phones are indispensable tools for most of everyday activities. This places an
increasing burden on the embedded microprocessor to provide high performance while retaining low power
consumption and small die size, which increases the complexity of the device. However, as products grow in
complexity, more processing power is required while the expectation on battery life also increases. The trend in
the recent past shows the RISC processors clearly outsmarting the earlier CISC processor architecture. RISC is a
type of microprocessor that has a relatively limited number of instructions. Though it may seem less effective
for a computational task to be executed with many simple instructions rather than a few complex instructions,
the simple instructions take fairly the same amount of time to be performed, making them ideal for pipelining. It
is designed to perform a smaller number of types of computer instructions so that it can operate at a higher
speed (perform more million instructions per second, or millions of instructions per second). Earlier, computers
used only 20% of the instructions, making the other 80% unnecessary. One advantage of reduced instruction set
computers is that they can execute their instructions very fast because the instructions are so simple. This paper
presents a very simple 32-bit data width general purpose 4 stage pipelined processor with floating point unit on
FPGA. It has a complete instruction set, program and data memories, general purpose registers and a simple
Arithmetic & Logical Unit (ALU) with single precision floating point arithmetic operations. In this design most
instructions are of uniform length and similar structure, arithmetic operations are performed and the resultant

value is stored in the memory/registers and retrieved back from memory when required. In this paper an

1004 |Page

International Journal of Advance Research in Science and Engineering QQ

Volume No.07, Special Issue No.02, February 2018 IJARSE

www.ijarse.com ISSN: 2319-8354

efficient FPGA implementation of 32-bit single precision floating point unit which performs addition,

subtraction, multiplication and division.

II.LITERATURE REVIEW

In literature survey, study was done on many optimization techniques related to RISC processor design. Some of
thevarious optimization & low power techniques that were explored during the survey were power gating, clock
gating,multi-voltage domain logical optimization etc. In this work, the various papers referred are as given
below.Neenu Joseph, Sabarinath S proposed a design for front end process to achieve reduced power [1]. In
clock gating, thesignal from the clock is prevented from reaching the various modules of the processor. In
absence of the clock signalwhich prevents the register from changing their values. Overall power consumption
is greatly reduced.Shofiqul Islam and DebanjanChattopadhyay have proposed an energy efficient 32 bit RISC
processor design [2].Thedesign is aimed at branch and data intensive computation. The design has both
architectural and circuit techniques toreduce energy utilization. A 16 bit non pipelined RISC processor for signal
processing applications has been proposedby SamiappaShaktikumaran [3]. Modifications have been done at the
incrementer circuit at the architectural level. Thismodification is further used various places like program
counter and carry select adder unit of ALU. While designingan ALU, Wallace tree multiplier has been designed
and introduced in the design.This RISC processor designed using

theincrementer circuit modification can be executed on 27 instructions. However, this can be further expandable
upto32 instructions.Development and testing of a microprocessor cell intended for very low power applications
has been introduced byAdamec, F.,Fryza [4]. The internal architecture of the microprocessor cell is divided in
two blocks: Control andOperational block. Clock gating techniques are used to implement a ‘Sleep’ block.
These techniques put the processorin an extra low-power consumption state. This is carried out until awakened
by an external interrupt. The Control blockperforms the opcode reading, decoding, and then controls the data
flow in the Operation block in order to complete theoperation. By studying the various papers it is observed that
the work done was focused on techniques such as Wallace

tree multiplier, clock gating, advanced branch technique, architectural techniques to reduce and optimize the
overallpower consumption. On the other hand, this paper proposes reduction in the total power consumption by
HDLmodification technique. The overall power optimization achieved by the HDL modification technique is
13.33%.

I11.LARCHITECTURE OF 32-bit RISC PROCESSOR WITH FPU

Fig. 1 shows the proposed processor of 32-bit pipelined RISC processor with Floating Point Unit. The processor
design is based on the RISC instruction set which is characterised by 32-bit architecture having four 32-bit
registers. The RISC is designed using the Hardware Description Language Verilog HDL. Machine instructions

were implemented directly in hardware.

1005 |Page

International Journal of Advance Research in Science and Engineering QQ
Volume No.07, Special Issue No.02, February 2018

www.ljarse.com ISSN: 2319-8354
—— OrverflownTTnderflow
FLOATING POONT UNIT 2
—= Dolsntizsa
(AR THRASTIC OF ERSTICMS) | Exponent
—— sign
*
Crpcode(3) % A mer g ,% Var2¢3ady .—"/FP_QJE{EI}
Opcoda(3) N Reswlt{32)
INSTRIUICTION FETCH MMETRUC TION - - =
| F o i DECODER Varl(32) ! MEMORY
Togratn Clounter I - Add_Fi
== vgon | DECTION | Mr | nt
Eranch Pr-edicr_inn I 5 - = S L TNIT (AL - WRITE)
Tt i -
| lmn{sz.
Wxt BTy REGISTER RO (2Z2-BIT)
D3l
- A EEAISTER Ri (3LEITY A
Nower | ™ Fossten @ oo | |
REGISTER RS2 (32-BIT) o il
= [METREUOCGTION & DT
(Cerutan N asoasr)

-

Fig.1 Architecture of 32-bit RISC Processor with FPU
The architecture of the pipelined 32-bit RISC processor consists of instruction fetch, branch prediction,
instruction decode, execute, memory read/write back, instruction set and floating point unit. Pipelining
technique allows for simulations execution of parts or stages of instructions more efficiently. With a RISC
processor, one instruction is executed while the following instruction is being fetched. By overlapping these
operations, the CPU executes one instruction per clock cycle, even though each instruction requires three cycles
to be fetched, decoded, and executed. The pipeline stages for different type of instructions are processed as
follows, in the fetch stage; instructions are fetched at every cycle from the instruction memory whose address is
pointed by the program counter (PC). During the decode stage, the registers are read from the register file and
the opcode is passed to the control unit which asserts the required control signals. Sign extension is also done
for the calculation of effective address. In the execute stage, for register type instruction, the ALU operation and
also floating point arithmetic operations are performed according to the ALU operations control signals and for
load and store instructions, effective address calculation is done. The load and store instructions write to and
read from the data memory in the memory stage while the ALU results and the data read from the data memory
are written in to the register file by the register type and load instructions respectively in the write-back stage.
There are basically three types of instructions namely Arithmetic & Logical Instructions (ALU) with floating
point unit instructions, Load/Store instructions and Branch Prediction instructions.
1. ALU instructions with Floating point unit: The ALU is responsible for all arithmetic and logic operations that
take place within the processor. These operations can have one operand or two, with these values coming from
either the register file or from the immediate value from the instruction directly. The operations supported by the
ALU include add, subtract, compare, and, or, not, increment, decrement, nand, nor and xor. The output of the
ALU goes either to the data memory or through a multiplexer back to the register file. All the arithmetic
operations are performed like addition, subtraction, multiplication and division instructions are implemented on
Single Precision Floating Point Unit.
2. Load/Store Instructions: Usually take a register as an operand and a 16-bit immediate value. If the instruction

is a load, memory does a read using the effective address. If it is a store, then the memory writes the data from

1006 |Page

International Journal of Advance Research in Science and Engineering jé

Volume No.07, Special Issue No.02, February 2018 IJARSE

www.ijarse.com ISSN: 2319-8354

the second register read from the register file using the effective address. The purpose of store unit is store the
result into corresponding register or memory.

3. Branch Prediction Instructions:

A branch prediction causes an immediate value to be added to the current program counter. Some branch
instructions are BZ (Branch Zero), BRZ (Branch Register Zero) and BRC (Branch Register Carry).

IV. MODULES DESIGN OF RISC

This section presents the design of different modules like instruction fetch, instruction decode, register file,
execute, floating point unit, memory read/write back and instruction set along with four general purpose
registers namely Register0, Registerl, Register2 and Register3.

A. Instruction Fetch (IF):

The instruction pointed to by the PC is fetched from memory into the instruction register of the CPU, and the
PC is incremented to point to the next instruction in the memory. Normally, the PC is incremented by one,
during each clock cycle unless a branch instruction is executed. When a branch instruction is encountered, the
PC is incremented by the amount indicated by the branch offset. The block diagram of Instruction Fetch Unit is

shown in Fig.2

Instr_in PC
[E— v
Nt _PC Ta
From Fat_Insix Instruction —— > | Memory
Memory | f ——" .
Fetrch Instt Ty Decode
TTnit
_Rﬁ_ﬂ;. Mern_dddr
To Execute long —
mstruotion

Fig.2 I-Fetch Unit
B. Branch Prediction:
The architecture uses dynamic branch prediction as it reduces branch penalties under hardware control. The
prediction is made in Instruction Fetch of the pipeline. Thus branch prediction buffer is indexed by the lower
order bits of the branch address in Instruction Fetch. In this paper, the architecture doesn’t need any control
hazards, as auto branch prediction is happening in the Fetch stage. Without branch prediction, the processor has
to wait until the conditional jump has passed the execute cycle before the next instruction can enter the fetch
stage in instruction pipeline. The branch predictor attempts to avoid the waste of time whether the conditional
jump is most likely to be taken or not taken. The branch prediction part to be the most likely is then fetched and
speculatively executed. This will increase flow in instruction pipeline and achieve high effective performance.
C. Instruction Decode (ID):
The control unit generates all the control signals needed to control the coordination among the entire component

of the processor. This unit generates signals that control all the read and write operation of the register file, and

1007 |Page

International Journal of Advance Research in Science and Engineering jé
Volume No.07, Special Issue No.02, February 2018 1 ARSE

www.ijarse.com ISSN: 2319-8354

the Data memory. It is also responsible for generating signals that decide when to use the multiplier and when to

use the ALU, and it also generates appropriate branch flags that are used by the Branch Decide unit. The
instruction decode unit is shown in Fig 3.

Imstry o O peode
Fegl "
Fecl I struct on Warl

= Decoder . WaxZ

Reg2 ———"
Regs L = st
Clocl ——

Feset J

Fig.3 Instruction Decoder Unit

D. Register File:

This is a two port register file which can perform two simultaneous read and one write operation. It contains
four 32-bit general purpose registers. The registers are named RO through R4. RO is a special register, which
always contains the value zero and any write request to this register is always ignored. When the Reg_Write
signal is high, a write operation is performed to the register.

E. Execution Unit:

This unit is responsible for providing signals to the ALU that indicates the operation it will perform. The input
to this unit is the 5-bit opcode and the 2-bit function field of the instruction word. It uses these bits to decide the
correct ALU operation for the current instruction cycle. This unit also provides another set of output that is used
to gate the signals to the parts of the ALU that it will not be using for the current operation. This stage consists
of some control circuitry that forwards the appropriate data, generated by the ALU or read from the Data

Memory, to the register files to be written into the designated register. The block diagram of Execution Unit is
shown in Fig. 4.

[Opoada —— " ali_cwn
— — Eazl
_ Tarl i Feg]
Testyoctize ExerutionLinit [g Fegz
Drecade Vst Tard =
: (ALTN) [Ragd
Y m— % Blem mr
F—# camy_flag
adata_1n —:‘}
— - — ToU Cut
Fasat —T

Fig.4 Execution Unit
F. Floating Point Unit:

Most of today’s computers are equipped with specialized hardware that performs floating-point arithmetic with

no special programming required. Floating point computational logic has long been a mandatory component of

1008 |Page

International Journal of Advance Research in Science and Engineering jé

Volume No.07, Special Issue No.02, February 2018 IJARSE

www.ijarse.com ISSN: 2319-8354

high performance computer systems as well as embedded systems and mobile applications. The advantage of
floating point representation over fixed-point and integer representation is that it can support a much wider
range of values. In the present work 32-bit FPU is incorporated, which supports Single Precision IEEE-754
format. The IEEE-754 standard defines a Single as 1 bit for sign, 8 bits for exponent and 23 bits for mantissa.
The FPGA implementation of 32-bit Single Precision floating point unit provides to addition, subtraction,
multiply and division operations for any two operands of the same format. The destination format shall be at

least as wide as the operands format. The block diagram of floating point unit is shown in Fig.5.

G. Memory Read/Write:

The architecture used is Modified Harvard architecture .This module supports 512 depth of 32-bit data words.
The Load and Store instructions are used to access this module. Finally, the Memory Access stage is where, if
necessary, system memory is accessed for data. Also, if a write to data memory is required by the instruction, it
is done in this stage. In order to avoid additional complications it is assumed that a single read or write is

accomplished within a single CPU clock cycle.

H. Instruction Set:

The instruction set used in this architecture consists of arithmetic, logical, floating point, memory and branch
instructions. It will have short (8-bit) and long (16-bit) instructions. For all Arithmetic and Logical operations 8-
bit instructions are used, and for all memory transactions and jump instructions 16-bit instructions are used. It
will also have special instructions to access external ports.

The architecture will also have internal 64-bit general purpose registers that can be used in all operations. For all
the jump instruction, the processor architecture, will automatically flushes the data in the pipeline, so as to avoid

any misbehavior.

1009 |Page

International Journal of Advance Research in Science and Engineering jé

Volume No.07, Special Issue No.02, February 2018 IJARSE

www.ijarse.com ISSN: 2319-8354

Start

h

Set mitial Program Counter (PO}
value

¥

Fetch imstruction from instruction

¥

Increment Program Counter (PO

h

Decode from instraction register

ki
Based on opcode instruction,
executes ALTT operations and

Floatng pomt unit

¥

Stored into memory unit

}

Fig.5 Flow Chart of Proposed Processor

V. SIMULATION RESULTS

Here verilog code is written for 32bit RISCprocessor, with 10 bit program counter,32 bit carryselect adder using
common Boolean logic ,32bitWallace tree multiplier,32bit register file with32registers,memories of 32bit with
1024 locations,instruction set and MAC is designed based upon theblock diagram, logic and module
specifications asshown above. Based upon the inputs CIk reset and pc_enable program counter will increment at
everypositive edge of the clock and the output address willbe generated. Based upon the address the
processorfirst fetches the instruction from the program memory.This instruction is further sent to the decoder.
Decoderdecodes the instruction into 6bit opcode 5bitaddresses. Based upon the addresses the input datawrites
into any one of registers in register file.Execution unit reads the values from register file anddo the instruction
operation based on the opcodevalue. The value given by the execution unit writebacks into register file and to
RAM. In order to use the32 bit low power RISC processor for DSP applicationsMAC is designed and applied
for FIR filter. Theinputs for FIR filter(inputs and coefficients) isgenerated from MATLAB and used in verilog
code byusing Xilinx 14.2.Simulation and synthesis is done byusing Xilinx 14.2 ise simulator.

1010 |Page

International Journal of Advance Research in Science and Engineering Q
Volume No.07, Special Issue No.02, February 2018 1 AkSE

www.ijarse.com ISSN: 2319-8354

Fig 8.simulation waveform of execution unit

1011 |Page

International Journal of Advance Research in Science and Engineering QQ

Volume No.07, Special Issue No.02, February 2018 IJARSE

www.ijarse.com ISSN: 2319-8354

Fig 10.RTL Schematic of proposed Processor

V1. CONCLUSION

FPGA based pipelined 32-bit RISC processor with Single Precision Floating Point Unit is designed and Verilog
coding adopted. The design is implemented using Xilinx tool on which Arithmetic operations, Branch
operations, Logical functions and Floating Point Arithmetic Operations are verified. Pipelining would not flush
when branch instruction occurs as it is implemented using dynamic branch prediction. This will increase flow in
instruction pipeline and high effective performance. This architecture has become indispensable and

increasingly important in many applications like signal processing, graphics and medical.

1012 |Page

International Journal of Advance Research in Science and Engineering jé

Volume No.07, Special Issue No.02, February 2018 IJARSE

www.ijarse.com ISSN: 2319-8354

REFERENCES

[1] R. Uma, “Design and Performance Analysis of 8-bit RISC processor using Xilinx Tool”, International
Journal of Engineering Research and Applications (IJERA), ISSN: 2248-9622, Vol-2, Mar-Apr-2012.

[2] J. Poornima, G.V.Ganesh, M. Jyothi, M. Shanti and A.JhansiRani,”Design and implementation of pipelined
32-bit Advanced RISC processor for various D.S.P Applications”, Proceedings of International Journal of
Computer Science and Information Technology, ISSN: 3208-3213, Vol-3(1), June-2012.

[3] Xiao Li, Longweili, Bo Shen, Wenhong Li, Quianling Zhang, “ VLSI implementation of a High-
performance 32-bit RISC microprocessor”, Communications, Circuits and Systems and West Sino
Expositions, IEEE , International Conference, ISSN:1458-1461,Vol-2,2002.

[4] http://elearning.vtu.ac.in/12/enotes/Adv_Com_Arch/Pipeline/Unit2-KGM.pdf.

[5] AsmitaHaveliya “Design and simulation of 32-point FFT using Radix-2 Algorithm for FPGA
Implementation” IEEE, 167-171, 2012.

[6] The pipelined RISC-16 ENEE 446: Digital Computer Deisgn, Fall 2000 by Prof. Bruce Jacob.

[7] PreetamBhosle, Hari Krishna Moorthy,” FPGA Implementation of Low Power Pipelined 32-bit RISC
Processor”, Proceedings of International Journal of Innovative Technology and Exploring Engineering
(NITEE), ISSN: 2278-3075, Vol-1, Issue-3, August 2012.

[8] Charles H.RothJr, “Deisgn Systems Design using VHDL”, Prentice Hall 2nd Edition, 2000.

[9] Samir Palnitkar,”Verilog HDL: A Guide to Digital Design and Synthesis”, Prentice Hall, 2nd Edition, 2003.

[10] http://en.wikipedia.org/wiki/Singleprecision_floating-point_format.

[11] Galani Tina G,RiyaSaini and R.D.Daruwala, ”Design and Implementation of 32-bit RISC Processor using
Xilinx”, International Journal of Emerging Trends in Electrical and Electronics(IJETEE)-ISNN:2320-
9569,Vol No.5,Issue 1,July-2013.

1013 |Page

