

1004 | P a g e

DESIGN OF HIGH PERFORMANCE LOW POWER 32

BIT RISC PROCESSOR

K. Maneesh
1
,A.Uday Kumar

2

1
PG Student, Dept. of ECE, SVCET, Srikakulam, AP, (India)

2
Associate Professor,Dept. of ECE, SVCET, Srikakulam, AP, (India)

ABSTRACT

This paper presents 32-bit RISC processor with floating point unit to be designed using pipelined architecture;

through this we can improve the speed of the operation as well as overall performance. This processor is

developed especially for Arithmetic operations of both fixed and floating point numbers, branch and logical

functions. The proposed architecture is able to prevent pipelining from flushing when branch instruction occurs

and able to provide halt support. Floating point operations are widely used these days for many applications

ranging from graphics application to medical imaging. In this we are using 5-stage pipelining. The 5stages are

Fetch, Decode, Execute, Memory and WriteBack. During the design process we are including variouslow power

techniques in architectural level also.

Keywords:Processor, RISC, VHDL, Xilinx

I.INTRODUCTION

Now-a-days, computer and mobile phones are indispensable tools for most of everyday activities. This places an

increasing burden on the embedded microprocessor to provide high performance while retaining low power

consumption and small die size, which increases the complexity of the device. However, as products grow in

complexity, more processing power is required while the expectation on battery life also increases. The trend in

the recent past shows the RISC processors clearly outsmarting the earlier CISC processor architecture. RISC is a

type of microprocessor that has a relatively limited number of instructions. Though it may seem less effective

for a computational task to be executed with many simple instructions rather than a few complex instructions,

the simple instructions take fairly the same amount of time to be performed, making them ideal for pipelining. It

is designed to perform a smaller number of types of computer instructions so that it can operate at a higher

speed (perform more million instructions per second, or millions of instructions per second). Earlier, computers

used only 20% of the instructions, making the other 80% unnecessary. One advantage of reduced instruction set

computers is that they can execute their instructions very fast because the instructions are so simple. This paper

presents a very simple 32-bit data width general purpose 4 stage pipelined processor with floating point unit on

FPGA. It has a complete instruction set, program and data memories, general purpose registers and a simple

Arithmetic & Logical Unit (ALU) with single precision floating point arithmetic operations. In this design most

instructions are of uniform length and similar structure, arithmetic operations are performed and the resultant

value is stored in the memory/registers and retrieved back from memory when required. In this paper an

1005 | P a g e

efficient FPGA implementation of 32-bit single precision floating point unit which performs addition,

subtraction, multiplication and division.

II.LITERATURE REVIEW

In literature survey, study was done on many optimization techniques related to RISC processor design. Some of

thevarious optimization & low power techniques that were explored during the survey were power gating, clock

gating,multi-voltage domain logical optimization etc. In this work, the various papers referred are as given

below.Neenu Joseph, Sabarinath S proposed a design for front end process to achieve reduced power [1]. In

clock gating, thesignal from the clock is prevented from reaching the various modules of the processor. In

absence of the clock signalwhich prevents the register from changing their values. Overall power consumption

is greatly reduced.Shofiqul Islam and DebanjanChattopadhyay have proposed an energy efficient 32 bit RISC

processor design [2].Thedesign is aimed at branch and data intensive computation. The design has both

architectural and circuit techniques toreduce energy utilization. A 16 bit non pipelined RISC processor for signal

processing applications has been proposedby SamiappaShaktikumaran [3]. Modifications have been done at the

incrementer circuit at the architectural level. Thismodification is further used various places like program

counter and carry select adder unit of ALU. While designingan ALU, Wallace tree multiplier has been designed

and introduced in the design.This RISC processor designed using

theincrementer circuit modification can be executed on 27 instructions. However, this can be further expandable

upto32 instructions.Development and testing of a microprocessor cell intended for very low power applications

has been introduced byAdamec, F.,Fryza [4]. The internal architecture of the microprocessor cell is divided in

two blocks: Control andOperational block. Clock gating techniques are used to implement a „Sleep‟ block.

These techniques put the processorin an extra low-power consumption state. This is carried out until awakened

by an external interrupt. The Control blockperforms the opcode reading, decoding, and then controls the data

flow in the Operation block in order to complete theoperation. By studying the various papers it is observed that

the work done was focused on techniques such as Wallace

tree multiplier, clock gating, advanced branch technique, architectural techniques to reduce and optimize the

overallpower consumption. On the other hand, this paper proposes reduction in the total power consumption by

HDLmodification technique. The overall power optimization achieved by the HDL modification technique is

13.33%.

III.ARCHITECTURE OF 32-bit RISC PROCESSOR WITH FPU

Fig. 1 shows the proposed processor of 32-bit pipelined RISC processor with Floating Point Unit. The processor

design is based on the RISC instruction set which is characterised by 32-bit architecture having four 32-bit

registers. The RISC is designed using the Hardware Description Language Verilog HDL. Machine instructions

were implemented directly in hardware.

1006 | P a g e

Fig.1 Architecture of 32-bit RISC Processor with FPU

The architecture of the pipelined 32-bit RISC processor consists of instruction fetch, branch prediction,

instruction decode, execute, memory read/write back, instruction set and floating point unit. Pipelining

technique allows for simulations execution of parts or stages of instructions more efficiently. With a RISC

processor, one instruction is executed while the following instruction is being fetched. By overlapping these

operations, the CPU executes one instruction per clock cycle, even though each instruction requires three cycles

to be fetched, decoded, and executed. The pipeline stages for different type of instructions are processed as

follows, in the fetch stage; instructions are fetched at every cycle from the instruction memory whose address is

pointed by the program counter (PC). During the decode stage, the registers are read from the register file and

the opcode is passed to the control unit which asserts the required control signals. Sign extension is also done

for the calculation of effective address. In the execute stage, for register type instruction, the ALU operation and

also floating point arithmetic operations are performed according to the ALU operations control signals and for

load and store instructions, effective address calculation is done. The load and store instructions write to and

read from the data memory in the memory stage while the ALU results and the data read from the data memory

are written in to the register file by the register type and load instructions respectively in the write-back stage.

There are basically three types of instructions namely Arithmetic & Logical Instructions (ALU) with floating

point unit instructions, Load/Store instructions and Branch Prediction instructions.

1. ALU instructions with Floating point unit: The ALU is responsible for all arithmetic and logic operations that

take place within the processor. These operations can have one operand or two, with these values coming from

either the register file or from the immediate value from the instruction directly. The operations supported by the

ALU include add, subtract, compare, and, or, not, increment, decrement, nand, nor and xor. The output of the

ALU goes either to the data memory or through a multiplexer back to the register file. All the arithmetic

operations are performed like addition, subtraction, multiplication and division instructions are implemented on

Single Precision Floating Point Unit.

2. Load/Store Instructions: Usually take a register as an operand and a 16-bit immediate value. If the instruction

is a load, memory does a read using the effective address. If it is a store, then the memory writes the data from

1007 | P a g e

the second register read from the register file using the effective address. The purpose of store unit is store the

result into corresponding register or memory.

3. Branch Prediction Instructions:

A branch prediction causes an immediate value to be added to the current program counter. Some branch

instructions are BZ (Branch Zero), BRZ (Branch Register Zero) and BRC (Branch Register Carry).

IV. MODULES DESIGN OF RISC

This section presents the design of different modules like instruction fetch, instruction decode, register file,

execute, floating point unit, memory read/write back and instruction set along with four general purpose

registers namely Register0, Register1, Register2 and Register3.

A. Instruction Fetch (IF):

The instruction pointed to by the PC is fetched from memory into the instruction register of the CPU, and the

PC is incremented to point to the next instruction in the memory. Normally, the PC is incremented by one,

during each clock cycle unless a branch instruction is executed. When a branch instruction is encountered, the

PC is incremented by the amount indicated by the branch offset. The block diagram of Instruction Fetch Unit is

shown in Fig.2

Fig.2 I-Fetch Unit

B. Branch Prediction:

The architecture uses dynamic branch prediction as it reduces branch penalties under hardware control. The

prediction is made in Instruction Fetch of the pipeline. Thus branch prediction buffer is indexed by the lower

order bits of the branch address in Instruction Fetch. In this paper, the architecture doesn‟t need any control

hazards, as auto branch prediction is happening in the Fetch stage. Without branch prediction, the processor has

to wait until the conditional jump has passed the execute cycle before the next instruction can enter the fetch

stage in instruction pipeline. The branch predictor attempts to avoid the waste of time whether the conditional

jump is most likely to be taken or not taken. The branch prediction part to be the most likely is then fetched and

speculatively executed. This will increase flow in instruction pipeline and achieve high effective performance.

C. Instruction Decode (ID):

The control unit generates all the control signals needed to control the coordination among the entire component

of the processor. This unit generates signals that control all the read and write operation of the register file, and

1008 | P a g e

the Data memory. It is also responsible for generating signals that decide when to use the multiplier and when to

use the ALU, and it also generates appropriate branch flags that are used by the Branch Decide unit. The

instruction decode unit is shown in Fig 3.

Fig.3 Instruction Decoder Unit

D. Register File:

This is a two port register file which can perform two simultaneous read and one write operation. It contains

four 32-bit general purpose registers. The registers are named R0 through R4. R0 is a special register, which

always contains the value zero and any write request to this register is always ignored. When the Reg_Write

signal is high, a write operation is performed to the register.

E. Execution Unit:

This unit is responsible for providing signals to the ALU that indicates the operation it will perform. The input

to this unit is the 5-bit opcode and the 2-bit function field of the instruction word. It uses these bits to decide the

correct ALU operation for the current instruction cycle. This unit also provides another set of output that is used

to gate the signals to the parts of the ALU that it will not be using for the current operation. This stage consists

of some control circuitry that forwards the appropriate data, generated by the ALU or read from the Data

Memory, to the register files to be written into the designated register. The block diagram of Execution Unit is

shown in Fig. 4.

Fig.4 Execution Unit

F. Floating Point Unit:

Most of today‟s computers are equipped with specialized hardware that performs floating-point arithmetic with

no special programming required. Floating point computational logic has long been a mandatory component of

1009 | P a g e

high performance computer systems as well as embedded systems and mobile applications. The advantage of

floating point representation over fixed-point and integer representation is that it can support a much wider

range of values. In the present work 32-bit FPU is incorporated, which supports Single Precision IEEE-754

format. The IEEE-754 standard defines a Single as 1 bit for sign, 8 bits for exponent and 23 bits for mantissa.

The FPGA implementation of 32-bit Single Precision floating point unit provides to addition, subtraction,

multiply and division operations for any two operands of the same format. The destination format shall be at

least as wide as the operands format. The block diagram of floating point unit is shown in Fig.5.

G. Memory Read/Write:

The architecture used is Modified Harvard architecture .This module supports 512 depth of 32-bit data words.

The Load and Store instructions are used to access this module. Finally, the Memory Access stage is where, if

necessary, system memory is accessed for data. Also, if a write to data memory is required by the instruction, it

is done in this stage. In order to avoid additional complications it is assumed that a single read or write is

accomplished within a single CPU clock cycle.

H. Instruction Set:

The instruction set used in this architecture consists of arithmetic, logical, floating point, memory and branch

instructions. It will have short (8-bit) and long (16-bit) instructions. For all Arithmetic and Logical operations 8-

bit instructions are used, and for all memory transactions and jump instructions 16-bit instructions are used. It

will also have special instructions to access external ports.

The architecture will also have internal 64-bit general purpose registers that can be used in all operations. For all

the jump instruction, the processor architecture, will automatically flushes the data in the pipeline, so as to avoid

any misbehavior.

1010 | P a g e

Fig.5 Flow Chart of Proposed Processor

V. SIMULATION RESULTS

Here verilog code is written for 32bit RISCprocessor, with 10 bit program counter,32 bit carryselect adder using

common Boolean logic ,32bitWallace tree multiplier,32bit register file with32registers,memories of 32bit with

1024 locations,instruction set and MAC is designed based upon theblock diagram, logic and module

specifications asshown above. Based upon the inputs Clk reset and pc_enable program counter will increment at

everypositive edge of the clock and the output address willbe generated. Based upon the address the

processorfirst fetches the instruction from the program memory.This instruction is further sent to the decoder.

Decoderdecodes the instruction into 6bit opcode 5bitaddresses. Based upon the addresses the input datawrites

into any one of registers in register file.Execution unit reads the values from register file anddo the instruction

operation based on the opcodevalue. The value given by the execution unit writebacks into register file and to

RAM. In order to use the32 bit low power RISC processor for DSP applicationsMAC is designed and applied

for FIR filter. Theinputs for FIR filter(inputs and coefficients) isgenerated from MATLAB and used in verilog

code byusing Xilinx 14.2.Simulation and synthesis is done byusing Xilinx 14.2 ise simulator.

1011 | P a g e

Fig 6.Simulation waveform of Fetch unit

Fig 7.Simulation waveform of Instruction decoder Unit

Fig 8.simulation waveform of execution unit

1012 | P a g e

Fig 9.Simulation waveform of 32 Bit RISC processor

Fig 10.RTL Schematic of proposed Processor

VI. CONCLUSION

FPGA based pipelined 32-bit RISC processor with Single Precision Floating Point Unit is designed and Verilog

coding adopted. The design is implemented using Xilinx tool on which Arithmetic operations, Branch

operations, Logical functions and Floating Point Arithmetic Operations are verified. Pipelining would not flush

when branch instruction occurs as it is implemented using dynamic branch prediction. This will increase flow in

instruction pipeline and high effective performance. This architecture has become indispensable and

increasingly important in many applications like signal processing, graphics and medical.

1013 | P a g e

REFERENCES

[1] R. Uma, “Design and Performance Analysis of 8-bit RISC processor using Xilinx Tool”, International

Journal of Engineering Research and Applications (IJERA), ISSN: 2248-9622, Vol-2, Mar-Apr-2012.

[2] J. Poornima, G.V.Ganesh, M. Jyothi, M. Shanti and A.JhansiRani,”Design and implementation of pipelined

32-bit Advanced RISC processor for various D.S.P Applications”, Proceedings of International Journal of

Computer Science and Information Technology, ISSN: 3208-3213, Vol-3(1), June-2012.

[3] Xiao Li, LongweiJi, Bo Shen, Wenhong Li, Quianling Zhang, “ VLSI implementation of a High-

performance 32-bit RISC microprocessor”, Communications, Circuits and Systems and West Sino

Expositions, IEEE , International Conference, ISSN:1458-1461,Vol-2,2002.

[4] http://elearning.vtu.ac.in/12/enotes/Adv_Com_Arch/Pipeline/Unit2-KGM.pdf.

[5] AsmitaHaveliya “Design and simulation of 32-point FFT using Radix-2 Algorithm for FPGA

Implementation” IEEE, 167-171, 2012.

[6] The pipelined RISC-16 ENEE 446: Digital Computer Deisgn, Fall 2000 by Prof. Bruce Jacob.

[7] PreetamBhosle, Hari Krishna Moorthy,” FPGA Implementation of Low Power Pipelined 32-bit RISC

Processor”, Proceedings of International Journal of Innovative Technology and Exploring Engineering

(IJITEE), ISSN: 2278-3075, Vol-1, Issue-3, August 2012.

[8] Charles H.RothJr, “Deisgn Systems Design using VHDL”, Prentice Hall 2nd Edition, 2000.

[9] Samir Palnitkar,”Verilog HDL: A Guide to Digital Design and Synthesis”, Prentice Hall, 2nd Edition, 2003.

[10] http://en.wikipedia.org/wiki/Singleprecision_floating-point_format.

[11] Galani Tina G,RiyaSaini and R.D.Daruwala, ”Design and Implementation of 32-bit RISC Processor using

Xilinx”, International Journal of Emerging Trends in Electrical and Electronics(IJETEE)-ISNN:2320-

9569,Vol No.5,Issue 1,July-2013.

