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ABSTRACT

This paper develops an ANFIS based torque control of SRM to reduce the torque ripple. The ANFIS has the
advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks.
This controller realizes a good dynamic behavior of the motor, a perfect speed tracking with no overshoot and a
good rejection of impact loads disturbance. The results of applying the adaptive neuro-fuzzy controller to a
SRM give better performance and high robustness than those obtained by the application of a conventional
controller (PI). The above controller was realized using MATLAB/Simulink.

Index Terms— ANFIS, Torque Control, Switched Reluctance Motor.

I. INTRODUCTION

With concerns over energy efficient drive, Switched Reluctance Motor (SRM) has attracted the interest in fields
of Electric Vehicle (EV) due to its robust construction, fault tolerant operation, high starting torque without the
problem of excessive inrush current, and high-speed operation. However, SRM suffers from some drawbacks
such as high torque ripple and acoustic noise which are very critical for EV applications. The research is
progressing extensively for the mitigation of torque ripple and acoustic noise. In indirect torque control scheme
of SRM, the torque of the motor is controlled by controlling the motor current. Due to high nonlinearity in
torque and current relationship, the conversion of torque into equivalent current value is cumbersome. In the
paper [1], the torque is directly proportional to the ideal phase inductance profile which increases or decreases
proportionately with the angle of overlap. Due to magnetic saturation, the phase inductance varies with the
motor current which leads to large amount of error in both instantaneous and average value of torque. In [2], the
author had suggested a multiplication factor F to compensate for the error of torque and _F* should be a function
of current level. In [3], the author have suggested approximating the torque as proportional to the square of
stator current, where the multiplying factor is assumed to vary as a sinusoidal function of rotor position alone. A
two dimensional lookup table in which the torque value is stored as function of current and rotor position. The
amount of time taken for computation of torque is very high [4, 5]. In [6], a Cerebellar Model Articulation
Controller (CMAC) based torque control was presented. A closed loop torque controller based on B-spline
neural network (BSNN) with online training was presented in [7]. Back-propagation (BP) based neural network
controllers have been proposed in [8]-[10], but both of [8] and [9] used one-hidden-layer neural network which

is not sufficient for estimating the stabilized motor current. In [11, 12], look-up tables were generated off-line by
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building an SRM model to profile the current for the flat torque waveform and stored in the controller. During
on-line running, the controller searched the look-up tables for the current command.

Fig.1 shows a typical control diagram for SRM driven by asymmetric half bridges. Current controller is
employed to generate switching signals for the asymmetric half bridges according to the current reference. The
current reference is either given by a speed controller or a torque distributer. If the current reference comes
directly from a speed controller, flat top chopping current for each phase is employed. Due to the strong
nonlinearity, in some cases, the flat top chopping current regulation might not provide satisfactory performance.
Therefore, torque sharing control is used to distribute torque production between two phases in order to produce
constant torque [2]-[7].
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Both flat top chopping current regulation and torque sharing control rely on accurate current controllers.
Hysteresis control is one of the most popular current control schemes in SRMs, due to its fast dynamic response
and model independency [4]-[8]. However, hysteresis controller also suffers from drawbacks including variable
switching frequency and very high sampling rate [9]-[11]. Variable switching frequency in hysteresis control
makes it difficult to design the electromagnetic interference(EMI) filter and may cause an acoustical noise.
High-speed ADCs have higher sampling rate, however, they add additional cost to the SRM drive system.

In order to avoid the drawbacks of the hysteresis current controller, fixed frequency PWM controllers have been
studied[9], [11]-[16]. In [12], an open loop PWM controller is used, whereas in [9], a proportional-integral (P1)
current controller has been investigated and a current sampling method for digital control have been introduced.
A proportional (P) controller with an iterative learning control is proposed in [17] to achieve accurate current
control. In [11], [13]-[16], back EMF compensation to the PI current controller has been analyzed. In [11],the
gains of the PI controller are adjusted according to current and rotor position. However, a Pl controller suffers
from either slow response or possible overshot. It is also difficult to tune the PI controller in SRM applications
due to the highly nonlinear characteristics of the machine. A digital PWM current controller for the SRM drives
is proposed in this paper in order to achieve fast response, accurate tracking, immunity to noise, model
mismatch, and stability. The proposed controller takes full advantage of the model information. Smaller
feedback gain could be chosen in order to reduce noise sensibility without degrading the performance.

Parameter adaption is adopted to deal with the model mismatch. Relationships between the proposed controller

869 |Page




International Journal of Advance Research in Science and Engineering Q
Volume No.07, Special Issue No.02, February 2018 IJARSE
www.ijarse.com ISSN: 2319-8354

and the previous mentioned PI dead-beat controllers are discussed. Both the simulation and experimental results

are provided to verify the performance of the proposed current controller.

11.MODEL OF SRM
By neglecting mutual coupling between phases, the phase voltage equation of an SRM can be given as
) di(60, 1
t = Ry - i+ 2200
dt 1)

Where uw is the phase voltage applied on the phase winding ,Rwis the winding resistance, w is the flux linkage,

@ is the rotor position, and i is the phase current.

Due to its double salient structure and saturation, y is a nonlinear function of both i and 0. Fig. 2 shows the

measured flux linkage profile of the SRM studied in this paper. The rotor spins360¢ per electric period. The

aligned positions are 0° and 360°.The unaligned position is 180°. Fig. 2 could be stored into a lookup table when

digital control is applied.

Considering the modeling errors, the real flux linkage is represented as
(0,1) = at,, (6,9)

)

where is the modeled flux linkage profile used in the controller, and factor a is a positive number that donates

the relationship between the modeled flux linkage profile and the real one.

o = 0
a — B, <= o< o+ B,

|(-:'5| <_: Bti

wherea is the average value of a, Ba > 0 is the variation bound of o, and Ba * > 0 is the maximum variation rate
of a.The values of Bo and Ba * depend on the modeling errors of thestudied motor.

Considering the resistances and voltage drops on windings and switches, the phase voltage equation could be
written as

diy, (0,7)

1
- Ru‘ B( i
dt fat ( +Re)i

_i (l'i’m (9 "')(!_n + v + Uy + T"‘n) + lur

15 dt 15
where uc donates the converter output voltage, Rc donates the equivalent resistance of the converter, Rc could
be obtained from either experiments or data sheets, but it changes according to current, temperature, gate source
(GS) voltage, etc. vc donates the voltage drop on the converter, vm donates the voltage drop caused by mutual
inductance, vn reflects all other voltage drops, and noises in the system. Equation (4) could be formulated as
Wom©@.8) _ _Lp 1,,1,

dit Y [ [aY

R = R, + R

) . dex
v = (0, ?')ﬁ + Ve + Uy + Up

Q)
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where R is the total equivalent resistance and v is the total equivalent voltage drop. They are uncertain
parameters that are not easy to model. The values of R and v are both unknown and may be variable, which are

represented as
(8]
< ﬁ —+ P

hy

|

3
A A Y

By
v = v+ B,
e (6)

whereR donates the average value of R, BR > 0 donates thevariation bound of R, and Bv' > 0 donates the

A 1A

maximum variation rate of R. R is also positive. “donates the average value ofv, Bv' > 0 donates the variation

bound of v, and Bv" > 0 donatesthe maximum variation rate of v.

111.PROPOSED CURRENT CONTROLLER
A current controller can either control the current directly or control the current indirectly by controlling the flux
linkage. For a certain position 0, y is a monotone increasing function of i. For any il > 0, i2 > 0 there is

U (0,01) > Yy (B,i2) & i1 = iz

U (0,i1) = m (0,42) < i1 = i2

Y (B,11) < W, (B,42) = i1 < iz (7)
Therefore, the phase current can be controlled by controlling its corresponding flux linkage. The SRM model
shown in (4) contains unknown parameters, a current controller with estimated parameter values could be
constructed as
aWmOotret) gy o ke

dt (8)

where ym(0,iref) is the reference flux linkage calculated by the reference current iref and rotor position 6, @ is

Up =

the estimatedvalue of a, R is the estimated value of R, ¥ is the estimatedvalue of v, k is a positive constant, and

e is the flux linkage errorwhich can be expressed as

e = Uy (H 'il‘t‘f) — Um (0,7)

©)
Substituting (8) into (5), the flux linkage error dynamics canbe derived as
v is a monotone increasing function of i. For any il > 0, i2 > 0 there is
Y (B,11) => 1, (0,42) < i1 > i2
P (60,11) = P, (0,42) < i1 = i2
Y (0,11) < 1, (0,42) <= i1 < i2 @)

Therefore, the phase current can be controlled by controlling its corresponding flux linkage. The SRM model
shown in (4) contains unknown parameters, a current controller with estimated parameter values could be
constructed as

& l'_i'-’?-i-',” [:'9 i:l'('f)

+ Rives + 0 + ke
dt (8)

U, =
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where ym(,iref) is the reference flux linkage calculated by the reference current iref and rotor position 0, & is

the estimatedvalue of a, R is the estimated value of R, ¥ is the estimatedvalue of v, k is a positive constant, and

e is the flux linkage errorwhich can be expressed as
e = P (9 'ir(*f) — Ym (9 t:]

Substituting (8) into (5), the flux linkage error dynamics canbe derived as

5] -~ 1 - 1 - 1
e = ——e — Re; + —a)y,, (0, iver) + —Ri + —7
fa% sy fat o
o= o — &
R= R—FR
U= v—70
€; = drer — %

where &, Rand ¥ are the estimation errors, ei is the currenterror.

If a Lyapunov candidate is selected as

V_li’ !

ey Ly Lpy Ly
2 J 2(}}1}1 2(1]{';,' 20{]{}

v

where ko, kR , and kv are positive constants. Then, the derivative of the Lyapunov candidate is

V= ——e® — —ee;

o
QO

—0——_(3"%_-"';”; (@, irer)e — .
_ 1 - =
+ — Rie — "R
kg
+lfwﬂ — L 5t
o vk,
i Ay RR )
vk ok g ko,

15— ' 0.15
~ 10f 015
5 =

= "L
- N

3 10.05
1 t L L L 0
0 time le

Fig. 2.2. Typical waveform of ym (8, iref ) and iref

It can be seen from (12) that if & ,R, and Hare chosen as

©)

(10)

(11)

(12)
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1% = .IIi'ff ie
Then, (12) becomes
] k., R fats RR OO
V= ——e — —ee; — + — + :
x : vk, akp ak, (14)

(A) Constant Parameters
k, R, and o are positive constants, and according to (7), eiand e have the same sign. If a, R, v are constant, i.e.,
a=0R=0,0v=0
' (15)

Vbecomes

Therefore™ is semi negative definite. This indicates that the system is globally asymptotically stable, and e is
going to converge to zero. If e converges to zero, the system is internally stable. The convergence rate of e is
determined by k and a. Since ais around 1, k could be selected to adjust the convergence rate. According to
(16), a larger k gives a faster convergence rate, which means faster dynamic response. However, according
to(8), k is the feedback gain of the error, in this case, a large gain means that the controller is more sensitive to
noise. Therefore, the selection of k is a tradeoff between the dynamic response and robustness. According to
(10), if e converges to zero, forany y ‘'m(6,iref) and i, there will be
At (0, ires) + Ri+ 7 =10
(17
As is known, the adaptive controllers suffer from parameter drafting. Since all the estimated parameters are
bounded, the controller will be stable. However, parameters will not necessarily converge to their real values
unless persistent excitation condition is satisfied [24]. For the case of (13), y ‘'m (0,iref) andi need to be “rich”
enough to guarantee the convergence. Fig. 3shows a typical waveform of ym (0,iref) and iref with flat-top
current control. It can be seen that iref is a constant number andi ref is zero, while ym (8,iref) is a nonlinear
function of time.
The nonlinearity of ym (0,iref) will provide sufficient frequencies to make y ‘m (6,iref) “rich.” This is another

reason why flux linkage is selected to be controlled instead of current. In this case, there is
5 1
W (£) = [tho (0, dver,t) 1]

£, R
W ()W () dr = ~1
/. ’ (18)
where ty is the beginning of each stroke and te is the end of the stroke. Equation (18) indicates that ' (t) satisfies
the exciting condition, which means ||[&7]||, is going to converge perstoke [24]. In this case, as the controller is

active each stroke,the estimation errors are going to converge to zero eventuallyand there will be
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However, if the flat-top current control is applied, i may not be rich enough to guarantee the convergence of R.
In this case, adead zone should be added to prevent parameter drafting of R.
(B) Variable Parameters

Practically, the parameters a, R, and v are not constant
G#£0,R#£0,0%#0

Since a, R, and v have their own bounds, the adaption law in(13) should be modified by

(20)

Ea 'L"T/'Jn (9- irvf)(‘-'-. [ [(i — B, .o + Ba]
Kot (8, irer)e, & = @& + Ba and ¥, (0, irer)e < 0

g

»)

Eathm (6, ies)e, & < & — B, and ¥, (@, iyer)e = 0

0, else
kpie, R e [R— Br, R+ Bg|
};? _ krpie, R > R+ Bp and ie << O

kpie, B < R — Bp and ie = 0
0, else
kpe, 0 e [0 — B, T+ B,]

S ke, 1 > 0+ B, and e << 0
kpe, D < v — B, and e = 0

0, else. (21)
This modification does not affect the system stability if the real values of a, R, and v do not exceed their bounds.

At the same time, (22) defines the bounds of parameter estimation error

Combined with (3) and (6), there are
a? N R? N e < 2B 2B% 2B? Y
20k, 20kp 20k, — ok, akp ak, (23)
ﬂ ﬁ i < 2B, B; N 2By B, . 2B, B;
ak, akp ok, ak, akp ak,
=N (24)
where Bd , BR , and Bv are the bounds of & , R, and v, respectively. According to (14) and (11), there is
where Bd , BR , and B are the bounds of & , R, and v, respectively. According to (14) and (11), there is
.. & R
. k+ kR a2 R? e
V=2 « (V - 2ak, 20k 2ak,.)
ac RR o
— +
ak, akp ak, (25)

Where ki> 0 donates the relationship between e and ei. According to (25), if V exceeds aN/2(k + kiR) + M, V
will benegative, and V is going to decrease. Thus, the control error isbounded by
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le| < \/aN/2(k+kR)
B 2B.Bi __ 2BiB; __2B.B
(k+kiR)ka  (k+kiB)kp  (k+ kiR)k, (26)

As shown from (26), for the predefined bounds and maximum variation rates of the unknown parameter, the

control error is limited by k ,ka, kR , and kv.

. . & R? e
e =2V - — — -
ak, akp ok,

. . P =2 D2 =2
v _2k+k,R v o R v
o 2k, 2akp 20k,

fata} RR ()

ok | akr | ok (25)

Where ki> 0 donates the relationship between e and ei. According to (25), if V exceeds oN/2(k + kiR) + M, V

will benegative, and V is going to decrease. Thus, the control error isbounded by

aN/2(k + k:R)

_ 2B,By | 2BgBy . _2B.B:
(k+kiR)k,  (k+kRkp  (k+kR)k, (26)

As shown from (26), for the predefined bounds and maximum variation rates of the unknown parameter, the

control error is limited by k ,ka, kR , and kv.

(C) Digital Implementation of Proposed Current Controller
In digital implementation, the discrete form of (8) and (21)can be reformulated as
&wm (}t) - ﬁ;f‘n: (H(k -+ 1)- TrErvf(ll'l' -+ ]-)) - "'-.i'.Jm (H(k)- 'irvf (k))

. N — A Am (k) (1) 7 . (L o I
u. (k) = &(k) T + R(Ek)irer (k) + 0(Kk) + ke(k) @n
,; 7
——

Duty ratio

9.______
-
[ ERppp——— . [

wk-1)  wk=-1/2)  wk)  ik+1/2)

time

V.

=

+1)
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Fig. 3. PWM modulation
Where T is the digital sampling time, 8(k + 1) = 6(k) + »T, and w is the electric angular speed of the SRM

Ak + 1) = & (k) + koA, (k) e (k)
G(k+1) ., a(k+1) € [&@ — Ba.a + B.)
G (k+ 1) = a+ B,, &a(k+ 1) > a+ B,
& — B,, &(k+1) < a— B,
, e(k),|le(k)| > Bpz
e (k) =
R 0, le (k)] = Bpz
Rk 4+ 1Y = R(k) + kri(k)e (k)T
Rk+1), R(k+1) € [R— Br. R+ Br]
R+U}f. _fri‘(k—i— ].)J = R—O—Bh'

E—B;(. g(}ﬁ+l)’<g—3;f
Dk 4+ 1) = (k) + kpe ()T

Rk + 1) =

ok + 1), o(k+ 1) €[ — B,.7 + 3,]
Tk + 1) = !ﬁ—i—Br.._ Dk + 1) > 5+ B,
lF—B,L‘ Ok + 1) <0 — 3, (28)

Where Aym(k) is defined in (27). BDZ is the error dead zone,@, R, and ¥ are the estimated average values of a,

R, and v,respectively.

IV.PWM DELAY COMPENSATION

Fig..3 shows the PWM modulation for digital control. The duty ratio is either obtained by uc/UDC for soft
chopping or0.5 + 0.5(uc/UDC ) for hard chopping. UDC is the dc bus voltage. In the kth control period, current
should be sampled att(k). But in practice, especially in a DSP control, if current is sampled at t(k), it will take
some time for the controller to calculate the duty ratio and the duty ratio for t(k) is actually loaded into the PWM
modulator at t(k + 1). This brings one sampling time delay into the control loop. In this case, the duty ratio for
t(k) should be calculated before t(k). Mohamed and El-Saadany [10] proposes a predictive current controller to

solve

(k1) —rE . =
{7 S Y O | —
i(k—=1) —+| B
Bk -1/2) =1, (0(k).i(k))
f“' ”2) ﬁ b, (B =1/ 20tk =1/ 23) +
3ol * )
Fl ul

Fig. 4. Approximation of i(k), 6(k), and 6(k + 1)
the problem. However, the predictive current controller needs accurate model and increases the calculation
burden for DSP, especially for nonlinear systems such as SRMs. Blaabjerg et al.[9] recommends that current

should be sampled at t(k — 1/2),which means i(k) is approximated by

i(k) =ik —1/2) (29)
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As shown in Fig. 3, there is no switching action at t(k — 1/2),EMI noise at that instance can be avoided.
Furthermore, the duty ratio can be calculated within half of the period and delay in the control loop is avoided.
The estimation of (29) is accurate if the average current of each kth period stays the same, as the (k — 1)th period
shown in Fig. 3. If average current between each period changes, as the kth period shown in Fig.4, (29) is not
accurate.

As shown in Fig. 3, with the symmetrical modulation, the voltage waveforms of the former half period and the
latter halfperiod are symmetric. Therefore, the flux could be estimated instead of current. The flux ym

(8(k),i(k)) could be approximated by
i (AR (K)) = 2 (601~ 1/2),i(k ~ 1/2)
—Un (0(k - 1),i(k-1)). (30)

In (30), current is sampled at both t(k - 1/2) and t(k - 1),which doubles the sampling rate. The ADCs used in
motor control is capable of working at the sampling rate of twice of the PWM frequency without increasing any
cost. Similar to(29), (30) also avoids the EMI noise caused by the switching action, provides half control period
for duty ratio calculation, and avoids the delay in the control loop as well. Since the current sampling, and other
calculations are performed at t(k - 1/2), the rotor position also has to be approximated with the information at t(k
- 1/2). Fig. 4 shows the approximation of ym(6(k),i(k)) and (k + 1) for further use.

(A) Flux Reference Adjustment

When implemented in a digital processor, the current controller has to meet physical limits. Normally, when a
phase isturned ON, the phase current is expected to rise quickly to the reference value, however, the voltage
applied on the phase is limited by UDC. It is necessary to adjust (8(k + 1),iref(k + 1))

Ak 1) =] Sl ()=
o, [0k + 1k + 1)) +
[

T(U = RO, (k) — k)~ kelk)|
k)

Uy (006, (KD

(B 100 (k+1)

TV e — RUkY, (k) = #(k) — keth))

Ay (k)=
alk) -

Fig. 5. Procedure of calculating yadj (6(k + 1), iref (k + 1)) andwadj (6(k), iref (k)).
so that uc(k) would not exceed UDC
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ii.—"‘”!rr (k) = Yn (9(;{' —+ l)- irvf(k -+ J‘)) - wadj (gtk)- 'irvi'(k-))
T (UUC — RB(k)irer (k) — (k) — ke(k-))
At pmax (k) = a(k)
T (—L"—U(‘* — RB(K)irer (k) — (k) — ke(k))
AL_‘\. nnax(k') - fﬁ_}(i)
Wadj (H(k —+ 1). ir..f(k' -+ J.)) = '?-_-'-'.-Jadj (H(k) i'-.-cf(k))
&'t.-':'-’.f’nmx(k)-. Fa N T N (k) = -ﬁ'{—"'r’.f’nm(k)
{ ‘&"t.il"_'\' nm(k)t ‘&"1.5.']!:1 (k) = ‘&"1.5."_'\' 1nax(k)
At (k) VAR TEY, max(k) = Afy (k) < -i'*,—""’.f’l’tm.‘c(k)- (31)

Therefore, ym (0(k + 1),iref(k + 1)) and ym (8(k),iref(k))in (27) should be replaced by wadj (6(k + 1),iref(k +
1)) and wyadj (0(k),iref(k)), respectively. Fig. 5 shows the procedure of calculating yadj (6(k + 1),iref(k + 1)) and
wyadj (0(k),iref(k))according to (31). Fig. 6 shows the procedure of calculating, a “(k), R “(k), and v “(k)
according to (28). Fig. 7 shows the procedure of calculating uc(k) according to (27).
(B). Relationship With Previously Proposed Controllers
As shown in Fig. 7, the controller of (27) consists of two parts: the feedback part and the feed forward part. The
feedback part is sensitive to noise, while the feed forward part is immune to noise. In order to enhance the
robustness of the controller, the feed forward part should give out most part of uc so that less control effort is
needed by the feedback part.
The digital controller of (27) has similar form with previously proposed controllers. For example, all the
estimated parameters are taken as its real value, and k = 1/T , then (27) becomes

Um (O(k + 1), irer (k + 1)) — U (8(K). i(K))

T

+Ri(k) + v. (32)

u.(k) =

This is a typical dead-beat controller proposed in [18]-[21]. Ifais fixed as Kp - T and only the adaption of Dis

active with a
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Yoy (BUKDd,, (K))
Wy (B (K + i)
(ki (k)) —————————] —
k)
— (k) % Sk + 1)
+ ,—]
vk, A, (k) -+
Rk)
— Rk é Rik +1)
+ .«—j|
BTN IS —l—
kD
—F(k}—EI——F(k + 1)
+ ,—]
Fig.6. Procedure of calculating e, & (k), R (k), and ¥ (k)
i Feedt.'t;;ward T ;
g 00+ 1.0 (k+1)j=l o = |
: o > =
(0000, () -l = L
i j‘.'\.'.’ (k} = XE[;‘] i = +
i i (k)
b > k) ' >4
{ Feedback
toe(k) >
Fig. 7. Procedure of calculating uc(k)
gain of Ki, then (27) becomes a Pl controller
te(k) = Ky (U (0(k +1), et (K + 1))
—y (0(k),i(k))) + Ri(k) + o(k)
d(k+1)= (k) + Kie(k)T. o

From this point of view, the proposed controller could be regarded as the improvement of some of the existing

controllers.
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(D) Parameter Selection
With the digital controller in (27), the error transfer function(10) could be rewritten in discrete domain as

e(k+2) = (l - %T) e(k+1) = Rk +1)Te;(k+1)
+%(;}(k‘ + 1) Aty (0(k + 1), drer(k + 1))

1 - 1
+ETB(k +1)i(k+1)+ ET:‘:(.lr +1)

(34)
Since the sampling time T is usually small enough, substituting(28) into (34), the error dynamics can be
obtained as
ez’ — (1 - iT) ez+ Pe=0
[8]
Pt Atpugy (O(K), iret (F)) Ataai (B(k + 1), iver (K + 1))
(1} ﬂ
o EE VW) gy Lo
o o (35)

where O is small enough bounded items, which could be taken as input of the error dynamic. The poles of the

discrete transfer function of (35) are

A2

(1— £7) + \/(1— ET)? _ap
a 2 (36)
To stabilize the system, the poles should be placed inside the unit cycle, and hence the limits of the parameters

are
l|[L.
0< - T<2+P
¥
1
0< P < —
4 @37)
It can be seen that in (32), k is selected to be 1/T and P is selected to be zero, and therefore, the poles are placed
at zero. Due to the feed forward part in the proposed controller, a smaller could be chosen. After k is chosen, ko,

kR, and kv are selected to ensure the stability.

V.ANFIS CONTROLLER

(A) Adaptive Neuro-Fuzzy Inference Systems: (ANFIS):

An adaptive neuro-fuzzy inference system or adaptive network-based fuzzy inference system (ANFIS) is a kind
of artificial neural network that is based on Takagi—Sugeno fuzzy inference system. The technique was
developed in the early 1990s. Since it integrates both neural networks and fuzzy logic principles, it has potential
to capture the benefits of both in a single framework. Its inference system corresponds to a set of fuzzy IF—
THEN rules that have learning capability to approximate nonlinear functions. Hence, ANFIS is considered to be
a universal estimator. For using the ANFIS in a more efficient and optimal way, one can use the best parameters

obtained by genetic algorithm.
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The adaptive network based fuzzy inference system (ANFIS) is a data driven procedure representing a neural
network approach for the solution of function approximation problems. Data driven procedures for the synthesis
of ANFIS networks are typically based on clustering a training set of numerical samples of the unknown
function to be approximated. Since introduction, ANFIS networks have been successfully applied to
classification tasks, rule-based process control, pattern recognition and similar problems. Here a fuzzy inference
system comprises of the fuzzy model proposed by Takagi, Sugeno and Kang to formalize a systematic approach
to generate fuzzy rules from an input output data set.
(B)ANFIS structure
For simplicity, it is assumed that the fuzzy inference system under consideration has two inputs and one output.
The rule base contains the fuzzy if-then rules of Takagi and Sugeno’s type as follows:

If xis A and y is B then z is f(x,y)
where A and B are the fuzzy sets in the antecedents and z = f(x, y) is a crisp function in the consequent. Usually
f(x, y) is a polynomial for the input variables x and y. But it can also be any other function that can
approximately describe the output of the system within the fuzzy region as specified by the antecedent. When
f(x,y) is a constant, a zero order Sugeno fuzzy model is formed which may be considered to be a special case of
Mamdani fuzzy inference system where each rule consequent is specified by a fuzzy singleton. If f(x,y) is taken
to be a first order polynomial a first order Sugeno fuzzy model is formed. For a first order two rule Sugeno

fuzzy inference system, the two rules may be stated as:

Rule 1: If zis A and y is B, then f; = piz + quy + 1

Rule 2: If 7 is Ay and y is By then fy = pox + qoy + 19

Here type-3 fuzzy inference system proposed by Takagi and Sugeno is used. In this inference system the output

of each rule is a linear combination of the input variables added by a constant term. The final output is the

weighted average of each rule’s output. The corresponding equivalent ANFIS structure is shown in Fig. 8.
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Figure 8: Type-3 ANFIS Structure
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The individual layers of this ANFIS structure are described below:
Layer 1: Every node i in this layer is adaptive with a node function
1
O; = pa,(x) (38)

where, x is the input to node i, Ai is the linguistic variable associated with this node function and pAi is the

membership function of Ai. Usually pAi(x) is chosen as

() -
J!'LAi a£r - O — -
1 —+ [(T‘)z]b‘ (39)
pa,(z) = exp {—(——)%}
@i (40)
where x is the input and {ai, bi, ci} is the premise parameter set.
Layer 2: Each node in this layer is a fixed node which calculates the firing strength wi of a rule. The output
of each node is the product of all the incoming signals to it and is given by,
2 _ _ , -
O =w; = pa,(x) X pp,(y), 1=1,2 1)

Layer 3: Every node in this layer is a fixed node. Each ith node calculates the ratio of the it rule’s firing strength
to the sum of firing strengths of all the rules. The output from the ith node is the normalized firing strength
given by,

w;

Ol=wj=————, i=1.2
wy + Wa (42)

Layer 4: Every node in this layer is an adaptive node with a node function given by

0 =Wf; =W (pr+qy+r), i=12

wherewt is the output of Layer 3 and {pi, qi, ri} is the consequent parameter set.

(43)

Layer 5: This layer comprises of only one fixed node that calculates the overall output as the summation of all

incoming signals, i.e.

O? = overall output = Zu_ufz = %

(44)

(D) Learning Algorithm
In the ANFIS structure, it is observed that given the values of premise parameters, the final output can be

expressed as a linear combination of the consequent parameters. The output f in Fig. 8 can be written as

I

wry

=2 fn+

w1y + wso wy + we
= ay f1 + W2 fa

wWeo

= (w1 z)p1 + (w1 y)qu + (w1)71 + (W2 T)p2 + (W2 y)gq2 + (W2)r2 (45)

882 |Page




International Journal of Advance Research in Science and Engineering

Volume No.07, Special Issue No.02, February 2018 IJARSE

www.ijarse.com ISSN: 2319-8354
Where f is linear in the consequent parameters (p1, g1, 1, P2, Oz, I2)-
In the forward pass of the learning algorithm, consequent parameters are identified by the least squares estimate.
In the backward pass, the error signals, which are the derivatives of the squared error with respect to each node

output, propagate backward from the output layer to the input layer. In this backward pass, the premise
parameters are updated by the gradient descent algorithm.

VIL.SIMULATION RESULTS

4

1 W

FIG9 SIMULINK DIAGRAM OF EXISTING SYSTEM

Fig. 10. Phase current and its reference with hysteresis current controller at
1000 r/min

Fig. 11. Waveforms of control error(e), o, R", and v".
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Fig. 14. Phase current and its reference with proposed current controller at
1000 r/min.

T T 1

Fig. 15. Calculated uc of one phase during the simulation at 1000 r/min.
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(A)

(B)

(©)

Fig. 17. Waveforms of control error(e), o, R”, and v".
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Ji

Fig. 18. Phase current, current reference, the original flux linkage reference

ym (6, iref ), and the adjusted flux linkage referenceyad;j (0, iref ) at 6000 r/min.
(a) Phase current and its reference with proposed current controller at 6000 r/min.
(b) Original flux linkage reference ym (8, iref), and the adjusted flux linkage reference yadj (6, iref) at 6000
r/min.
VII. CONCLUSION
ANFIS based torque controller has been presented in this paper for tractive application at low speeds. By using
ANFIS controller, the SRM exhibits good steady-state and dynamic performances. The SRM can produce
maximum torque quickly while needing short duration overload ability.
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