
 

730 | P a g e  
 

Extended Kalman Filter Based Sensorless Speed Control 

of Permanent Magnet Synchronous Motor Drive 

Jallu Hareesh kumar
1
, P Balaraju

2
, Patina Padma

3 

 

1
Assistant Professor, Dept. Of EEE, SVCET, Srikakulam, Andhra Pradesh, India-532410  

2
PG Scholar, Dept. Of EEE, SSCE, Srikakulam, Andhra Pradesh, India-532402 

3
PG Scholar, Dept. Of EEE, SVCET, Srikakulam, Andhra Pradesh, India-532410 

 

ABSTRACT 

This paper proposes the Extended Kalman Filter based sensorless speed control of permanent magnet 

synchronous motor. The EKF is used to achieve a precise estimation of the rotor speed and dq-axes currents 

from noisy measurement. The EKF estimated parameters are greatly influenced by error covariance matrices Q 

& R. The accurate estimated speed is obtained by selecting optimum values of Q & R and which is fed back to 

PI controller. By selecting the optimum values of Kp & Ki to minimize the speed error and also improves the 

settling time, overall reliability of the system. The simulation results show that the covariance matrices Q & R 

improve the convergence of estimation process and quality of the system. 

 

Keywords:  Extended Kalman Filter, Gradient matrix, Permanent Magnet Synchronous Motor, PI 

controller. 

I. INTRODUCTION  

PMSM has wide range of applications compared to remaining industrial drives due to their compactness, 

superior power density, high torque density, high efficiency, high power factor and their low maintenance cost. 

Rotor Losses are eliminated due to the absence of slip rings for field excitation which make them ideal for 

robotic and automatic production systems. The position sensing which is required for the vector control of 

PMSM drive increases the cost of the system along with its space. Speed/position sensorless control [7][8] of 

these motor driven systems reduces the system complexity, weight and cost and improves the overall system 

reliability and dynamic performance. In order to obtain sensorless control various control algorithms like 

reduced order & full order observers [11][12], sliding mode observers [13], back emf estimation [14], Extended 

Kalman Filter [14][15][16], Model Reference Adaptive System [17], Artificial Neural Network [18], Fuzzy 

logic [19] are proposed. 

Among the proposed algorithms EKF is one of the promising observers, which offers best possible filtering of 

the noise in measurement and of the system if the noise covariances are known. EKF is a recursive predictive 

filter, which provides accurate and quick estimation of variables from all the available measurements regardless 

of their precision with rapid convergence and also improves overall reliability of the system. If rotor speed 
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considered as an extended state and is an incorporated in the dynamic model of a PMSM, Then the EKF can be 

used to relinearize the nonlinear for each new value of estimate. As a result, EKF is the best method for 

estimation of rotor speed, whose performance is influenced by the values of system parameters and error 

covariance matrices Q & R. The investigation shows that the EKF is capable of tracking the actual (d & q) stator 

currents and rotor speed, is provided that the elements of the covariance matrices are properly selected. 

II. MATHEMATICAL MODEL OF PERMANENT MAGNET SYNCHRONOUS MOTOR 

The voltage equations for a PMSM in the rotor reference frame [1][2] can be expressed as [16]. 

d s d d d e q qV R i L pi L i  
 (1) 

q s q q q e d d e fV R i L pi L i    
 (2) 

Where  

dV
 is d-axis stator voltage, qV

 is q-axis stator voltage, di  is d-axis stator current, qi is q-axis stator current, sR
is 

Stator phase resistance, dL
is d-axis stator inductance, qL

is q-axis stator inductance, ψf is Rotor flux, ωe is 

Electrical speed in rad/sec. 

The electromagnetic torque of PMSM is described as: 

  3

2
e n q f q d dT P i L L i

 
   
  (3)  

Where nP 
number of pole pairs 

The motion equation is expressed as follows as 

r
r l e

d
J B T T

dt


  

      (4) 

 Where J is moment of inertia, B is friction coefficient, Tl is load torque. 

Finally the above equations are mentioned in state space form as follows 

1d d
s d e q q

d d

di V
R i L i

dt L L
     

  (5)                                 

1 q

s q e d d e f

q q

Vdiq
R i L i

dt L L
       

 (6) 

  1 3

2

lr
n q f q d d r

Td B
P i L L i

dt J J J


 

 
     

  (7) 
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III. PROPOSED SCHEME OF EKF BASED SENSOR LESS SPEED CONTROL OF 

PMSM DRIVE 
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Fig 1: EKF based sensorless speed control of PMSM 

The proposed control structure of EKF based sensorless speed control of PMSM drive is shown in figure 1. The 

inputs of speed controller are the reference speed and estimated speed, and the output is given torque to current 

controller. Because the electromagnetic torque is proportional to current, the output of the speed controller is 

also the given current of q-axis and also d-axis current taken as zero due to permanent magnets are used in the 

rotor. The two phase currents are transformed into three phase currents by using Clark‟s transformation. The 

pulses are generated using sinusoidal pulse width modulation and these pulses are given to the inverter of 

PMSM drive. The three phase sinusoidal currents and voltages are transformed from abc-coordinate system to 

dq-coordinate system as represented in equations (8) which are the inputs to EKF. 
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 
q q q

    
     

       
       

                    
 
         (8) 

Where „S‟ represents voltage and current. 

eq Electrical angle in rad. 
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IV.  DESIGN OF EXTENDED KALMAN FILTER 

Kalman filter is a recursive predictive filter that is based on the use of state space techniques and recursive 

algorithms. It estimates the state of a dynamic system. In Kalman filter, effect of noise of both system and 

surroundings are taken into account using covariance matrices which are updated in each iteration, thus 

providing estimation and filtering. This dynamic system can be distributed by some noise, mostly assumed as 

white noise. So that the error covariance of the estimator is minimized. In this sense it is an optimal estimator. 

This procedure is repeated for each time step with the state of the previous time step as initial value. Therefore 

the Kalman filter is called a recursive filter. Drawback of Kalman filter is that for non-linear systems, the 

calculation is time consuming. For the implementation of nonlinear systems, these are functions of the state and 

consequently change with every time step, iteration and cannot be pre-computed. Short comings of this model 

can be overcome by using Extended Kalman filter (EKF) [19] [20]. EKF is stochastic in nature and is well 

suited to non-linear systems; the noise in the system gets reduced. Due to its rapid delivery, precise and accurate 

estimation, it is used in research and applications. The feedback gain used in EKF achieves quick convergence 

and provides stability for the observer.  

( , , )x f x u w



     (9) 

( , , )y h x u v
             (10) 

To derive the discrete time EKF algorithm, to initiate the basic definition of time deviation of a state variable x 

( ) ( 1)

s

x k x k
x

T

  


          (11) 

( ) ( 1)sx k xT x k


  
         (12) 

Replace equation (10) in (13) 

( ) ( 1) ( , , )sx k x k T f x u w  
        (13) 

Rearrange the above equation in discrete time system equations 

1 1 1 1( , , )k k k k kx f x u w   
         (14) 

Where 1 1 1 1 1 1 1( , , )k k k k d k d k kf x u w A x B u w        
 

d sA I AT 
 

d sB BT
 

( , , )k k k k ky h x u v
          (15) 

Where 
( , , )k k k k d k kh x u v C x v 

 

dC C
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Where xk is system state vector, uk is input vector (known), wk is process noise, vk is measurement noise, Ts is 

sampling time. 

 

4.1 EKF Algorithm 

Step 1: Initialize the state vector and covariance matrices
(0)x

, P, Q, R 

Step 2: compute the Jacobian matrices for 1kf  , kh
 

1KfF
x




            (16) 

Kh
H

x




            (17) 

Where  1 1 1 1 1 1 1( , , )k k k k d k d k kf x u w A x B u w        
 

  
( , , )k k k k d k kh x u v C x v 

 

Step 3: Prediction state (time update) 

To perform the time updating of state estimate and estimation of error covariance 

 

1 1 1( , ,0)k k kX f x u  
 

1 1 1( , ) (0)k k kX f x u x   
         (18) 

1

TP FPF Q 
          (19) 

Step 4: Correction state (measurement update) 

 To perform the measurement updating of state estimate and estimation of error covariance by using 

Kalman gain  

Calculation of Kalman gain matrix   
 1 1/T TK PH HPH R 

          (20) 

Update state prediction 
 1 1X X K y y  

             (21) 

Where 1 1ky Hx 
 

Estimation of error covariance matrix  
  1P I KH P 

           (22) 

 

4.2 EKF estimation for PMSM drive 

The dynamic state equations of PMSM are 

1d d
s d n r q q

d d

di V
R i P L i

dt L L
     
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1 q

s q n r d d n r f

q q

Vdiq
R i PW L i P

dt L L
      

 

  1 3

2

l
n q f q d d r

Td r B
P i L L i

dt J J J


 

 
     

   

The above equations written in the form of state space 

 System equation      x Ax Bu


    

Observation equation  
y Cx

 

 

1
0 0

1
0

0 03 3

2 2

n r qsd

d d d

d

dq n fn r d s
q

qq q q

r
r

n q d q n f

P LRdi

L L Ldt
i

Vdi PP L R
i

Vdt Lq L L L

d
P L L i P B

dt
J J J










                                                           

Where 

 

0

3 3

2 2

n r qs

d d

n fn r d s

q q

n q d q n f

P LR

L L

PP L R
A

Lq L L

P L L i P B

J J J







 
 
 
   
 
 
   
 
  ,

1
0

1
0

0 0

d

q

L

B
L

 
 
 
 

  
 
 
 
  ,

d

q

r

i

x i



 
 


 
    & 

d

q

V
u

V

 
  
   

1 0 0

0 1 0

d

q

r

i

y i



 
   

    
      

Where 

1 0 0

0 1 0
C

 
  
   

The above equations written in the form of discretization 

System equation      1 1 1k k k kx Ax Bu w    
  

Observation equation  k k ky Cx v 
      

 1 1 1 1( , , )k k k k kx f x u w   
 

1 1 1 1 1 1 1( , , )k k k k d k d k kf x u w A x B u w        
 

d sA I AT 
 

d sB BT
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 

 

1 1

1
1 0 0

1
, , 1 0

0 03 3
1

2 2

n r qs
s s s

d d d
d

dn fn r d s
k k k s s s q s

qq q q
r

n q d q n f

s s s

P LR
T T T

L L L
i

VPP L R
f x u w T T T i T

VLq L L L

P L L i P B
T T T

J J J









 

 
  
  
                           
    

   

Gradient matrix 

1KfF
x




  

11 12 13

21 22 23

31 32 33

F F F

F F F F

F F F

 
 


 
    

1
11

1

1k s
s

d

f R
F T

x L


  

 ,

1
12

2

n r qK
s

d

P Lf
F T

x L




 
 ,

1
21

1

n r dK
s

P Lf
F T

x Lq

 
 

  

1
22

2

1 sK
s

q

Rf
F T

x L


  


,

1
23

3

n fK
s

q

Pf
F T

x L





 


,

 
1

31

1

3

2

n q d qK
s

P L L if
F T

x J


 

 
 , 

1
32

2

3

2

n fK
S

Pf
F T

x J




 
 ,

1
33

3

1K
s

f B
F T

x J


  

 . 

 

1 0

1

3 3
1

2 2

n r qs
s s

d d

n fn r d s
s s s

q q

n q d q n f

s s s

P LR
T T

L L

PP L R
F T T T

Lq L L

P L L i P B
T T T

J J J







 
 

 
   
 
 
  

 
   

 
( , , )k k k k ky h x u v

 

( , , )k k k k d k kh x u v C x v 
 

Where dC C
 

Kh
H

x




 ,
11

1

1kh
H

x


 


,
21

2

1kh
H

x


 


 

1 0 0

0 1 0
H

 
  
   
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V RESULTS AND DISCUSSIONS 

 

Fig 2: Measured & estimated waveforms of d-axis current id 

 

Fig 3:Measured & Estimated waveforms of q-axis current iq 

 

Fig 4: Actual & Estimated waveforms of rotor speed 
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In the simulation di , qi , dv
, qv

 are input variables of EKF algorithm and di , qi , r  are the estimated state 

variables. In order to imitate the condition of real system Gaussian white noises are added to feedback values of  

di , qi .The simulation model has the same noise in the current as the real system, if the power is set to 3×10
-6

 

and sample time of the white noise block is set to 2×10
-5

sec. The choice of elements of the covariance matrices 

P, Q and R is the important step in the design of Kalman filter because of its effect on the performance, 

convergence and stability of the system. The initial state error covariance matrix (P) is a diagonal matrix, which 

will cause the initial disturbances due to choosing of random values. But when the algorithm converges, it 

disappear the effect of matrix P. The High model noise or parameter uncertainties indicates the higher value of  

Q which tends in the increase of Kalman gain, resulting in faster filter dynamics but, it leads to poorer steady-

state performance. Measurement noise depends upon the matrix R. whenever there is a increase in the value of 

the elements of R, Current measurements are more effected by noise and thus less reliable. This results in the 

decrease of filter gain, yielding poorer transient response. 

MATLAB Simulated values of error covariance matrices Q and R are given by: 

 5.108 8.753 8.553Q diagonal of
 

 7.963 8.491R diagonal of
 

The measured and estimated waveforms of id and iq are shown in figure 2 & 3.The estimated values of currents 

having large deviations due to convergence problem of state error covariance matrix at the beginning. After 0.05 

sec both the state variables are converge to actual values.  

The performance of EKF becomes a part of speed control, while the estimated speed as feedback. Therefore 

EKF runs in closed loop condition, but the parameters of speed controller remain unchanged. In figure 4 the 

actual and estimated speeds are compared and the reference speed is given as 500 rpm. The estimated speed is 

tracks the actual speed at 0.001 sec only, so estimated speed is quickly converges due to precise values of 

matrices Q & R. When estimated speed as feedback, speed error is given to the PI controller which is reduce the 

error & settling time and also improves the steady state performance of the system. 

 

Fig 5: Iabc current waveform    Fig 6: Idq current waveforms 
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Fig 7. Electro magnetic torque waveform   Fig 8: Rotor position in degrees 

Figure 5 & 6 shows the stator currents of abc and dq axes respectively.These currents having large ripples at the 

beginning due to high speed error is given to PI controller. At 0.02 sec these currents are settled. Figure 7 shows 

the electromagnetic torque of PMSM drive,which is settles at 0.1 sec. From Figure 8, it is clear that rotor 

position is starts from 0.01sec. 

V.  CONCLUSION 

The intent of this paper, EKF based sensorless speed control of PMSM drive has been presented to show the 

results of estimated values of speed and dq-axes stator currents. The performance of EKF is mainly depends on 

error covariance matrices Q & R, which are suitably selected. These matrices are improved the system 

convergence and quality of estimation. The simulation results show the superior performance in terms of settling 

time, reduction of noise and overall system stability. 

Appendix A: 

Simulation Parameters values of PMSM drive: 

S.NO Parameters used in PMSM Symbol Numerical value 

1 Resistance of stator 
sR

 

0.675 ohm 

2 Direct inductance of stator 
dL

 
0.0085 Henry 

3 Quadrature inductance of stator Lq
 

0.0085 Henry 

4 Flux linkages 
f

 
0.12 Weber 

5 Inertia of rotor J  0.0011 Kg/m
2 

6 Viscous friction coefficient B  0.0014 Nm/s
2 

7 Pair of poles 
nP

 
3 

8 Rated speed   1000 rpm 
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