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ABSTRACT
This paper proposes the Extended Kalman Filter based sensorless speed control of permanent magnet

synchronous motor. The EKF is used to achieve a precise estimation of the rotor speed and dqg-axes currents
from noisy measurement. The EKF estimated parameters are greatly influenced by error covariance matrices Q
& R. The accurate estimated speed is obtained by selecting optimum values of Q & R and which is fed back to
PI controller. By selecting the optimum values of K, & K;to minimize the speed error and also improves the
settling time, overall reliability of the system. The simulation results show that the covariance matrices Q & R

improve the convergence of estimation process and quality of the system.

Keywords: Extended Kalman Filter, Gradient matrix, Permanent Magnet Synchronous Motor, Pl
controller.

I. INTRODUCTION

PMSM has wide range of applications compared to remaining industrial drives due to their compactness,
superior power density, high torque density, high efficiency, high power factor and their low maintenance cost.
Rotor Losses are eliminated due to the absence of slip rings for field excitation which make them ideal for
robotic and automatic production systems. The position sensing which is required for the vector control of
PMSM drive increases the cost of the system along with its space. Speed/position sensorless control [7][8] of
these motor driven systems reduces the system complexity, weight and cost and improves the overall system
reliability and dynamic performance. In order to obtain sensorless control various control algorithms like
reduced order & full order observers [11][12], sliding mode observers [13], back emf estimation [14], Extended
Kalman Filter [14][15][16], Model Reference Adaptive System [17], Artificial Neural Network [18], Fuzzy
logic [19] are proposed.

Among the proposed algorithms EKF is one of the promising observers, which offers best possible filtering of
the noise in measurement and of the system if the noise covariances are known. EKF is a recursive predictive
filter, which provides accurate and quick estimation of variables from all the available measurements regardless

of their precision with rapid convergence and also improves overall reliability of the system. If rotor speed

730 | Page




International Journal of Advance Research in Science and Engineering 3@
Volume No.07, Special Issue No.02, February 2018 IJARSE
www.ijarse.com ISSN: 2319-8354

considered as an extended state and is an incorporated in the dynamic model of a PMSM, Then the EKF can be
used to relinearize the nonlinear for each new value of estimate. As a result, EKF is the best method for
estimation of rotor speed, whose performance is influenced by the values of system parameters and error
covariance matrices Q & R. The investigation shows that the EKF is capable of tracking the actual (d & q) stator

currents and rotor speed, is provided that the elements of the covariance matrices are properly selected.

Il. MATHEMATICAL MODEL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

The voltage equations for a PMSM in the rotor reference frame [1][2] can be expressed as [16].

Va =Rl + Ly Pig — @, Lglq

VG| = Rsic| + Lq piq + o, Lyly + oy )

Where

. . V. . . i, . : i . . .
Va is d-axis stator voltage, 9 is g-axis stator voltage, ' is d-axis stator current, 9 is g-axis stator current, Rsis

Stator phase resistance, Ly is d-axis stator inductance, 9 is g-axis stator inductance, s is Rotor flux, o, is
Electrical speed in rad/sec.

The electromagnetic torque of PMSM is described as:
3 . .

Te:l:_Pn'q Wf_(l—q_l—d)'d :|
> Pala ( )(m

Where P = number of pole pairs

The motion equation is expressed as follows as

199 gy 4T =T,
dt
(4)

Where J is moment of inertia, B is friction coefficient, T, is load torque.

Finally the above equations are mentioned in state space form as follows

di, 1 . . V,

=9 = 2[R, +@,Lyi, |+-2

dt Ld[ ’ qQJ Ly (5)
m—i[—Ri — L4y, — o, :|+V_q

dt _Lq s'q e d el//f Lq (6)
do, 1[3_. 1B T
dt—ibwhW“*H‘%Wﬂ‘F@_Ta)
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111.PROPOSED SCHEME OF EKF BASED SENSOR LESS SPEED CONTROL OF
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Fig 1: EKF based sensorless speed control of PMSM

The proposed control structure of EKF based sensorless speed control of PMSM drive is shown in figure 1. The

inputs of speed controller are the reference speed and estimated speed, and the output is given torque to current

controller. Because the electromagnetic torque is proportional to current, the output of the speed controller is

also the given current of g-axis and also d-axis current taken as zero due to permanent magnets are used in the

rotor. The two phase currents are transformed into three phase currents by using Clark’s transformation. The

pulses are generated using sinusoidal pulse width modulation and these pulses are given to the inverter of

PMSM drive. The three phase sinusoidal currents and voltages are transformed from abc-coordinate system to

dg-coordinate system as represented in equations (8) which are the inputs to EKF.

coso, cos(@e—z?ﬂj COS(HE-FZ?”)

N 2 2y |

S, =3 sinég, sin(ee —?ﬂj sin(&e +?”) S,

S S

° 1 1 1 °
2 2 2

Where ‘S’ represents voltage and current.

% = Electrical angle in rad.

(8)
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IV. DESIGN OF EXTENDED KALMAN FILTER

Kalman filter is a recursive predictive filter that is based on the use of state space techniques and recursive
algorithms. It estimates the state of a dynamic system. In Kalman filter, effect of noise of both system and
surroundings are taken into account using covariance matrices which are updated in each iteration, thus
providing estimation and filtering. This dynamic system can be distributed by some noise, mostly assumed as
white noise. So that the error covariance of the estimator is minimized. In this sense it is an optimal estimator.
This procedure is repeated for each time step with the state of the previous time step as initial value. Therefore
the Kalman filter is called a recursive filter. Drawback of Kalman filter is that for non-linear systems, the
calculation is time consuming. For the implementation of nonlinear systems, these are functions of the state and
consequently change with every time step, iteration and cannot be pre-computed. Short comings of this model
can be overcome by using Extended Kalman filter (EKF) [19] [20]. EKF is stochastic in nature and is well
suited to non-linear systems; the noise in the system gets reduced. Due to its rapid delivery, precise and accurate
estimation, it is used in research and applications. The feedback gain used in EKF achieves quick convergence

and provides stability for the observer.

>°(= f(x,u,w) ©)

y =h(x,u,V) (10)
To derive the discrete time EKF algorithm, to initiate the basic definition of time deviation of a state variable x

s _ X =x(k=D)

T. (1)
X(K) =XT, +x(k -1 (12)
Replace equation (10) in (13)
X(K) = x(k=D)+T f(x,u,w) (13)
Rearrange the above equation in discrete time system equations
X = T (X Uy gn Wiy) (14)

Where fkfl(xkfl’ ukfl’ Wk—l) = 'Aﬁ kal + Bd uk71 + kal

A =1 +AT,
B, =BT,
Y =h (XU, v) (15)

Where he (X Ues Vi) = Ca X, +V,

C,=C
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Where x, is system state vector, uy is input vector (known), w, is process noise, vy is measurement noise, T is

sampling time.

4.1 EKF Algorithm

Step 1: Initialize the state vector and covariance matrices x(0) P, Q,R

Step 2: compute the Jacobian matrices for fis , h
F = afK—l
OX (16)
H _ 9
OX a7
Where fea (X1 U Wep) = AyXey + Byl 5 + W

hk (quk’Vk) =CyX +V,
Step 3: Prediction state (time update)
To perform the time updating of state estimate and estimation of error covariance

X = fk—l(xk—ll U O)

X = f (% 1, U ) +%(0) (18)

_ T
R =FPF' +Q 19)

Step 4: Correction state (measurement update)

To perform the measurement updating of state estimate and estimation of error covariance by using

Kalman gain
_ ~ K=BH"/(HRH" +R)
Calculation of Kalman gain matrix (20)
X, =X+K(y-
Update state prediction ~ ! (y yl) (21)
Where Y1 = HX,
P=(1-KH)P
Estimation of error covariance matrix ( ) ! (22)

4.2 EKF estimation for PMSM drive
The dynamic state equations of PMSM are
di 1 . . V,
d_;‘ = L_d[—Rsld + P, Lyig J + L—:
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dig 1 . . V
E ZL_qI:_Rslq - I:’nWrI—dId - I:>na)rl//f i|+:(?

da J|2

The above equations written in the form of state space

dar :inniq (vi (k=L )iy )}_?wr _%

System equation X =AX+Bu
Observation equation y =Cx
" i, ] R Pol, 1 1
dt Ly L, i L,
di, | | -Pol, R Rl L e L[V
dt Lq L, L, aj L, || Ve
d ) r
d“t’r 3R (L-L)i, 3Ry, -B 0 0
- 2J 2J J - ]
-R, P o, Lq 0 —i ; _
Ly Ly L,
A= _Pna)rLd _Rs —Rw B 0 1
Lq L, Ly B L, Iy
3P, (L~ Ly )i, 3Py, -B 0 0|X=|h u:{vd}
Where L 2J 2J J 4, L 4, (28 & Vq

id
_1ooi
Y=lo 1 o™
a)l’

100}

Where {0 1o

The above equations written in the form of discretization

System equation  k — AX 1 +BU 4 + Wy

Observation equation Yie = CX +Vy
X = fia (X U g, W y)

fk—l(xk—l’ Uy 1 Wk—l) = A Xy + Bl Wy
A =1+AT,

B, =BT,
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Gradient matrix OX
l:ll FlZ F13
F=|Fy Fy Fy
F31 F32 F33
PwlL _
Fll = afk{ ::I_—&TS F12 = afol —__nrm Ts |:21 — 81:K—l — IDna)rLd Ts
28 Ly X, Ly 0% Lq
-R -3P (L, —Ly)i
F22=afK71 :1_&1-5 FzgzafKA: V' Ts Fslzafol: n( q d)q
0X, Ly ’ 0%g L, ’ o 2]
3P
Fs = Fey T Ts Fy= S =1—ETS
28 2] 0Xq J
I Paol ]
1—&Ts ——T, 0
Ly L,
= P
F = MTS _& . nl//f TS
Lg q L,
b, v By
L 2] 2] |
Yo = hk(xk’uk’vk)
h (X, U, Vi) = Cy X +V,
Where Ca =C
oh oh
H _ohy H,=—%=1H,=-%=1
OX 0%, OX,

fr 00
o010
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V RESULTS AND DISCUSSIONS
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In the simulation ly ,Iq ,Vd ,Vq are input variables of EKF algorithm and ly ,Iq , @r are the estimated state
variables. In order to imitate the condition of real system Gaussian white noises are added to feedback values of
la ,Iq .The simulation model has the same noise in the current as the real system, if the power is set to 3x10®
and sample time of the white noise block is set to 2x10sec. The choice of elements of the covariance matrices
P, Q and R is the important step in the design of Kalman filter because of its effect on the performance,
convergence and stability of the system. The initial state error covariance matrix (P) is a diagonal matrix, which
will cause the initial disturbances due to choosing of random values. But when the algorithm converges, it
disappear the effect of matrix P. The High model noise or parameter uncertainties indicates the higher value of
Q which tends in the increase of Kalman gain, resulting in faster filter dynamics but, it leads to poorer steady-
state performance. Measurement noise depends upon the matrix R. whenever there is a increase in the value of
the elements of R, Current measurements are more effected by noise and thus less reliable. This results in the
decrease of filter gain, yielding poorer transient response.

MATLAB Simulated values of error covariance matrices Q and R are given by:

Q =diagonal of [5.108 8.753 8.553]

R =diagonal of [7.963 8.491]

The measured and estimated waveforms of iy and iy are shown in figure 2 & 3.The estimated values of currents
having large deviations due to convergence problem of state error covariance matrix at the beginning. After 0.05
sec both the state variables are converge to actual values.

The performance of EKF becomes a part of speed control, while the estimated speed as feedback. Therefore
EKF runs in closed loop condition, but the parameters of speed controller remain unchanged. In figure 4 the
actual and estimated speeds are compared and the reference speed is given as 500 rpm. The estimated speed is
tracks the actual speed at 0.001 sec only, so estimated speed is quickly converges due to precise values of
matrices Q & R. When estimated speed as feedback, speed error is given to the PI controller which is reduce the

error & settling time and also improves the steady state performance of the system.
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Fig 5: lac current waveform  Fig 6: 144 current waveforms

738 |Page




International Journal of Advance Research in Science and Engineering 3@
Volume No.07, Special Issue No.02, February 2018

IJARSE
www.ijarse.com ISSN: 2319-8354
500

12 400

10 S '
S E B = & I
5= 25
£ ° e ‘EE 200
== 4
= 100

2

0 U ' '

0 05 ] 0 01 02 03 04
time in sec titne in sec

Fig 7. Electro magnetic torque waveform Fig 8: Rotor position in degrees

Figure 5 & 6 shows the stator currents of abc and dq axes respectively. These currents having large ripples at the
beginning due to high speed error is given to Pl controller. At 0.02 sec these currents are settled. Figure 7 shows
the electromagnetic torque of PMSM drive,which is settles at 0.1 sec. From Figure 8, it is clear that rotor

position is starts from 0.01sec.

V. CONCLUSION

The intent of this paper, EKF based sensorless speed control of PMSM drive has been presented to show the
results of estimated values of speed and dg-axes stator currents. The performance of EKF is mainly depends on
error covariance matrices Q & R, which are suitably selected. These matrices are improved the system
convergence and quality of estimation. The simulation results show the superior performance in terms of settling
time, reduction of noise and overall system stability.

Appendix A:

Simulation Parameters values of PMSM drive:

S.NO Parameters used in PMSM Symbol Numerical value
1 Resistance of stator R, 0.675 ohm

2 Direct inductance of stator L, 0.0085 Henry
3 Quadrature inductance of stator Lq 0.0085 Henry
4 Flux linkages Wy 0.12 Weber

5 Inertia of rotor J 0.0011 Kg/m?
6 Viscous friction coefficient B 0.0014 Nm/s?
7 Pair of poles P 3

8 Rated speed w 1000 rpm

739 | Page




International Journal of Advance Research in Science and Engineering 3@

Volume No.07, Special Issue No.02, February 2018

IJARSE
www.ijarse.com ISSN: 2319-8354

REFERENCES

[1] Pragasen Pillay and Ramu Krishnan, “Modeling of Permanent Magnet Motor Drives,” IEEE Transactions
on Industrial Electronics, Vol.55, No.4, (1988), 537-541.

[2] Pragasen Pillay and Ramu Krishnan, “Modeling, simulation and analysis of Permanent magnet motor
drives, Part-I: The Permanent Magnet Synchronous Motor Drive,” IEEE Transactions on Industry
Applications, Vol.25, No.2, (1989), 265-273.

[3] L. Yongdong, Z. Hao, and A. Open, “Sensorless Control of Permanent Magnet Synchronous Motor — A
Survey,” IEEE Vehicle Power and Propulsion Conference, 1 - 8, (2008).

[4] P. Ramana, K. Alice Mary, M. Surya Kalavathi and A.Swathi “Parameter Estimation of Permanent
Magnet Synchronous Motor-A Review,” i-manager’s Journal on Electrical Engineering, V0l.9, No.4,
(2015), 46-56.

[5] A. Qiu and B. Wu, “Sensorless Control Of Permanent Magnet Synchronous Motor Using Extended
Kalman Filter,” Canadian Conference on Electrical and Computer Engineering, 1557-1562, (2004).

[6] D. Q. Dang, M. S. Rafaq, H. H. Choi, and J. Jung, “Online Parameter Estimation Technique for Adaptive
Control Applications of Interior PM Synchronous Motor Drives,” IEEE Transactions on Industrial
Electronics, Vol. 63, No. 3,(2016),1438-1449.

[7] J. Zhu, “The Research of Sensorless Vector Control for Permanent Magnet Linear Synchronous Motor,”
Journal of Computers, Vol. 8, No. 5, (2013), 1184-1191.

[8] Bojoi R, Griva G and Profumo F, “Field oriented control of dual three-phase induction motor drives using
a Luenberger flux observer,” Industry applications conference, Tampa, USA, 1253-1260, (2006).

[9] P. Borsje, T. F. Chan, Y. K. Wong and S. L. Ho, "A Comparative Study of Kalman Filtering for
Sensorless Control of a Permanent-Magnet Synchronous Motor Drive," IEEE International Conference on
Electric Machines and Drives, 815-822, (2005).

[10] Chafaa K, Ghanai M and Benmahammed K, “Fuzzy modeling using Kalman filter,” IET Control Theory
and Applications, Vol.1, No.1, (2007),58-64.

[11] P.Ramana, K. Alice Mary, M.Surya Kalavathi and M.Phani Kumar, “A Non-linear speed Observer for a
high performance PMSM drive,” International Journal of Electrical Engineering and Electrical Systems,
Vol.5, Issue No.1, pp.01-06, Jan-March, 2011

[12] P.Ramana, K. Alice Mary, M. Surya Kalavathi and J. Hareesh Kumar, “Design of a Non-linear Reduced
and Full order Observers for an Inverter Fed Permanent Magnet Synchronous Motor Drive,” Indian
Journal of Science and Technology, Vol.9, No.10,(2016), 1-8.

[13] H.Kim, J. Son, J. Lee, and S. Member, “A High-Speed Sliding-Mode Observer for the Sensorless Speed
Control of a PMSM,” IEEE Transactions on Industrial Electronics, Vol. 58, No. 9, (2011), 4069-4077.

[14] Bolognani S, Tubiana L, and Zigliotto M, “Extended Kalman Filter Tuning in Sensorless PMSM Drives,”
IEEE Transactions on Industry Applications, Vol. 39, No.6, (2003), 1741-1747.

[15] Bolognani S, Oboe R and Zigliotto M, “Sensorless full-digital PMSM drive with EKF estimation of speed

and rotor position,” IEEE Transactions on Industrial Electronics, Vol. 46, No.1, (1999), 184-191.

740 |Page




International Journal of Advance Research in Science and Engineering 3@

Volume No.07, Special Issue No.02, February 2018

IJARSE

www.ijarse.com ISSN: 2319-8354

[16]

[17]

[18]

[19]

[20]

D. Xu, S. Zhang, and J. Liu, “Very-low speed control of PMSM based on EKF estimation with closed
loop optimized parameters ,” Elsevier, ISA Transactions,Vol. 52, (2013) , 835-843.

S. Maiti, C. Chakraborty, and S. Sengupta, “Simulation studies on model reference adaptive controller
based speed estimation technique for the vector controlled permanent magnet synchronous motor drive,”
Simulation Modelling Practice and Theory,Vol. 17, No0.4,(2009), 585-596.

Hicham Chaoui, Wail Gueaieb and Mustapha C. E. Yagoub, “Neural network based speed observer for
interior permanent magnet synchronous motor drives,” |EEE Electrical Power & Energy Conference
(EPEC), (2009).

C. Elmas, O. Ustun, and H. H. Sayan, “A neuro-fuzzy controller for speed control of a permanent magnet
synchronous motor drive,” Expert Systems with Applications, VVol. 34, No. 1, (2008), 657-664.

E. Ghahremani and I. Kamwa, “Dynamic State Estimation in Power System by Applying the Extended
Kalman Filter With Unknown Inputs to Phasor Measurements,” IEEE Transactions on power systems,
Vol. 26, No. 4, (2011), 25562566

741 |Page



http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hicham%20Chaoui.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Wail%20Gueaieb.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mustapha%20C.%20E.%20Yagoub.QT.&newsearch=true

