

401 | P a g e

DESIGN OF HIGH SPEED IEEE-754 SINGLE-

PRECISION FLOATING POINT MULTIPLIER

M.Bharathi
1
, K.Prakash Rao

2

1
Student Scholar M.Tech Department of ECE, Sri Venkateswara College of Engg and Tech, (India)

2
Assistant Professor, Department of ECE, Sri Venkateswara College of Engg and Tech, (India)

ABSTRACT

In this paper we present an efficient implementation of an IEEE 754 single precision floating point multiplier

using VHDL. Several enhancements are introduced to the design; the final carry propagation adder is

implemented. As decimal multiplication is important in many commercial applications like financial analysis,

banking, tax calculation, currency conversion, insurance, and accounting etc. this multiplier design adding

several features including exponent generation, shifting of the intermediate product, rounding, and exception

detection and handling. The core of the decimal multiplication algorithm is an iterative scheme of partial

product accumulation employing decimal ripple carry addition to reduce the critical path delay. Area and delay

estimates are provided for a verified VHDL register transfer level model of the multiplier. This new

implementation is different in the sense that it accepts as a user parameter the operated size of the unit about to

be synthesized and creates the requested unit. This feature makes our implementation a very convenient tool for

rapid application prototyping. We also highlight the strengths and limitations of this approach in the creation of

custom floating point units.

I.INTRODUCTION

A standard notation enables easy exchange of data between machines and simplifies hardwarealgorithms. IEEE

754 standard defines how floating point numbers are represented.

In IEEE 754 standards, the floating-point numbers is represented by three field as first field is a sign bit „S‟ (0

is positive and 1 is negative) this representation is called sign and magnitude. The second field is exponent „E‟

(signed, very large numbers have large positive exponents and very small close-to-zero numbers have negative

exponents also More bits in exponent field increases range of values, the third field „F‟ is the Fraction field

(fraction after binary point and More bits in fractionfield improves the precision of Floating point numbers

Value of a floating-point number is

Sign

(1)

Exponent

(8-bits)

Significant

(23-bits)

31 30

23

22

0

402 | P a g e

(–1) Sign × (1.Significant) × 2(exponentbias).

where bias is equal to 127.

II FLOATING POINT MULTIPLICATION ALGORITHM:

Multiplying two numbers in floating point format is done by

1- Adding the exponent of the two numbers then subtracting the bias from their result.

2- Multiplying the significand of the two numbers.

3- Calculating the sign by XORing the sign of the two numbers.

In order to represent the multiplication result as a normalized number there should be 1 in the MSB of

the result (leading one). As stated in the floating point format, normalized floating point numbers have the form

of as

Value = (-1S) * 2 (E - Bias) * (1.M).

Fig I : FP Multiplier Operational Flow Chart

To multiply two floating point numbers the following is done:

[1]Multiply the significand (1.M1*1.M2).

[2]Placing the decimal point in the result

[3]Add the exponents; i.e. (E1+E2– Bias).

[4] Obtaining the sign; i.e. S1 xor S2.

[5] Normalizing the result; i.e. obtaining 1 at the MSB of the results significand.

[6]Rounding the result to fit in the available bits.

[7] Checking for underflow/overflow occurrence

403 | P a g e

Consider a floating point representation similar to the IEEE 754 single precision floating point format, but with

a reduced number of mantissa bits (only 4) while still retaining the hidden „1‟ bit for normalized

Numbers: A = 0 10000011 0011 = 19.2

B = 010000101 0000= 66.6

To multiply A and B

1. Multiply significand: 1.0011 X1.0000

 00000

00000

00000

00000

10011

100110000

2. Place the decimal point: 1.00110000

3. Add exponents: 10000011+10000101=

100001000

The exponent representing the two numbers is already shifted/biased by the bias value (127) and is not the true

exponent; i.e. EA = EA-true + bias and EB = EB-true + bias And EA+ EB = EA-true + EB-true + 2 bias So we

should subtract the bias from the resultant exponent otherwise the bias will be added twice.

100001000

- 01111111

10001001

4. Obtain the sign bit and put the result together: 10001001

1.00110000

5. There is a 1 at the radix point (decimal point). So no need to normalize the resultant

010001001 1.00110000

The result is (without the hidden bit):

0 10001001 00110000

404 | P a g e

6. The mantissa bits are more than 4 bits (mantissa available bits); rounding is needed. If we applied the

truncation rounding mode then the stored value is:

010001001 0011

 We present a floating point multiplier in which rounding technique is implemented. Rounding support can be

added as a separate unit that can be accessed by the multiplier or by a floating point adder, thus accommodating

for more precision. The multiplier structure; Exponents addition, Significand multiplication, and Result„s sign

calculation are independent shown in figure 5.4. The significand multiplication is done on two

24 bit numbers and results in a 48 bit product, which we will call the intermediate product (IP). The IP is

represented as (47 downto 0). The following sections detail each block of the floating point multiplier.

III HARDWARE OF FLOATING POINT MULTIPLIER

Fig. II(a): Floating Point Multiplier Block Diagram

A. Sign calculation :

The main component of Sign calculator is XOR gate. If any one of the numbers is negative then result will be

negative. The result will be positive if two numbers are having same sign

B. Exponent Adder :

This sub-block adds the exponents of the two floating point numbers and the Bias (127) is subtracted from the

result to get true result i.e. EA + EB – bias. To perform addition of two 8-bit exponents, an 8-bit ripple carry

adder (RCA) is used. The Bias is subtracted using an array of ripple borrow subtractors.

Fig. II (b) Ripple Carry Adder.

405 | P a g e

C. Multiplier for Unsigned Data:

This unit is used to multiply the two unsigned significand numbers and it places the decimal point in the

multiplied product. The result of this significand multiplication will be called the intermediate product (IP).

Multiplication is to be carried out so as not to affect the whole multiplier‟s performance. In shift and add

multiplier, the carry bits are passed diagonally downwards. Partial products are generated by AND the inputs of

two numbers and passing them to the appropriate adder.

Fig. II (c) Schematic representation of Multiplier

D. Normalizer:

The result of the significand multiplication (intermediate product) must be normalized to have a leading „1‟ just

to the left of the decimal point. The shift operation is done using combinational shift logic made by

multiplexers.

IV. UNDERFLOW/OVERFLOWDETECTION

Overflow/underflow means that the result‟s exponent is too large/small to be represented in the exponent field.

The exponent of the result must be 8 bits in size, and must be between 1 and 254 otherwise the value is not a

normalized one. An overflow may occur whileadding the two exponents or during normalization. Overflow due

to exponent addition may be compensated during subtraction of the bias; resulting in a normal output value

(normal operation). An underflow may occur while subtracting the bias to form the intermediate exponent. If the

intermediate exponent < 0 then it‟s an underflow that can never be compensated; if the intermediate exponent =

0 then it‟s an underflow that may be compensated during normalization by adding 1 to it. When an overflow

occurs an overflow flag signal goes high and the result turns to ±Infinity (sign determined according to the sign

of the floating point multiplier inputs). When an underflow occurs an underflow flag signal goes high and the

result turns to ±Zero (sign determined according to the sign of the floating point multiplier inputs).

Denormalized numbers are signaled to Zero with the appropriate sign calculated from the inputs and an

underflow flag is raised. Assume that E1 and E2 are the exponents of the two numbers A and B respectively;

Theresult‟s exponent is calculated by

Eresult = E1 + E2 – 127.

406 | P a g e

E1 and E2 can have the values from 1 to 254; resulting in Eresult having values from -125 (2-127) to 381

(508127); but for normalized numbers, Eresult can only have the values from 1 to 254. Table I summarizes the

Eresult different values and the effect of normalization on it

ERESULT

Specification

Observation

-125 =

ERESULT< 0

Underflow

Cannot be compensated during

normalize

 May turn to normalized number

during normalization

ERESULT = 0

Zero

1 < ERESULT

< 254

NormalisedNumber

May result in over flow during

normalization

255 =

ERESULT

Overflow

Cannot be compensated

Table I: Normalization Effect OnResult’s Exponent And Overflow/Underflow Detection

V. SIMULATION RESULTS

The simulation results for corresponding inputs are shown in Fig. The simulation is done using Modelsim 6.3f

and for synthesis purpose Xilinx 14.3 software is used.

Considering the random floating point numbers,

Inputs: a = 19.2;

b = 66.6;

Output: result = 1278..72;

407 | P a g e

A. Observation

Time taken for

execution

2500

VI. CONCLUSION

The new design of multiplier has efficient in operation as well as has used less components asneed of Subtractor

circuit for the exponent calculation also reduced and the delay time for the multiplication is 14 nanosecond

which is also less than the previously designed multipliers. So we say that the proposed multiplier has efficient

in operation and cost. This paper presents an implementation of a floating point multiplier that supports the

IEEE 754 -2008 binary interchange format; the multiplier doesn‟t implement rounding and just presents the

significand multiplication result as is (48 bits); this gives better precision if the whole 48 bits are utilized in

another unit.

VII. FUTURE WORK

Single Precision floating point multiplier has been implemented by using Shift and Add multiplier, which

consume low power and took 2500ns to execute. With unsigned multiplication there is no need to take the sign

of the number into consideration. However in signed multiplication the same process cannot be applied because

the signed number is in a 2‟s compliment form which would yield an incorrect result if multiplied in a similar

fashion to unsigned multiplication. Therefore such algorithm is required which can be applicable for both

numbers. Booth multiplier is such a multiplier which is used for signed number. Booth algorithm provides a

procedure for multiplying binary integers in signed-2‟s complement representation. Therefore floating point

multiplier can also be implemented by using Booth Algorithm.

REFERENCES

[1] Shahzad Khan. “Implementation and Simulation of Ieee 754 Single- Precision floating point

multiplier”, Bhopal, 2014.

408 | P a g e

[2] Pierre, L. “VHDL description and formal verification of systolic multipliers. In CHDL”, N.

Holland, 1993. [3] A. Kaldewaij, “Programming: The Derivation of Algorithms”, Prentice-Hall,

1990.

[3] John G. Proakis and Dimitris G. Manolakis (1996), “Digital Signal Processing: Principles,.

Algorithms and Applications”, Third Edition

[4] A. D. Booth, “A signed binary multiplication technique”. Quart. J. of Mech. Appl. Math, 4(2),

1951.

[5] Volnei A. Pedroni: “Circuit Design and Simulation with VHDL”, Second edition, PHI.

[6] BROWN, Stephen D., “Fundamentals of Digital Logic with VHDL design”, Boston: McGraw-Hill,

2000.

[7] Peter J. Ashenden, “The Designer‟ s Guide to VHDL”, Morgan Kaufmann Publishers, 95 Inc.,

1996.

[8] V. Kantabulra, “Designing optimum one-level carry-skip adders,” IEEE Transactions on

Computers, vol. 42, no. 6, pp. 759-764, June 1993.

[9] Beebe, H.F.Nelson, “Floating Point Arithmetic, Computation in Modern Science & Technology”,

December, 2007 [11]N. Weste, D. Harris, “CMOS VLSI Design”, Third Edition, Addison Wesley,

2004

