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ABSTRACT 

The paper describes a simple treatment for the fringing fields of an air gap in the core of a magnetic component 

such as an inductor or a transformer. It verifies the derived analytical formulas for the fields by using numerical 

(finite-element) calculations. It then applies these formulas to the calculation of high-frequency eddy-current 

losses for two types of winding arrangements, both of which employ thin rectangular conductors. The 

rectangular conductors are commonly used in flex circuit windings, printed circuit windings, and thin-film 

windings. The two types of winding configurations are flat and barrel wound. Each behaves in a different way 

as a function of the position of the conductor. 

 

Index Terms—Air gap, fringing field, high frequency, inductor, motors, power conditioning, power 

conversion, power electronics, transformer, winding loss. 

 

I. INTRODUCTION 

  

IN MANY high-performance power electronics applications, the design of the magnetic components, such as 

inductors and transformers, is the most important factor since it affects the overall efficiency, size, and height of 

power conversion electronics in a very significant manner. In particular, the efficiency of the magnetic elements 

is of great value for the power converter designer. 

A common problem in the design of a high-frequency mag-netic component with an air gap is how the fringing 

field af-fects the high-frequency winding losses and how to configure the windings to minimize the effect of the 

fringing field of the air gap. A number of authors have addressed the problem of fringing field losses at high 

frequencies [1]–[9]. Most of the pre-vious finite-element work [1]–[5] relates to multiple, discretely distributed 

air gaps as compared to a single lumped gap. It has been shown that distributing the gap along the magnetic path 

reduces winding loss, as compared to the loss in the case of a single lumped gap. Also, the emphasis in these 

works has been on the planar magnetics [2]–[5]. Two previous analytic works have also considered the problem 

of fringing field losses using 2-D solutions of electromagnetic equations [6], [7]. However, these solutions 

remain fairly complicated to use, one requiring numerical integrations while the other requires an iterative pro-

cedure. Furthermore, the solutions are provided only for the net fields, which include fringing fields, self fields, 

and proximity fields, and net losses and effects of fringing fields separately cannot be clearly discerned. Other 
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related work includes the cal-culation of total energy and inductance [8], [9]. 

Thus, there is a need to derive simple analytic formulas that can be used to calculate fringing fields and the 

associated high-frequency winding losses. These formulas can be used to quickly evaluate the effect of fringing 

field on the winding designs, especially if there are a number of candidate designs being considered. 

Another important motivation for this paper is that the cur-rent understanding about the fringing field and its 

effect on the winding loss is not very accurate (even qualitatively) and impor-tant questions remain open. For 

example, the question of how far away from the edge of the gap the fringing field remains im-portant, is still not 

settled. 

In this paper, by using a scalar potential approach, we have derived two simple formulas for the fringing fields. 

The geom-etry and coordinate system used in that paper is shown in Fig. 1. The two derived formulas for the  

and  components of the fringing field  are 

 

 

Where  m = 0  if  x
2
 + y

2
 > (lg)

2 
 and m = 1      if  x

2
 + y

2
 < (lg)

2 
 .    lg   is half of the total gap length. Hg = 0.9NI / 

2lg.  Further, we provide numerical (FEM) validation for these formulas. In addition, we address the issue of 

high-frequency fringing field loss by the use of the following well-known formula for high frequency eddy-

current loss per unit length for a thin rectangular conductor [10]: 

 

where  is the permeability of the free space,  is the component of the fringing field, which is perpendicular 

to the long face of the conductor,  is the frequency,  is the width of the conductor,  is the thickness of the 

conductor, and  is the resistivity of the conductor material. The formula assumes that the skin effect is 

negligible. 
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                    Fig. 1.  Geometry for the air-gap and the coordinate system used in the paper. 

 

 

 

              ` (a) 

 

 

(b) 

 

                 Fig. 2. (a) Barrel winding arrangement. (b) Flat (planar) winding arrangement. 

 

Two winding arrangements of rectangular conductors are considered: 1) barrel wound [Fig. 2(a)] and 2) flat 
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wound [Fig. 2(b)]. For barrel wound magnetic components, the width  is along the -axis and  is equal to 

 , as given by (I.1) and evaluated at the center of the conductor for which loss is being calculated. Similarly, 

for flat wound magnetic components, the width  is along the -axis and  should be taken to be  of (I.2) 

evaluated at the center of the flat wound conductor for which the loss is to be calculated. 

 

II. SCALAR POTENTIAL 

There are several methods of calculating the magnetic field of a gap. Here, we use a scalar potential and 

separation of variables approach to obtain an exact expression for this scalar potential. We consider the region in 

and around the gap as a source-free region, which implies that self and proximity fields are negligible. This 

assumption has been verified using finite-element simulations both for the inductor and transformer cases. Then 

a scalar potential  can be defined which satisfies the Laplace equation [11], [12] and is related to the 

magnetic field  by 

 

The coordinates and the geometry are defined in Fig. 1. Here, Hg is the magnetic field at the center edge of the 

gap 

(x = 0 , y = 0) It is assumed that the gap is infinitely deep. This assumption is valid if the gap length is small 

compared to the dimension of the core. We also assume that the core pieces near the gap are equipotential. This 

assumption implies large permeability of the core material, which usually is a very good assumption. The scale 

of  is set by the field at the center of the gap H`g , which is given by  

 

Where  NI is the driving amperes-turns, 2lg  is the gap length µ is the permeability of the core material, and lm is 

the magnetic length in the core. A large permeability is assumed. The exact relationship between Hg  and H`g , 

can be determined by a magnetostatic finite-element calculation. However, for most inductor and transformer 

applications, the gap length is very small compared to the width of the core piece and it can be shown using 

finite-element simulation that 

 

 

See Fig. 3 for a finite-element example. In region I, the potential can be expanded as 
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In the region of primary concern, region II, the potential is given by   

 

The field   in (II.4) is given by (II.3). The constants  and  are determined by matching the potential and 

the derivative at . Matching the potential at  

 

 

 

Fig  3.  Example of finite-element result showing  the value of H at the edge of the gap and the field value 
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deep inside the gap. 

Similarly matching the normal derivative at , we get 

 

These two sets of equations can be solved for the coefficients  and  by use of Fourier transforms. First, an 

equation for  is obtained by multiplying (II.6) with  and integrating over . The left-hand side 

simplifies due to the orthogonality of the sine functions and only one  remains on the left-hand side. 

Similarly, an equation for the coefficients  is obtained by multiplying (II.7) with  and integrating 

over . In this case, only one term on the right-hand side survives due to the orthogonality of sine functions and 

one obtains an equa-tion for . Thus, one ends up with two sets of simultaneous equations. If the integrals on 

the right-hand side of the equation resulting from (II.6) and the integral on the left-hand side of the equation 

resulting from (II.7) are performed, then these two sets of equations can be solved for the two sets of 

coefficients  and  . 

 The resulting potential in the region of interest  is given by 
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The coefficients  are a decreasing function of  (roughly  ). Thus, the first few terms make the dominant 

contribution. In Section V, it is shown that even just the first term gives a good approximation of the exact 

result. 

 

III .FRINGING FIELDS 

Differentiating the potential  with respect to  and , we ob-tain the - and -component of the magnetic field 

in the region 

 

As a first approximation, we keep only the first terms in (III.1) and (III.2) to obtain 
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Integrations in the above two equations yield the approximate analytic result [13] 

 

 

where  if  and  if  .  

 

Verifications for (III.5) and (III.6) are provided in section V. These two approximate results can then be used to 

calculate the high-frequency conductor losses. Depending on the winding 

                      

Fig. 4. (a) Variation of the y-component of the fringing field H with the x 

(horizontal) distance from the edge of the core. Gap length = 2l = 2. (b) Variation of the y-component of the 

fringing field H with y (vertical) distance from the center line with x as a parameter. Gap length = 2l = 2. 

configuration (“flat” versus “barrel”), either the -component or the -component is important [see Fig. 2(a) and 

(b)] 
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IV.  FIELD DISTRIBUTION 

Fig. 4(a) shows the variation of the -component of the field g  with the horizontal distance  from the edge of 

the core for four different values of . These fields have been obtained by setting g=1. It is also assumed that 

. We remind the reader that the total gap length is equal to  . Generally, the field falls off substantially 

within one gap length distance  from the edge of the core. However, it is important to note that the field 

component remains substantially higher than other fields (self and proximity fields) in the problem, even after 

10 gap length distance. We have confirmed this by using finite-el-ement modeling. Thus, the fringing cannot be 

neglected even at such large distances from the core and may determine the overall loss in a winding conductor 

at such distances. Another interesting feature to note from Fig. 4(a) is that for , the initial 

                        

                 

 

=    Fig. 5. (a) Variation of the x-component of the fringing field H  with the y(ver-tical) distance from the 
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central line with x as a    parameter. Hg=1, Gap length = 2l = 2.                                                                         

(b) Variation of x-component of the fringing field H  with the x  

 

(horizontal) distance from the edge of the core for fixed values of y. H = 1; gap length = 2lg=2. 

value of  for  must be zero because of the boundary condition imposed by the large permeability of the 

core. 

Similarly, Fig. 4(b) shows the variation of the -component of the field  with the vertical distance  with  

as a parameter. First thing we note is that for small , there is a sharp drop in the value of the field as we 

approach the core corner of the core  , which is again due to the boundary condition, that at the surface of 

the core the field must be perpendicular to the surface of the core. For more important cases of practical 

interest, where there is substantial insulation separating the core from the windings,  is usually 1. For such 

cases, we see from Fig. 4(b) the drop in the value of the field is much more gradual. 

Fig. 5(a) shows the variation of the -component of the fringing field  with the  (vertical) distance from 

the central line for various values of , the horizontal distance from the core. The most outstanding feature 

with regards to  is that its value peaks near the corner of the gap  , in sharp contrast to  , which 

peaks along the central line  .  
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Fig. 6. (a) Comparison of the calculated fringing field component H  of a transformer with the finite-element 

simulation. (b) Comparison of the calcu-lated fringing field component H of a transformer with the finite-

element simulation 

 

The symmetry of the model forces  to be zero or near zero along the central line. This feature has not been 

fully recognized in the past. In particular, it indicates that for barrel type windings, shown in Fig. 2(b), the 

maximum fringing field loss would occur not along the central line but near the corner of the gap. Fig. 5(b) 

shows the variation of  with  for fixed values of . Once again we see that the peak of the initial value of  

occurs near  (near the corner). However, another in-teresting feature, which is apparent from Fig. 4(b), is 

that the curves, which start out high, also show steeper decline as the value of  is increased. In fact some of the 

curves that start out low in value can have larger values as  is increased. 

 

V.NUMERICAL VALIDATION FOR FIELDS  

In order to validate the fringing fields’ formulas (I.1) and (I.2), we have performed extensive numerical (FEM) 

calcula-tions and have found good agreement between the numerical results and the formulas both for 

transformers and inductors having an air gap. 
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Fig. 7. (a) Comparison of the calculated fringing field component H  of a inductor with the finite-element 

simulation. (b) Comparison of the calculated fringing field component H of a inductor with the finite-element 

simulation results 

 

In Fig. 6(a) and (b), we show the comparison of finite-element simulation with the calculations using (I.1) and 

(I.2) for the  and  components of the fringing field in the case of a gapped transformer. The transformer had a 

gap length of 1 mm, a turn’s ratio of 2:1, and driving current of one ampere. The number of primary turns was 

32 and the primary and secondary were inter-leaved. As is clear from these graphs, generally the agree-ment 

between finite-element simulation results and the results obtained using formulas is very good. In particular, the 
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form of variation of  and  is described exactly. In addition, there is excellent agreement between the 

magnitudes calculated, using for  and the finite-element results. In the case of  , the agreement is not as 

good with a difference of about 10%–15%. This may be caused by the sharp corner of the model, which 

produces large variations in the fields around the corners of the gaps. 

 

 

 

 

 

Fig. 7(a) and (b) shows a similar comparison in the case of an inductor. The inductor had 24 turns, a gap length 
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of 1 mm, and a driving current of one ampere. Once again the agreement between calculated results for  and 

 and finite-element simulation is excellent. 

 

 VI. LOSS DISTRIBUTION 

Next we consider high frequency winding loss of thin rectangular winding conductors by employing the well-

known formula (I.3). We first consider loss due to the  distribution, which is the more important component 

of the field for the barrel wound windings, shown in Fig. 2(a). Fig. 8(a) shows the variation of the loss due to 

this component as a function of  for fixed values of . For these figures, the following values are used in (V.8): 

 mm,  mm,  kHz,  mho/m, and . The most important feature, which is somewhat 

surprising, is that the loss 

shows a maximum near  (near the corner) instead of  (near the central line). This is because the field 

component  shows a maximum around  as shown in Fig. 5(a). Simi-larly, Fig. 8(b) shows the same loss as 

a function of  for fixed values of . 

 

 

 

Fig. 9. (a) Variation of loss due to H values of y. (b) Variation of loss due H values of x. 
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Next, we consider the loss for the flat wound winding for which the  component of the field  is more 

important. Fig. 9(a) shows the loss as a function of  for fixed values of . We see that the initial value of loss is 

largest for the smaller values of  (near the central line). However, the drop in the values as  is increased is also 

steeper for these values of . For larger values of , all curves approach roughly the same value irrespective of 

the value of , indicating for some distance from the core losses would be somewhat independent of the vertical 

position. Similarly, Fig. 9(b) shows the variation of this loss with  for fixed values of . Once again we see a 

similar variation, where the initial values of the loss start high near the core edge  but shows a much steeper 

decline in the value as  is increased. 

                          

 

 

Fig. 10. High-frequency loss per unit length of a conductor with aspect ratio of 4:1 due to (a) y-component and 
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(b)x-component of the fringing field. 

 

VII. NUMERICAL VALIDATION FOR LOSS 

Fig. 10(a) and (b) shows the comparison of the theoretical computational results of fringing field high frequency 

loss using (I.3), and either (1) or (2) with finite-element simulation results. The results are shown for a 40-turn 

inductor only but the results for a gapped transformer are similar. The exciting current is one ampere and the 

gap length is 1 mm. The frequency was chosen to be 100 kHz. The conductor for which loss is calculated has an 

aspect ratio of 4:1 and is made of copper. For Fig. 10(a), the results are shown along a horizontal line with . 

This line was chosen because  is the largest along this line. The conductor was placed so that its long face 

was horizontal. For Fig. 9(b), the conductor was placed along a vertical line with  mm with its face 

vertical. 

 

It is clear from Fig. 10(a) and (b) that there is general agree-ment between the finite-element results and the 

results obtained by using (I.3) for both the  and  component of the fringing field. A somewhat larger 

difference in the case of Fig. 10(b) may be due to the sharp corner, which makes it somewhat hard to sat-isfy 

boundary conditions in the finite-element algorithms. 

 

VIII. CONCLUSION 

We have derived two simple formulas for the calculation of fringing field components. We have shown that 

these formulas can be used for calculating high-frequency fringing field loss for thin rectangular conductors. 

Both the field formulas and loss calculations have been validated numerically using finite-ele-ment analysis. 

The formulas for fringing fields may also be ap-plicable to electrical machines such as motors and generators 

where air gaps can determine the field distribution, the power converted (from electrical to mechanical or vice 

versa), as well as the losses. 

 

Also to be noted is that even though we have discussed the loss calculations only for thin rectangular conductors 

and is di-rectly applicable to thin film [14]–[16], thick film [17], printed circuit board and flex circuit [18] 

windings, the qualitative con-clusions regarding the variation of the loss with the position of the conductors also 

apply to other conductor shapes as round wires and thick rectangular conductors. However, in many cases more 

exact formulas would be needed for shapes other than thin rectangular conductors. In particular, the formula for 

the fringing field loss for a round conductor would be needed. Also, the formula for rectangular conductors with 

an aspect ratio close to 1:1 is needed. Dealing with both of these conductor shapes requires the simultaneous 

incorporation of both  and  com-ponents of the fringing field in the loss calculation. This can be done using 

the principle of superposition. We intend to develop such formulas in a near future publication. 

 

While it is true that the fringing field, if present, is over-whelmingly dominant over the self and proximity effect 
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field (generally speaking), some of the winding conductors may be placed far away from the air gap. In such a 

case the fringing field may have decayed enough to become comparable in magnitude to the self and proximity 

fields. In this situation, one must use all three fields in the calculation of the winding loss. Once again, the 

principle of superposition can be used. A future publication would address the problem of incorporating self and 

proximity fields in the analysis of fringing field loss. 

 

The current paper also neglects skin effect. Inclusion of this effect may pose a formidable challenge and is 

beyond the scope of the present work. However, if the fringing field by itself does vary appreciably along the 

width of the conductor, a rough treat-ment suggests that the skin effect may be incorporated, approx-imately, by 

modifying (I.3) as follows: 

 

where the function  is given by 

 

and where  and  is the skin depth. A future publication will provide a fuller description of the derivation 

of (VIII.1) and finite-element simulation verification. 

Although, in this paper, we have only considered high fre-quency winding losses due to the fringing fields, the 

fringing field formulas (I.1) and (I.2) derived here may also be used for calculating laminations core losses of 

low frequencies ( 50 Hz) reactors, where split laminations are used [19], [20]. A future publication will explore 

these types of core losses in greater detail. 
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