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ABSTRACT

The paper describes a simple treatment for the fringing fields of an air gap in the core of a magnetic component
such as an inductor or a transformer. It verifies the derived analytical formulas for the fields by using numerical
(finite-element) calculations. It then applies these formulas to the calculation of high-frequency eddy-current
losses for two types of winding arrangements, both of which employ thin rectangular conductors. The
rectangular conductors are commonly used in flex circuit windings, printed circuit windings, and thin-film
windings. The two types of winding configurations are flat and barrel wound. Each behaves in a different way

as a function of the position of the conductor.

Index Terms—Air gap, fringing field, high frequency, inductor, motors, power conditioning, power

conversion, power electronics, transformer, winding loss.

I. INTRODUCTION

IN MANY high-performance power electronics applications, the design of the magnetic components, such as
inductors and transformers, is the most important factor since it affects the overall efficiency, size, and height of
power conversion electronics in a very significant manner. In particular, the efficiency of the magnetic elements
is of great value for the power converter designer.

A common problem in the design of a high-frequency mag-netic component with an air gap is how the fringing
field af-fects the high-frequency winding losses and how to configure the windings to minimize the effect of the
fringing field of the air gap. A number of authors have addressed the problem of fringing field losses at high
frequencies [1]-[9]. Most of the pre-vious finite-element work [1]-[5] relates to multiple, discretely distributed
air gaps as compared to a single lumped gap. It has been shown that distributing the gap along the magnetic path
reduces winding loss, as compared to the loss in the case of a single lumped gap. Also, the emphasis in these
works has been on the planar magnetics [2]-[5]. Two previous analytic works have also considered the problem
of fringing field losses using 2-D solutions of electromagnetic equations [6], [7]. However, these solutions
remain fairly complicated to use, one requiring numerical integrations while the other requires an iterative pro-
cedure. Furthermore, the solutions are provided only for the net fields, which include fringing fields, self fields,

and proximity fields, and net losses and effects of fringing fields separately cannot be clearly discerned. Other
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related work includes the cal-culation of total energy and inductance [8], [9].

Thus, there is a need to derive simple analytic formulas that can be used to calculate fringing fields and the
associated high-frequency winding losses. These formulas can be used to quickly evaluate the effect of fringing
field on the winding designs, especially if there are a number of candidate designs being considered.

Another important motivation for this paper is that the cur-rent understanding about the fringing field and its
effect on the winding loss is not very accurate (even qualitatively) and impor-tant questions remain open. For
example, the question of how far away from the edge of the gap the fringing field remains im-portant, is still not
settled.

In this paper, by using a scalar potential approach, we have derived two simple formulas for the fringing fields.
The geom-etry and coordinate system used in that paper is shown in Fig. 1. The two derived formulas for the =
and ¥ components of the fringing field H are

Ha(e.y) = 32 In [2HE |

(IL1)

Hy(z, y) = —I—{-‘— {l,am_1 [%‘_7] + m?r}

(1.2)

Where m=0 if x*+y*>(I)? andm=1 if xX*+y*<(ly)° . |y is half of the total gap length. Hy = 0.9NI1 /
21, Further, we provide numerical (FEM) validation for these formulas. In addition, we address the issue of
high-frequency fringing field loss by the use of the following well-known formula for high frequency eddy-
current loss per unit length for a thin rectangular conductor [10]:

| P = X{ru.H, f)wi
Bo ﬁ J_f} (13)

where o is the permeability of the free space, H 1 is the component of the fringing field, which is perpendicular

to the long face of the conductor, / is the frequency, w is the width of the conductor, ¢ is the thickness of the
conductor, and # is the resistivity of the conductor material. The formula assumes that the skin effect is

negligible.
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Fig. 1. Geometry for the air-gap and the coordinate system used in the paper.
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Fig. 2. (a) Barrel winding arrangement. (b) Flat (planar) winding arrangement.

Two winding arrangements of rectangular conductors are considered: 1) barrel wound [Fig. 2(a)] and 2) flat
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wound [Fig. 2(b)]. For barrel wound magnetic components, the width w is along the ¥-axis and H1 is equal to
H, , as given by (1.1) and evaluated at the center of the conductor for which loss is being calculated. Similarly,
for flat wound magnetic components, the width w is along the xz-axis and # 1 should be taken to be H of (1.2)

evaluated at the center of the flat wound conductor for which the loss is to be calculated.

I1. SCALAR POTENTIAL ’

There are several methods of calculating the magnetic field of a gap. Here, we use a scalar potential and
separation of variables approach to obtain an exact expression for this scalar potential. We consider the region in
and around the gap as a source-free region, which implies that self and proximity fields are negligible. This
assumption has been verified using finite-element simulations both for the inductor and transformer cases. Then
a scalar potential #(zY) can be defined which satisfies the Laplace equation [11], [12] and is related to the

magnetic field H by
H=-V&(z,y). (I1.1)

The coordinates and the geometry are defined in Fig. 1. Here, Hy is the magnetic field at the center edge of the
gap

(x=0,y=0) Itis assumed that the gap is infinitely deep. This assumption is valid if the gap length is small
compared to the dimension of the core. We also assume that the core pieces near the gap are equipotential. This
assumption implies large permeability of the core material, which usually is a very good assumption. The scale
of H is set by the field at the center of the gap H'y which is given by

NI NI
H! = = (IL.2)
a 2, + 1L, /n 2,

Where NI is the driving amperes-turns, 2l is the gap length p is the permeability of the core material, and 1, is
the magnetic length in the core. A large permeability is assumed. The exact relationship between Hy and Hy
can be determined by a magnetostatic finite-element calculation. However, for most inductor and transformer
applications, the gap length is very small compared to the width of the core piece and it can be shown using

finite-element simulation that

NI
H, = 09H, = 0.9 . (IL.3)
g

See Fig. 3 for a finite-element example. In region I, the potential can be expanded as
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:Z y, sin(?myﬂg)e% + H;,y <0, 0<y<lg.

(IL.4)
In the region of primary concern, region Il, the potential is given by
(o w]
Q(x,y) = f b(p) sin(py)e " dp x >0, (IL.5)
0

g
The field H in (11.4) is given by (11.3). The constants a» and b(p) are determined by matching the potential and

the derivative at z=0. Matching the potential at =0

& u]

o0 Y. apsin(nmy/l,)

b(p) sin(py)dp = { "=}
f (p) sin(py) ey +H, /I, 0<y<l,
0 H,l, ly <y < oo

(IL.6)
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Fig 3. Example of finite-element result showing the value of H at the edge of the gap and the field value
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deep inside the gap.
Similarly matching the normal derivative at x=0, we get

o0
oD

—fb(p) sin(py) dp_Zﬂ” sin(nwy/ly)(nm/ly) O0<y<lyg.

i aL7)

! =
These two sets of equations can be solved for the coefficients a» and bp) by use of Fourier transforms. First, an
equation for b(p) is obtained by multiplying (11.6) with sin(py) and integrating over ¥. The left-hand side
simplifies due to the orthogonality of the sine functions and only one b(p) remains on the left-hand side.
Similarly, an equation for the coefficients a- is obtained by multiplying (11.7) with sinlmz/1) and integrating
over ¥. In this case, only one term on the right-hand side survives due to the orthogonality of sine functions and
one obtains an equa-tion for a~. Thus, one ends up with two sets of simultaneous equations. If the integrals on
the right-hand side of the equation resulting from (11.6) and the integral on the left-hand side of the equation
resulting from (11.7) are performed, then these two sets of equations can be solved for the two sets of
coefficients a» and b(p) .

The resulting potential in the region of interest (z>0) is given by

(I]‘(_‘I_‘_y) — H_g./dpc_—;;._rsill(j)fg);iu(py)
m P
0

oo

+ Z 2n(=1)"a, ‘/dp . C_Nf.-un(p!g) sin(py) (IL3)

P — (nw/l,)?
i!— D

where an satisfy a set ofalgebraic equations

H. B
—_ = n-l- 1 E r m o= 0
ﬂ” rﬁ_ ﬂ“i C“T” 2 (]:[ )
where
(=2 o e
B, = [In(2n7) — Ci(2nm) + y] (I.10)
nw
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(1/nm) - Si(2nm) m=nmn
Cpm = { 72 (n? —m?)
X [In(n/m) + Ci(2mm) — Ci(2n7w)] m#n
(I.11)
where 7=0.5772 is the Euler’s constant and In is the natural
logarithmic function and
_ cos(z) _ i qln( )
Cli(zg) = dx Si(z0) = dr. (I1.12)
I
T |:l

The coefficients a~ are a decreasing function of n (roughly ~/n ). Thus, the first few terms make the dominant
contribution. In Section V, it is shown that even just the first term gives a good approximation of the exact
result.

111 .FRINGING FIELDS
Differentiating the potential ® with respect to z and ¥, we ob-tain the z- and ¥-component of the magnetic field
in the region

x>0

o _Hg i _pxSin(ply) sin(py)
H.(x,y)= . fdp( ple 2
0

— —(nw/ly)?
(I11.1)

= u] oo E -
+ Z 2n(—1)"a, fd’p - qm(p o) sin(py)
0

H T sin(pl,) cos
Hy(igﬂ)z?g fd}'l(h)c_p"qm(?] 9)2':0‘?(313;)
P
0

P2 —(nel,)?

(I11.2)

S [ (ply) cos(py)

sin(pl, ) cos(p1

+ E 2n(—1)"a, fdp pje I Py
0

As a first approximation, we keep only the first terms in (111.1) and (111.2) to obtain

264 |Page




International Journal of Advance Research in Science and Engineering %4

Volume No.07, Special Issue No.02, February 2018 1 ARSE

www_iiarse_com ISSN: 2319-8354
Hg [ sin(p!, ) si
Hr(;r.yj:—g./dp(—p)c_f’i' aml:i'?' g);m(py) (IIL3)
m yL
1]
Ha I ) cos
}Iy(]‘,y:]:—g ./\dp('j])!f—ﬁ‘l’ "tll'l('p Q);m(ﬁy) (]II'-U
m P
]

Integrations in the above two equations yield the approximate analytic result [13]

Hyg IE"‘(?}'_E:})E
[z, y)=— . 5
H,(z,y) 5 In |:;:-:2+(y+fg)2 (IIL.5)
Hg _ 2zl
: g

where m=0 if z2+¥2>l2 and m=1 if r2+¥2<l2 .

Verifications for (111.5) and (111.6) are provided in section V. These two approximate results can then be used to

calculate the high-frequency conductor losses. Depending on the winding
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Fig. 4.(a) Variation of the y-component of the fringiﬁa field H with the x
(horizontal) distance from the edge of the core. éap length = 21 = 2. (b) Variation of the y-component of the
fringing field H with y (vertical) distance from the center line with x as a parameter. Gap length = 21 = 2.
configuration (“flat” versus “barrel”), either the z-component or the ¥-component is important [see Fig. 2(a) and
(b)]
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IV. FIELD DISTRIBUTION

Fig. 4(a) shows the variation of the ¥-component of the field H, with the horizontal distance = from the edge of
the core for four different values of ¥. These fields have been obtained by setting Hg=1. It is also assumed that
[=1. We remind the reader that the total gap length is equal to 2/ . Generally, the field falls off substantially
within one gap length distance (20) from the edge of the core. However, it is important to note that the field
component remains substantially higher than other fields (self and proximity fields) in the problem, even after
10 gap length distance. We have confirmed this by using finite-el-ement modeling. Thus, the fringing cannot be
neglected even at such large distances from the core and may determine the overall loss in a winding conductor

at such distances. Another interesting feature to note from Fig. 4(a) is that for ¥>1, the initial
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= Fig. 5. (a) Variation of the x-component of the fringing field H. with the y(ver-tical) distance from the
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central line with x asa parameter. H;=1, Gap length = 2| = 2.

(b) Variation of x-component of the fringing field H. with the x

(horizontal) distance from the edge of the core for fixed values of y. H = 1; gap length = 21,=2.

value of H,for z=0 must be zero because of the boundary condition imposed by the large permeability of the
core.

Similarly, Fig. 4(b) shows the variation of the ¥-component of the field H with the vertical distance ¥ with z

as a parameter. First thing we note is that for small z, there is a sharp drop in the value of the field as we

approach the core corner of the core (y=1) , Which is again due to the boundary condition, that at the surface of

the core the field must be perpendicular to the surface of the core. For more important cases of practical

interest, where there is substantial insulation separating the core from the windings, z is usually >1. For such

cases, we see from Fig. 4(b) the drop in the value of the field is much more gradual.

Fig. 5(a) shows the variation of the z-component of the fringing field . with the ¥ (vertical) distance from

the central line for various values of z, the horizontal distance from the core. The most outstanding feature

with regards to H- is that its value peaks near the corner of the gap (¥~.10) , in sharp contrast to H , which

peaks along the central line (¥~.0) .

FEM Results Vs. Formula 1 for a Transformer: Ip = 1.1 A Is= .2, Np = 32, Ns=16
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FEM Resull Vs, Formula 2 for a Transformen: lp=1.1 A Is = .2 A; Np = 32, Ns = 16
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Fig. 6. (a) Comparison of the calculated fringing field component H. of a transformer with the finite-element
simulation. (b) Comparison of the calcu-lated fringing field component H of a transformer with the finite-
element simulation

The symmetry of the model forces H. to be zero or near zero along the central line. This feature has not been
fully recognized in the past. In particular, it indicates that for barrel type windings, shown in Fig. 2(b), the
maximum fringing field loss would occur not along the central line but near the corner of the gap. Fig. 5(b)
shows the variation of H. with z for fixed values of ¥. Once again we see that the peak of the initial value of H.
occurs near Y~1 (near the corner). However, another in-teresting feature, which is apparent from Fig. 4(b), is
that the curves, which start out high, also show steeper decline as the value of = is increased. In fact some of the

curves that start out low in value can have larger values as x is increased.

V.NUMERICAL VALIDATION FOR FIELDS
In order to validate the fringing fields’ formulas (I.1) and (I.2), we have performed extensive numerical (FEM)
calcula-tions and have found good agreement between the numerical results and the formulas both for

transformers and inductors having an air gap.
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Fig. 7. (a) Comparison of the calculated fringing field component H. of a inductor with the finite-element
simulation. (b) Comparison of the calculated fringing field component H of a inductor with the finite-element
simulation results

In Fig. 6(a) and (b), we show the comparison of finite-element simulation with the calculations using (1.1) and
(1.2) for the x and ¥ components of the fringing field in the case of a gapped transformer. The transformer had a
gap length of 1 mm, a turn’s ratio of 2:1, and driving current of one ampere. The number of primary turns was
32 and the primary and secondary were inter-leaved. As is clear from these graphs, generally the agree-ment

between finite-element simulation results and the results obtained using formulas is very good. In particular, the
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Y

form of variation of H. and H is described exactly. In addition, there is excellent agreement between the
magnitudes calculated, using for H and the finite-element results. In the case of H. , the agreement is not as
good with a difference of about 10%-15%. This may be caused by the sharp corner of the model, which

produces large variations in the fields around the corners of the gaps.

x102 Loss (due to Hx) Variation with y: w =5mm, { = 1mm, f = 100 kHz
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Fig. 7(a) and (b) shows a similar comparison in the case of an inductor. The inductor had 24 turns, a gap length
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of 1 mm, and a driving current of one ampere. Once again the agreement between calculated results for - and

H and finite-element simulation is excellent.

V1. LOSS DISTRIBUTION

Next we consider high frequency winding loss of thin rectangular winding conductors by employing the well-
known formula (1.3). We first consider loss due to the H. distribution, which is the more important component
of the field for the barrel wound windings, shown in Fig. 2(a). Fig. 8(a) shows the variation of the loss due to
this component as a function of ¥ for fixed values of ¥. For these figures, the following values are used in (V.8):
w=05 mm, t=0.1 mm, /=100 kHz,107 mho/m, and Ho=4mx10_7. The most important feature, which is somewhat
surprising, is that the loss

shows a maximum near Y~.1 (near the corner) instead of ¥~0 (near the central line). This is because the field
component . shows a maximum around ¥~.1 as shown in Fig. 5(a). Simi-larly, Fig. 8(b) shows the same loss as
a function of « for fixed values of ¥.

x 108 x Variation of Loss : Hy = w =.5mm, t = 1mm, f= 100 kHz
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Fig. 9. (a) Variation of loss due to H values of y. (b) Variation of loss due H values of x.
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Next, we consider the loss for the flat wound winding for which the ¥ component of the field H is more
important. Fig. 9(a) shows the loss as a function of z for fixed values of ¥. We see that the initial value of loss is
largest for the smaller values of ¥ (near the central line). However, the drop in the values as z is increased is also
steeper for these values of z. For larger values of =, all curves approach roughly the same value irrespective of
the value of ¥, indicating for some distance from the core losses would be somewhat independent of the vertical
position. Similarly, Fig. 9(b) shows the variation of this loss with ¥ for fixed values of . Once again we see a
similar variation, where the initial values of the loss start high near the core edge (z<1) but shows a much steeper
decline in the value as ¥ is increased.

Loss by Fringing Field Hy: 40 Tum Inductor; Gap = Tmm
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Fig. 10. High-frequency loss per unit length of a conductor with aspect ratio of 4:1 due to (a) y-component and
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(b)x-component of the fringing field.

VIl. NUMERICAL VALIDATION FOR LOSS

Fig. 10(a) and (b) shows the comparison of the theoretical computational results of fringing field high frequency
loss using (1.3), and either (1) or (2) with finite-element simulation results. The results are shown for a 40-turn
inductor only but the results for a gapped transformer are similar. The exciting current is one ampere and the
gap length is 1 mm. The frequency was chosen to be 100 kHz. The conductor for which loss is calculated has an
aspect ratio of 4:1 and is made of copper. For Fig. 10(a), the results are shown along a horizontal line with ¥=0.
This line was chosen because HY is the largest along this line. The conductor was placed so that its long face
was horizontal. For Fig. 9(b), the conductor was placed along a vertical line with =025 mm with its face

vertical.

It is clear from Fig. 10(a) and (b) that there is general agree-ment between the finite-element results and the
results obtained by using (1.3) for both the x and ¥ component of the fringing field. A somewhat larger
difference in the case of Fig. 10(b) may be due to the sharp corner, which makes it somewhat hard to sat-isfy

boundary conditions in the finite-element algorithms.

VIIl. CONCLUSION

We have derived two simple formulas for the calculation of fringing field components. We have shown that
these formulas can be used for calculating high-frequency fringing field loss for thin rectangular conductors.
Both the field formulas and loss calculations have been validated numerically using finite-ele-ment analysis.
The formulas for fringing fields may also be ap-plicable to electrical machines such as motors and generators
where air gaps can determine the field distribution, the power converted (from electrical to mechanical or vice

versa), as well as the losses.

Also to be noted is that even though we have discussed the loss calculations only for thin rectangular conductors
and is di-rectly applicable to thin film [14]-[16], thick film [17], printed circuit board and flex circuit [18]
windings, the qualitative con-clusions regarding the variation of the loss with the position of the conductors also
apply to other conductor shapes as round wires and thick rectangular conductors. However, in many cases more
exact formulas would be needed for shapes other than thin rectangular conductors. In particular, the formula for
the fringing field loss for a round conductor would be needed. Also, the formula for rectangular conductors with
an aspect ratio close to 1:1 is needed. Dealing with both of these conductor shapes requires the simultaneous
incorporation of both = and ¥ com-ponents of the fringing field in the loss calculation. This can be done using

the principle of superposition. We intend to develop such formulas in a near future publication.

While it is true that the fringing field, if present, is over-whelmingly dominant over the self and proximity effect
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field (generally speaking), some of the winding conductors may be placed far away from the air gap. In such a
case the fringing field may have decayed enough to become comparable in magnitude to the self and proximity
fields. In this situation, one must use all three fields in the calculation of the winding loss. Once again, the
principle of superposition can be used. A future publication would address the problem of incorporating self and

proximity fields in the analysis of fringing field loss.

The current paper also neglects skin effect. Inclusion of this effect may pose a formidable challenge and is
beyond the scope of the present work. However, if the fringing field by itself does vary appreciably along the
width of the conductor, a rough treat-ment suggests that the skin effect may be incorporated, approx-imately, by
modifying (1.3) as follows:

P = &(noHof)ust x F(Q) -

where the function F(C) is given by

_ 3 sinh¢ —sing
~ (cosh¢ —cos(

and where C=w/6 and 6 is the skin depth. A future publication will provide a fuller description of the derivation

F(¢) (VIIL.2)

of (VII1.1) and finite-element simulation verification.

Although, in this paper, we have only considered high fre-quency winding losses due to the fringing fields, the
fringing field formulas (1.1) and (1.2) derived here may also be used for calculating laminations core losses of
low frequencies (~50 Hz) reactors, where split laminations are used [19], [20]. A future publication will explore

these types of core losses in greater detail.
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