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ABSTRACT

The basic concepts in probability and stochastic calculus, We study convergence of the multi-step binomial model
binomial market model to the Black-Scholes Financial model. Precisely, by using the De Moivre Laplace Central
Limit Theorem, We show that Cox-Ross-Rubinstein’'s formula for the price of a European call option in the multi-
step binomial model converges in distribution to the celebrated Black-Scholes formula for a European call option
price in Black-Scholes Financial model.

Keywords: Cox-Ross-Rubinstein’s formula, Multi-step Binomial model, Converges in distribution,

Black-Scholes formula

I INTRODUCTION

Financial Mathematics most of the time deals with the issue of pricing financial assets such as financial derivatives.
A central concept is that of arbitrage, i.e., without investing money in the market, the arbitrageur makes a risk-free
profit. Pricing in a no-arbitrage setting can be set as a mathematical problem. This allows for the computation of
explicit prices for financial assets in some specific cases. In this paper, we consider such a case, namely the pricing
of options.

Option pricing theory got attention after publication of the land mark paper titled with "The Pricing of Options and
corporate liability " which was published in the Journal of Political Economy by Fisher Black and Myron Sholes in
1973 [11]. In this paper we discuss two common option pricing model: the Black-Scholes and the binomial option

pricing model, and the convergence of the binomial model to the Black-Scholes model.

563 |Page




International Journal of Advance Research in Science and Engineering QQ
Volume No.07, Issue No.02, February 2018 1 ARSE

www.ijarse.com ISSN: 2319-8354

Il PRELIMINARY CONCEPT
In this Section we will review useful concepts of Probability theory and tools of basic Stochastic Calculus for this

peper. Definitions, theorems, propositions, etc are mainly taken from references [2, 6, 8, 9, 12, 13].
2.1 Review of probability theory
Definition.2.1.1.Let X:2 >R be any discrete random variable with

rangeX (2) = {x1,%5,%3,..., %, }or X(2) = {x1,%3,%3,...,%,, ... }.Then the expectation of X is defined as

EX) = Z x,P(x;) when this sum is finite. (2.1.1)
%
If f: R — Risany function, then

E(F(0) = ) FOi)P(x) (212)
k

whenever this sum exists.

Next, the variance of X is defined as

Var(X) := Z E(X - EX)2P(x,) (2.1.3)
k

If this sum is finite too.

Preposition.2.1.2.(The Binomial Distribution). A discrete random variable X has a binomial distribution
with parameters n and p, withn € N and 0 < p < 1, and we denote X ~ B (n,p), if X is the number of
successes obtained after n independent identically repeated Bernoulli trials, each with the same parameter p. Then,

1. The discrete random variable with range X(2) ={0,1,2,3,...,n}

2. The Probability mass function of discrete random variable X is given by

PlX = k] =(})P*QA—p)"* K=012,..
3. The expectation discrete random variable X is given by E(X) = np and the Variance discrete random
variable X is given by Var(X) = np(1 — p).
4. And for any function f : R - R,E(f(X)) = (})f (K)P*(1 —p)" .

Definition.2.1.3. Let X : 2 — R be an absolutely continuous random variable with Probability mass function fy

If the improper integral fn'glxl fx(x)dx is finite, then the expectation of continuous random variable X is defined as

E(X) = J xfy (x)dx
R

Let g : R—> RR — R any function, then we define the expectation of g(X) as
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E(g(X)) = J-.g(x)fx(x)dx whenever this integral exists.
R
The variance of X is also defined as

Var(X) = E(X — EX)? = II(X — EX)?fy(x)dx. If this integral exist
R

Definition.2.1.4. (The Gaussian or normal distribution). Lety,o € R such thato > 0. We say that
a random variable X on a probability space ({2, F ,P) has a “Gaussian or normal distribution” with parameters [

and o, denoted X ~ N (Y,0?2), if X is absolutely continuous with range R and with Probability mass function fuo

Y
exp(—u> , teR

202

given by

1
fuo (@) =
e ovV2m
When p = 0 ando = 1, we say that N (0,1) is called the “standard Gaussian or normal” random variable. It

Probability mass function f; ; is usually denoted ¢; i.e.

1 t2
t) = t)=—e 2 , teR
d®) = fo,.1(®) T
And its Cumulative density distribution is usually denoted @; i.e.
D(x) f (td —1 f - d R
S

Proposition.2.1.5.
1. Forallx e R, &(—x) =1 — &(x)
2. IfX ~ N (y,0),then E(X) = pand Var(X) = o2

3. IfX ~ N (i, 0), then the scaled random variable Z = % is N(0,1).

JZ
4. Let X ~ N(y,0), then E[e*f(x)] = e"" 2 E[f(x + a2 )] for any non negative function f.

Definition.2.1.6.( (Modes of convergence of random variables). Let X be any random variable and
(X,) n=>=1 a sequence of random variables on the same probability space (2, F ,P) with cumulative density
function Fy and sequence of cumulative density function Fy,, respectively.

1. Wesay that (X,,),, converges almost surely (or strongly) to X, denoted X,, a.s X,

If P ({w: ii_r)r(;Xn w) = X(w)}) = 0 which is equivalent to P ({w: }L%Xn w) # X(w)}) =1
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2. We say that (X,,),, converges in probability to X, denoted X,, P X, if for all e > 0, we have, 111i_r)r010]P[|Xn -
X>e=0.

3. And we say that (X,), converges in distribution (or weakly) to X, denoted , X, d Xor X, =X, if,
rlll_r)rolo Fy (x) = Fy(x), VX ER.

Proposition2.1.7. Almost sure convergence implies convergence in probability, which in turn, implies

convergence in distribution.

Definition2.1.8. (i.i.d. sequence of random variables). We say that a sequence of random variables
(Xn), is an i.i.d. sequence if for every pair of indices i # j, X; ~ X; (i.e., X; and X; have the same

distribution) and X; Xi and X; are independent.

Theorem?2.1.9.(The Central Limit Theorem - CLT). Let (Xn),, =1 be an i.i.d. sequence of random
variables with finite common expectation Tl and finite common variance 2.
SetS, := X, +X, +--+ +X,, foralln = 1. Then we have

2y S, —ny 1 (1

. . n - Zx2

n\% =X, d N(,1) l.eTlll_I;I;lO]P( " Sa) :\/T_n_loezx dx
for all real number a.
Proof. See the proof of Theorem 11.12 in [8, pp. 500-501] for details.

Theorem?2.1.10. Let X be a binomial random variable with parameters n and p, then
X —np

Jnp(1—p)

2.2 Review of basic stochastic calculus

= d N(0,1)

Definition 2.2.1. (Ité process). A real-valued stochastic process X, is called an “Ité process” if there

are two processes F, in 1[0, T] and G, in I.2[0, T] such that for all times 0 < s < t < T; we have

t t
X, = X, +fFudu + faudwu (2.2.1)
S S

In particular s = 0
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t t

X, =X, +fFudu + ququ (2.2.2)
0 0

In this case we say that X, has the “Stochastic differential "dX, = F,dt + G.dW;.

Proposition.2.2.2 (Martingale condition for 1to processes). Let X, be Ité process as above. Then X, is

a IP-martingale with respect to natural filtration F" if and only if F, = 0 for all t almost sure.

Theorem.2.2.3 (It6 formula for functions of It processes). Let X, be Itd process as above, and let
f:[0,T] x R - R be a C*? function such that f(t, X,) € L2[0, T]. Then the process f(t, X,) is an Ité process with
stochastic differential,

of 1,0 of
df(t, X;) = (E + EGtZ W) dt + adxt (2.2.3)

Definition.2.2.3. (Stochastic differential equation). A basic one-dimensional stochastic differential equation
(abbreviated SDE) driven by a one-dimensional standard Brownian motion W, is defined as a stochastic differential
with an initial conditional in the form,

dX, = u(t, X,) + o(t, X,)dWw,
{ X, = x, €R (2.2.4)
The processes u(t, X,) and a(t, X,) are called drift and discussion coefficients of the SDE.
An [Fy, adapted process X, is a solution to this SDE if X, = x, and if there are two coefficients processes u(t, X,) €

L1[0,T] and o(t, X,) € LL?[0,T]. such that
t t
X, =X +f,u(u,Xu)du + JJ(u,Xu)dW; VteR (2.2.5)
0 0
Existence and uniqueness for solutions of stochastic differential equations under certain conditions are discussed in

[12], where explicit solutions are given for instance for linear SDE for which the coefficients are in the form

u(t, X)) = a, + X, and a(t, X;) = A, +y.X, for some non-random functions of time «,8,Aandy.

Definition.2.2.4. (Generator of an SDE). Consider any stochastic differential as in (2.2.4) above. The
"generator” of this SDE is the operator denoted L, defined on the set of functions f (¢, x) in C*?([0,T] - R) by
L.f(t )—12(t )62+(t )af v(t,x) € [0, T]xR 2.2.6
SOx) =50 (60 5+ ut, ) o V(tx) €[0,T]x (2.2.6)
Next, consider any real-valued bounded function r and h on [0, T] — R and R respectively. For all
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(t,x) € [0, T]xR, defined the function C by
T
C(t,x) = E ek r@X @ p(x)|x, = x) (2.2.7)

For any Ifo process X, on a probability space (Q, F, IP) adapted to the natural filtration F" of the Brownian motion W.

Theorem.2.2.5.(Feynman-Kac's formula). X, is a solution to the SDE (2.2.4) if and only if C(t, x) solves the
partial differential equation,

af (t,x)
ot + L, f(t,x) =r(tx) f(tx) (2.2.8)
f(x,T) = h(x)

111 OPTIONS PRICING IN THE MULTI-STEP BINOMIAL MODEL

3.1 Probabilistic set-up of the model

In discrete-time setting, the multi-step binomial model is built as an iterated sequence of one-step binomial models
as follows: consider a financial market with N trading dates in the future (typically N years,N > 2), starting from
today at time t = 0. In this market model we assume two assets in trading:

- A risk-less asset such as a risk-free bond or bank account with price or balance B, = 1 Dollar (for simplicity) at
time t = 0, which attracts annual compounding interest at constant rate » > 0. Hence its price (or balance) at any
futuretimet e N,1 <t < NisB, = (1 + ).

- And a risky asset such as stock whose price at timet = 0, denoted S, , is a positive constant, known by all
investors. But its future prices, denoted S;, 1 <t < N, are random and satisfy the recursive dynamics

5 = {USt—1 = (1 + U)S,_; with probability p, (3.1)

dS,_1 =1 +D)S,_; with probability p,
Defined recursively at each time-step (fromt — 1tot), under a given investors' feeling probability measure

P = (p,; pg) assumed the same on every time-step possible movements of the stock price: up by factoru = 1 +U

St—St—
221 and D =
t—1 t—1

on the stock price at every time-step[t —1,t],1 <t < N. We assume 0 <d <1 < u. The illustration of this

or down by factor d =1+ D, where U :=

Se—=S¢—
‘S—‘l are constant upward and downward returns

market model for three N = 3 time steps is given by the following figure.
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Figure 3.1 lllustration of multi-step binomial market model.

The modeling sample space is Q = {w; w,, ..., wy} Where w, correspond to either the up scenario or the down
scenario of the stock price at the end of each time-step [t —1,t],1 <t < N. Consider F := P( ), the power set
of Q , as the ¢ — algebra on Q . And we introduce here the natural filtration F := F(t), of the stock prices
process S, , where F . = (S,, S;,...,S;) represents the information on the stock prices up to and including time
t,1 <t <N.

Remark 3.1: From the recursive dynamics of equation (3.1) above, it follows that if by any time step t < N the
stock prices have gone up k times and (hence) have gone down t — k times, and then S, = u* d*=*S, in particular
we have Sy = u* aV=ks,

Hence, let Xy be the random number of such up movements of the stock by step time N, then X, is follows a
binomial distribution with parameters N and p,. Since Sy is therefore a function of X, as Sy =u*V dV=4v S, | it
follows by Preposition.2.1.2.that

N
N
B = ) () pupauk av s,y (3:2)

k=0
Where E is the expectation under the probability measurelP.

3.2 Investment strategies and arbitrage
Definition 3.2 (Portfolio) A portfolio (investment strategy or trading opportunity) in this multi-step binomial

model is any vector process ¢,:= (x;, ;) € R?> where x, is the number of units of bond (or the bank account) and

y; is the number of units (or shares) of stock that an investor holds both from time ¢ — 1 to time ¢.
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Definitation 3.3 (Investor's wealth or portfolio value) let ¢, be any such portfolio, the wealth of an investor or the
value of this portfolio at time t,0 <t < N, is defined as

V.= x,B,+ .S 3.3)
Definition 3.3 (Self-financing portfolio) A trading opportunity ¢, is said self-financing if for all time t =
1,2,...,N, we have
Vt—Vt—1 = x,(Bt —Bt — 1) + yt(St— St —1) (3.4)
which means that the change in the investor's wealth results only from the change in the bank account balance (or
the bond price) and in the stock prices, no need to deposit/withdraw from the bank account and no need to buy/sell

more shares of the stock.

Definition 3.4 (Arbitrage opportunity). An arbitrage opportunity in the multi-step binomial market model is any
self-financing strategy verifying

V0 = 0andP(Vt = 0) = 1 with P(Vt > 0) > 0; for sometimet = 1,2,..,N (3.5
Which means an investor generates riskless profit by starting with nothing and terminating with an almost sure
positive wealth with strictly positive probability of strictly positive wealth at some future trading time t. We say that
the market (model) is arbitrage-free if there is no arbitrage opportunity in that market (model). Absence of arbitrage
principle in the multi-step binomial model is verifiable with the result below.
Proposition3.4. The multi-step binomial market model is arbitrage-free if and only

d<1+4r < u

3.3 Absence of arbitrage and existence of equivalent martingale measures

Set~ S, := ;—t = (1 + r)7tS,, the discounted prices process of the stock, discounted by the bank account balance
t
B, at each time t = 0,1, ..., N. Clearly the natural filtration S, of is also that of St. Also set V;:= (1 + r)’ V, the

discounted value process of any strategy ¢, in this multi-step binomial model.

Definition 3.5. We say that a probability measure on (£, F) is an equivalent martingale probability measure (usually
denoted EMM) if Q is equivalent to IP and the discounted stock prices process S, is a Q-martingale with respect to
the natural filtration IF of the stock prices process.

Remark3.5. If Q is an equivalent martingale measure, and then clearly, the discounted wealth process ¥, of an

investor using any predictable strategy ¢, is also a @ -martingale with respect to the filtration IF

Theorem 3.6 (Fundamental Theorem of Asset Pricing). The multi-step binomial financial model is arbitrage-

free if and only if it’s admits an equivalent martingale measure.
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Corollary3.6. If P is an equivalent martingale measure in this model, then for each time t =
0,1,..,N —1 And for everyk = 1,2,...,N — t, we have
St = (1 + r)* E(Sesnc/ Fo) (3.6)

Where E denotes the expectation under P.

Proof. By applying induction on k properties of conditional expectation. For more details see [4]

Corollary3.7. The multi-step binomial model admits an equivalent martingale probability measure which is P =
(Pw, P2), where

_(1+r)—-d d~_u—(1+r)

Proof. It is a straightforward use of the corollary above.

(3.7)

3.4 Arbitrage pricing of options in the multi-step binomial model.
Let consider a European call option in this model, i.e., a financial contract initiated at time t = 0 (today) which

gives the holder the right (but not an obligation) to buy a share of stock at a fixed agreed price K at a future timet =
N. Two scenarios may happen at this expiry dateN:

- Either the stock price SN is strictly greater than K, and the European call option will be exercised and it worth
Sy— K.

- Or the stock price Sy is less thank, in this case the option will not be exercised by its holder because Sy — K is
negative and it becomes worthless.

Hence the payoff the call option is Cy: = max(Sy — K, 0). since the value of such a contract is known explicitly at

time t = N, it is naturally for investors to seek what does the options worth at prior time t < N. Hence,

Definition3.7. (Fair-price for the option). The fair-price (or market price) for this call option at an earlier

timet < N, is the value C, of the option which does not generates arbitrage opportunities in the market model.

Finding any possible such price can be done by mean of replicating portfolios.

Definition .3.8. ( Replicating /hedging portfolio). A self-financing strategy ¢, in the model is said to

replicate (or hedge) the call option if its terminal value Vy equals Cy.

Proposition3.8. (Pricing principle). Under no arbitrage condition, if a European call option can be hedged

by a self-financing strategy ¢, with value process V,, then we have C, = V, , forall time t = 0,1,...,N — 1.

Proof. See a general proof in Theorem 8.1 of [4, p. 173].
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Theorem3.9. (Options pricing rule). The discounted fair prices process C, for any replicated European call

option in the multi-step binomial model is a P-martingale with respect to the filtration F, implying after some
simplification that the fair prices process C, satisfies,

C,=1+1r)E(CL,/ F,)Foralltimet = 0,1,..,N —1 (3.8)

Where P = (P, py is the unique equivalent martingale measure in Corollary (3.7) and E the expectation with
respect to it. In particular we have

C,=Q+r) Nt E(Cy/ F,);foralltime t =0,1,...,N (3.9

Proof. This directly follows from Proposition 3.8 and Remark 3.5.

Corollary 3.10 (The Cox-Ross-Rubinstein's formula) Consider a replicable European call option with payoff

Cy = max(Sy — K, 0) in the multi-step binomial model. Then the fair price at time ¢ = 0 of this call is given by

N

_ N

C=+rN Z ( k) 5K 5N, max(Seuk dVk — K, 0) (3.10)
k=0

Proof: Given that Cy, = max(Sy — K, 0) is the payoff the European call option in the multi-step binomial Model.
By using Theorem 3.9 above, the discounted fair price of European call option Cy = max(Sy — K, 0) at time
t € N is given by

CG=A+0)"E[Cy/ F]

=1+ E[max(Sy —K,0) / F, ]
Settingt = 0, we get
Co =1+ E[max(Sy —K,0)/ F, ]
=1 +1r)" E[max(Sy — K,0) ]
=1+ EN_ o (})p P max(Sou* dVF — K, 0)
using Remark 3.1 with the probability measureP, as required.

IV OPTIONS PRICING BLACK-SCHOLES MODELS

4.1 Model setting and assets prices dynamics
Consider a financial market model with two assets in continuous-time trading from initial time ¢t = 0 to a fixed later
timet=T > 0:
-A riskless asset such as a bank account or a risk-free bond with price B, governed by the ordinary differential
equation (ODE) with initial condition

dB, =1. B,
{ By =1 4.1)

where 7, is the constant continuously compounding interest rate. Solving this ODE with initial condition, we
get B, = ¢ye’et, forall time t € [0, T].
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- And a risky asset such as (share of) stock whose prices processS;, assumed square integrable under a given
probability space(f2, F, P), follows an Ito process as the following stochastic differential equation (SDE) with initial
condition

{dSt = uS; + oS, W, (4.2)

So =59 ER,
driven by a one-dimensional standard Brownian motion (Wt)t € [0,T ] . The real constant 4 and ¢ > are known
as drift and volatility of the stock prices respectively.

Applying Ito’s formula (Theorem.2.2.3) on the C?(R,) function f(x) := log(x) and the Ito process S,, we obtain
the explicit solution of this stochastic differential equation SDE as
St = SOexp (Wt + (u—a?/2)t; forall time te[0,T] (4.3)

4. 2 Investment strategies, arbitrage and model assumptions

Definition.4.2.(Investment strategy and value). In this Black-Scholes model, an investment strategy is a pair of R-
valued continuous-time process ¢, := (a;,Y;), where a,the investor’s holding in the bond and y, is the (random)
number of units of shares s/he holds in the stock at time t. The value of such a portfolio (or investor's wealth) at time
t € [0,T] is defined as

Vi:=a, B, +y:S;
Definition.4.3. (i)(Self-financing strategy). An investment strategy (portfolio) ¢, is said self-financing if dV, =
a, dB, +vy,dS,, ie., the change in the investor's wealth results only from the change in the bank account and in
the stock price in the market.
ii) (Arbitrage). A self-financing strategy is an arbitrage opportunity in the model if V; = 0 but V; = 0 almost sure
with P(V; > 0) > 0.

4.3 Black Scholes Model assumptions
As stated in this model assumes the following conditions:

1. There is no arbitrage opportunity in this market model,

2. There is no transaction cost in purchasing shares of stock,

3. The stock pays no dividend, i.e., no benefit payment to the shareholders.
4. Short-selling (i.e., borrowing and selling) is allowed in this market.

5. The market model is liquid, i.e., one can hold any real number of shares of stock.
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4.4. Arbitrage pricing of call options in the Black-Scholes model.

Consider a European call option which is a contract set at time ¢t = 0 (today) and which gives the holder the right
(but not an obligation) to buy a share of stock at a fixed agreed price K at a future time T. Hence the payoff (at time
T) of this option is C(T, St ) := max(Sy — K, 0).

As argued in the discrete-time binomial model setting, since the value of such a contract is known explicitly at
time t = T, it is naturally for investors to seek what does the options worth at prior timet < T.

Definition .4.4.(Fair-price of an option). The fair-price at time t < T of the call option is the price
C(t,S,) that does not generate arbitrage opportunity in the model. Finding possibly such a price can also be done via
replicating/hedging portfolios.

Definition .4.5.(Replicating portfolio). A self-financing strategy ¢, in the Black-Scholes model is a
replicating (or hedging) strategy for a call option if its value at expiry date equals the payoff of the option, i.e., if
Ve = C(T,S 7).

Proposition 4.6.(Pricing principle). If a call option admits a replicating portfolio with value process V,,
then we have C(t,S;) = V, forall timet < T.

Proposition 4.7 Under the equivalent martingale measure P, the discounted fair-prices process C(t,S,) ==
e’et C(t,S,) is martingale with respect to F".

Next, assuming that the underlying fair-price function C(t,x) is in C*2([0; T] x R.), then we have,

Theorem 4.8.(The Black-Scholes PDE). For any replicable European call option, its fair-price function

C(t,x),x € R, ,atany prior time t < T solves the following initial value partial differential equation (PDE),

{Ct(t,x) + g2 %Cxx (t,x) + 1,xC,(t,x) = 1.C,(t, x) .)

C(T,x) = max(x — K, 0)
Where Cy and Cyy denote the partial and second partial derivatives of C(t, x) with respecttoy = torx.

Proof : Applying Ito's formula on the discounted fair-price process C(t, S,) we obtain,
— 1 —
dC(t,S,) = et |-1.C(t,S,) + C.(t,S,) + Estzo—zcxx (t,S) +1.5.Co (8, st)] dt + [0C,(t,S,)S; |dW;

Under the martingale measure P, under which C(t, St) is a martingale by the preceding Proposition 4.7. Hence the

result follows by Proposition 2.2.2, along with the payoff (boundary) condition C(T,S;) = max(Sy — K, 0).
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Corollary.4.9. (The Black-Scholes's formula). Under the condition of the theorem 4.8. the time 0 fair-
price of a replicable European call option is given by
€(0,50) = So®(d;) — Ke <" ®(d; — oVT) (4.5)

so 2
Where dl = W

rate, T is expiration date, and o2 is the variance of the continuously compounded return of the stock and @ is the

,So is the current price, K is strike price, r. is the continuous compounded risk-free

cumulative distribution function of the standard normal distribution.

Lemma 4.10. LetX ~ N(u, o). If a and c are positive constants, then

o2 a a
E(max(ae® —c,0)) = ae(” +7)<I> <M + G) -co (M) (4.7)

Proof. Applying Proposition.2.1.5.(4), we get

E(max(ae* —¢,0)) = aE (exl[x>log (C/a)]) — cP[X > log(%/a)]

= et T P[> log () - 07] - cPlx > log(*/e)

= et (1- 0 (S o)) o (1- o (Ul )

By using the scaling property of the normal distribution in Proposition .2.1.5.(3). Finally using the property
®d(—x) =1 — d(x) forall x = 0 from Proposition.2.1.5. (1), we get

E(max(ae® —c,0)) = ae(” +07>q> <% + cr) —c® (M)

o

Proof. ( Theorem 4.8). Feynman-Kac's formula entitles from Theorem 2.2.5 that the solution of the Black-

Scholes PDE (of equation 4.4) for the fair-price atany time t < T is
C(t,x)=E (e'(T't)Tf maxi{iS; — x, 0))

Hence, the result follows for time t = 0 by applying the preceding lemma.

4.0. Convergence of the binomial to the Black-Scholes model

In this section we discuss the convergence of the multi-step binomial model (which is discrete-time model) to the
Black-Scholes model which is continuous-time model by using concept from probability theory. In fact, as exposed

in [10], this convergence consists in showing that the Cox-Ross-Rubinstein (CRR) formula in Corollary 3.10
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converges to the Black-Scholes formula of Corollary 4.9 for a European call option. Other related literatures also
read are references [4, 6, 5].

1.1 Convergence of the CRR formula to the Black-Scholes formula
In section 3, by corollary 3.10, we have seen that under Binomial model fair price at time t = 0 of

European call option which known as CRR formula is given by

N

_ N

Co=(+r)™ Z ( k) 5K 57" max(Souk dV* — K, 0) (5.1)
k=0

where r; denotes here the per step constant rate r used in the multi-step binomial model.
Moreover, in section 4 in Corollary 3.10, we have seen that in the Black-Scholes model, the fair price of a replicable

European call option at time t = 0 is given by

C(O, So) = S()q)(dl) - Ke_rCTq)(dz) (52)
S0 2 S0 o2
log (== )+|1c+5- log (= )+ 1re—5 A ) A A A
d; — oNT Where d; = %2) ,dy=d; —oVT = %2) , S, is the current price, K is strike price,

7. is the continuous compounded risk-free rate, T is expiration date, and o2 is the variance of the continuously
compounded return of the stock and & is the cumulative distribution function of the standard normal distribution.

In Equation (5.1) above, the value of max(Syu* dV=* — K, 0) is zero for a < k , where a is the minimum number of
upward movement for the call option finish the money. That means for smallest integer (a < N) such
thatSou® dV=¢ > K.

Fork < a, we have max(Sou* d"* —K,0) =0 and fora <K, Squ* d"=* > K, we have max(Sou* d¥=* —

K,0=S0uk dV—A—A . Now we need to count the binomial path from A= @« to 4/, hence the equation (5.1) becomes

N
_ N
Co=0+1)" Z ( k) X ok [Souk dV K — K] (5.3)

k=a

Remark 5.2. Using equation (5.3), we can write fair price at time t = 0 of European call option in Binomial

model which known as CRR formula as follows compactly

Co = SoB,— (1 + )™V KB, (5.4)
Where
(e Lol o I Yok e
1= 1+rd’pu 1+rdpd = ) P Pq (5.5)
k=a k=a
Withp,* =~ . pa"=1-p; And
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N
B, = Z Br " (5.6)
k=a
Lemma 5.3 The call option formula in the given in equation (5.4) is equivalent to
CO = SOBl - Ke_TCTBZ (57)

Proof. First note that (1 + ;)" is the present value factor for N periods. The per period rate 7, can be related to an

1
annual rate r, applied for T years by the relationship r, = 7,N« where N, a is the number of periods per year.

Hence,

1 N N

1+ry;=0+7r)V =>A+r)"N= A+« = (1+1r,)T Where T = N (5.8)
Since the present value factor for T years is(1 + 7,) 7, then the present value denoted PV of 1 Dollar is
PV =1+1)T =log(PV) =log((1+1,)T") =—Tlog(1+1,)
PV = e~ Tog (1+74)
Hence, setting . = log(1 + r,), the present value factor ((1+ ;)" in the multi-step binomial model is
equivalent to the present value factor e "< when continuously compounded interest rate 7. applies. It follows that
the call option formula in the given in equation (5.4) is equivalent to

CO = S()Bl - Ke_rETBZ

Lemma 5.4. The minimum number of movements for call option finish the money a is given by

K
log|<) — Nlog(d)
a= ) +y (5.9)

tog (3)

Where y € (0,1) which is the number added to a to make integer.

Proof. Fora < k, we required that Syu®d"~—¢ > K and by applying property of logarithm and doing some

calculation, we have
K
log (S_o) — Nlog(d)

tog (3)
When we see carefully equation (5.10), it is not integer. So to express a as integer we have to add to it a number
y € (0,1)
Lemma 5.5 The binomial distribution of B1 converges to the normal distribution ¢ (x) which is given by

a>

(5.10)

f $(6)dt (5.11)

Proof. De Moivre-Laplace Central Limit Theorem2.1.10. says that a binomial distribution converges to the normal

distribution if Np,, —» o asN — oo. In our case B; — f:’ ¢ (k)dk where ¢ (k)the density distribution function for
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normal distribution. But, k is not standard normal random variable. So, let us convert k into standard normal

random variable by defining x = @. Then, we have
k

f °° k —E(k)

¢(k)dk = f ¢(t)dt wherex =—— (5.12)
Ok

_ k=E(k)

1
(3

Let x =

then equation (5.12) become

f (D)dt = b (D)

Remark.5.6. By applying the same concept as B; — ®(x), then B, also converges to normal distribution @ (x).
Lemma.5.7. Let S; be the stock price at expiration date T. After N period of time and k up wards movements in

the markets, S; = Soufd" ~*, then expectation and variance of k are given by
Var <log (g—g))
U 2
(log (a))

E (log (g—g) ~ Nlog(d))

tog (3)

E(K) = and Var(k) = (5.13)

Proof. Straightforward
Remark.5.8. i) Using lemma (5.4) and lemma (5.7), and thenas N — oo the value of x become

tog (32) + E (zog &)

x = (5.149)
Var <log (g—g))

ii)  Since our discrete binomial process converge to continuous log-normal process, and then we

have ’Var (log (‘;—T)> = ¢2T . Using this result, and substituting in equation (5.14), we have
0

t0g () + 8109 ()

x = s (5.15)

Theorem.5.9. The call option price formula in the binomial model written as in Lemma (5.3) converges to call
option price formula in the Black-Scholes model given in equation 5.7. In particular B; and B, converge to @(d;)

and & (d,) respectively.
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Proof. We need the value of x in equation (5.15) to equal d; and d, as defined by the Black-Scholes formula with

the probabilities are p,,* and ;. That means we need to verify

S 2 —
E (log <S_T>> = <rc + %) T, if the probability is p,*
0

S o?
E (log <S_T>> = <rc + 7) T, if the probability is p,
0
Let verify one by one. From remark (5.2), we have

=P () [ @) ra-m Q)
* = = = = | — —_ * —_
Pu 1+, Pu=1% ra\u—d Ta = [Pu {3 PuI\g

Then, using equation (5.7), we have

asr =l Dra-mo Q) =l O+ Q) —arny G0

u

-1

Note that we can express S—O by the following sequence,
T

N
- BEE- () - 116 s

Then, using equation 4.2.16, the expectation of Ss—" is given by
T

<165 -TT+65)

From lemma (5.3), the probability for B, is” p,*. SinceS; = S;_;u with probability “p,* and S; = S;_;d with

probability p;* . Hence, we have

E(SS:> i ()4 () (5.19)

When we substitute equation (5.18) into (5.19), we have

@)1 Qi )] Qo ()] - e

L

By using equation (5.16)

This implies,

—Tlog(1 +1,) = log <IE (j%)) =E <log (;%)) (5.20)
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Since i—T log-normally distributed, its inverse also log-normally distributed. Hence, 5—0 is also log-normally
0 T

2
distributed. By using the E(x) = exp (# + %) then we have
2
o

log( IE(x)) =u+ >

By using the relation in equation (5.21), equation (5,20) and using the property of logarithm and expectation, we

(5.21)

have

v [tog (32}

E (log (;%)) =Tlog(r) + > (5.22)

Since log(1 + r,) = . and Var [log (SSTT)] = ¢2T equation (5.22) becomes
2

ST o-T
IE(log (5_)> =T+ T (5.23)
0

By substituting equation (5.22) into equation (5.15), we have
2

log(%o) + (rc + 07)
= a2\T

Hence, using Lemma (5.5), B; converges to ®(x) = ®(d;) where x is given by equation (5.24).

(5.24)

We can show the convergence of B, to ®(d;) by adopting the same procedure. Therefore, the call option pricing

formula in the multi-step binomial model converges to call option pricing formula in the Black-Scholes model

V CONCLUSION

We introduced some useful preliminary concept from probability theory and basic concept of stochastic calculus
which helped us as background of the paper. Later, We introduced the two common option pricing: multi-step
binomial model and Black-Scholes model as discrete-time and continuous-time model respectively by using
probability theory and basic stochastic calculus.

At the end, we introduced the main purpose of the paper which is the convergence of binomial model to Black-
Scholes model. This is done by using de Moivre Laplace central limit theorem from probability theory, Cox-Ross-
Rubinstein European call option formula in multi-step binomial model as discrete-time model converge to Black-

Scholes pricing formula for European call option in Black-Scholes as continuous-time model.
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