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ABSTRACT 

The basic concepts in probability and stochastic calculus, We study convergence of the multi-step binomial model 

binomial market model to the Black-Scholes Financial model. Precisely, by using the De Moivre Laplace Central 

Limit Theorem, We show that Cox-Ross-Rubinstein's formula for the price of a European call option in the multi-

step binomial model converges in distribution to the celebrated Black-Scholes formula for a European call option 

price in Black-Scholes Financial model. 

Keywords: Cox-Ross-Rubinstein’s formula, Multi-step Binomial model, Converges in distribution, 

Black-Scholes formula 

 
I INTRODUCTION 

 
Financial Mathematics most of the time deals with the issue of pricing financial assets such as financial derivatives. 

A central concept is that of arbitrage, i.e., without investing money in the market, the arbitrageur makes a risk-free 

profit. Pricing in a no-arbitrage setting can be set as a mathematical problem. This allows for the computation of 

explicit prices for financial assets in some specific cases. In this paper, we consider such a case, namely the pricing 

of options. 

Option pricing theory got attention after publication of the land mark paper titled with "The Pricing of Options and 

corporate liability " which was published in the Journal of Political Economy by Fisher Black and Myron Sholes in 

1973 [11]. In this paper we discuss two common option pricing model: the Black-Scholes and the binomial option 

pricing model, and the convergence of the binomial model to the Black-Scholes model.  
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II PRELIMINARY CONCEPT  

In this Section we will review useful concepts of Probability theory and tools of basic Stochastic Calculus for this 

peper. Definitions, theorems, propositions, etc are mainly taken from references [2, 6, 8, 9, 12, 13]. 

2.1 Review of probability theory 

Definition.2.1.1.Let 𝑋: 𝛺 →  𝑅 be any discrete random variable with 

range𝑋(𝛺)  =  { 𝑥1 , 𝑥2, 𝑥3 , . . . , 𝑥𝑛  } 𝑜𝑟 𝑋(𝛺)  =  { 𝑥1 , 𝑥2, 𝑥3 , . . . , 𝑥𝑛 , … } . Then the expectation of 𝑋 is defined as 

    𝔼 𝑋 =  𝑥𝑘𝑃 𝑥𝑘      when this sum is finite

𝑘

.                                              (2.1.1)  

 If  𝑓 ∶  ℝ →  ℝ is any function, then  

𝔼 𝑓(𝑋) =  𝐹(𝑥𝑘)𝑃 𝑥𝑘         

𝑘

                                                                              (2.1.2)  

whenever this sum exists. 

Next, the variance of 𝑋 is defined as 

𝕍𝑎𝑟(𝑋) ∶=  𝔼 𝑋 –  𝔼𝑋 2𝑃 𝑥𝑘 

𝑘

                                                                  (2.1.3)    

If this sum is finite too. 

 

Preposition.2.1.2.(The Binomial Distribution). A discrete random variable 𝑋 has a binomial distribution 

with parameters 𝑛 and 𝑝, with 𝑛 ∈  𝑁 and 0 <  𝑝 <  1, and we denote 𝑋 ∼  𝐵 (𝑛, 𝑝), if X is the number of 

successes obtained after n independent identically repeated Bernoulli trials,  each with the same parameter 𝑝. Then, 

1. The discrete random variable with range 𝑋 𝛺 = { 0, 1, 2, 3, . . . , 𝑛 } 

2. The Probability mass function of discrete random variable 𝑋 is given by 

                   ℙ 𝑋 =  𝑘 =  𝑛
𝑘
 𝑃𝑘 1 − 𝑝 𝑛−𝑘  ,𝐾 = 0,1,2, … 

3. The expectation discrete random variable 𝑋 is given by  𝔼(𝑋)  =  𝑛𝑝 and the Variance discrete random 

variable 𝑋 is given by 𝕍𝑎𝑟(𝑋)  =  𝑛𝑝(1 −  𝑝). 

4. And for any function 𝑓 ∶ ℝ →  ℝ, 𝔼 𝑓 𝑋  =  𝑛
𝑘
 𝑓 𝑘 𝑃𝑘 1 − 𝑝 𝑛−𝑘  . 

 

Definition.2.1.3. Let 𝑋 ∶  𝛺 → ℝ be an absolutely continuous random variable with Probability mass function 𝑓𝑋  

.If the improper integral   𝑥 𝑓𝑋 𝑥 𝑑𝑥
.

ℝ
  is finite, then the expectation of continuous random variable 𝑋 is defined as 

𝔼 𝑋 =  𝑥𝑓𝑋 𝑥 𝑑𝑥
.

ℝ

                                                                                                                   

Let  𝑔 ∶ ℝ →  ℝ𝑅 →  𝑅 any function, then we define the expectation of 𝑔(𝑋) as 
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𝔼 𝑔(𝑋 ) =  𝑔(𝑥)𝑓𝑋 𝑥 𝑑𝑥
.

ℝ

    𝑤𝑕𝑒𝑛𝑒𝑣𝑒𝑟 𝑡𝑕𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑒𝑥𝑖𝑠𝑡𝑠.  

The variance of 𝑋 is also defined as 

𝕍𝑎𝑟 𝑋 = 𝔼(𝑋 −  𝔼𝑋)2 =  (𝑋 −  𝔼𝑋)2𝑓𝑋 𝑥 𝑑𝑥.     𝐼𝑓 
.

ℝ

𝑡𝑕𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑒𝑥𝑖𝑠𝑡  

 

Definition.2.1.4. (The Gaussian or normal distribution).  Let µ, 𝜎 ∈ ℝ  such that 𝜎 > 0.  We say that 

a random variable 𝑋  on a probability space (𝛺, 𝐹 , 𝑃) has a “Gaussian or normal distribution” with parameters µ 

and 𝜎, denoted 𝑋 ∼  𝑁 (µ, 𝜎2), if 𝑋 is absolutely continuous with range ℝ and with Probability mass function 𝑓µ,𝜎   

given by 

𝑓µ,𝜎 𝑡 =
1

𝜎 2𝜋
 𝑒𝑥𝑝  −

 𝑡 − µ 2

2𝜎2
     , 𝑡 ∈ ℝ                                                  

When µ =  0 and 𝜎 =  1, we say that 𝑁 (0, 1) is called the “standard Gaussian or normal” random variable. It 

Probability mass function 𝑓0,1 is usually denoted ϕ; i.e. 

ϕ t = 𝑓0,1 𝑡 =
1

 2𝜋
 𝑒−

𝑡2

2    , 𝑡 ∈ ℝ  

And its Cumulative density distribution is usually denoted 𝛷; i.e. 

Φ 𝑥 =  ϕ t dt =

𝑥

−∞

1

 2𝜋
 𝑒−

𝑡2

2   dt ,        𝑥 ∈ ℝ

𝑥

−∞

 

Proposition.2.1.5.  

1. For all 𝑥 ∈  ℝ +, 𝛷(− 𝑥)  =  1 −  𝛷(𝑥) 

2. If 𝑋 ∼  𝑁 (µ, 𝜎), then 𝔼(𝑋) = µ and 𝕍𝑎𝑟(𝑋)  =  𝜎2  

3. If 𝑋 ∼  𝑁 (µ, 𝜎), then the scaled random variable 𝑍 =
𝑋−µ

𝜎
  is 𝑁(0, 1). 

4. Let  𝑋 ∼  𝑁(µ, 𝜎),  then 𝔼 𝑒𝑥𝑓(𝑥) = 𝑒µ+
𝜎2 

2  𝔼 𝑓 𝑥 + 𝜎2    for any non negative function 𝑓. 

 

Definition.2.1.6.( (Modes of convergence of random variables).  Let 𝑋 be any random variable and 

 𝑋𝑛   𝑛 ≥ 1  a sequence of random variables on the same probability space (𝛺, 𝐹 , ℙ) with cumulative density 

function 𝐹𝑋   and sequence of cumulative density function 𝐹𝑋𝑛  respectively. 

1. We say that (𝑋𝑛)𝑛   converges almost surely (or strongly) to 𝑋, denoted 𝑋𝑛    𝑎. 𝑠  X,  

If ℙ  𝑤:  lim
𝑛→∞

𝑋𝑛 𝑤 = 𝑋(𝑤)  = 0 which is equivalent to ℙ  𝑤:  lim
𝑛→∞

𝑋𝑛 𝑤 ≠ 𝑋(𝑤)  = 1 



 
 

566 | P a g e  
 

2. We say that (𝑋𝑛)𝑛   converges in probability to 𝑋, denoted 𝑋𝑛    ℙ   X, if for all 𝜖 >  0, we have, lim
𝑛→∞

ℙ  𝑋𝑛 −

𝑋>𝜖=0. 

3. And we say that (𝑋𝑛)𝑛   converges in distribution (or weakly) to 𝑋, denoted  , 𝑋𝑛    𝑑    X or 𝑋𝑛 ⇒ X ,   if , 

lim
𝑛→∞

  𝐹𝑋𝑛  𝑥 =  Fx x ,   ∀𝑥 ∈ ℝ. 

 

Proposition2.1.7. Almost sure convergence implies convergence in probability, which in turn, implies 

convergence in distribution. 

 

Definition2.1.8. (i.i.d. sequence of random variables). We say that a sequence of random variables 

(𝑋𝑛)𝑛  is an i.i.d. sequence if for every pair of indices 𝑖 ≠  𝑗, 𝑋𝑖 ∼ 𝑋𝑗   (i.e., 𝑋𝑖   and 𝑋𝑗  have the same 

distribution) and 𝑋𝑖   Xi  and 𝑋𝑗   are independent. 

 

Theorem2.1.9.(The Central Limit Theorem - CLT). Let (𝑋𝑛)𝑛 ≥ 1  be an i.i.d. sequence of random 

variables with finite common expectation µ and finite common variance 𝜎2. 

Set 𝑆𝑛 ∶=  𝑋1 + 𝑋2 + · · ·  +𝑋𝑛 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥  1. Then we have 

𝑆𝑛
𝑛
− 𝜇

𝜎

 𝑛

= 𝑋𝑛    𝑑   𝑁 0,1      𝑖. 𝑒 lim
𝑛→∞

 ℙ  
𝑆𝑛 − 𝑛µ

𝜎 𝑛
≤ 𝑎 =

1

 2𝜋
 𝑒

1
2
𝑥2

.
𝑎

−∞

 𝑑𝑥                       

for all real number 𝑎. 

𝑃𝑟𝑜𝑜𝑓.  See the proof of Theorem 11.12 in [8, pp. 500-501] for details. 

Theorem2.1.10. Let 𝑋 be a binomial random variable with parameters 𝑛 and 𝑝, then 

𝑋 − 𝑛𝑝

 𝑛𝑝(1 − 𝑝)
=    𝑑   𝑁(0,1) 

2.2 Review of basic stochastic calculus 

Definition 2.2.1. (It𝒐  process). A real-valued stochastic process 𝑋𝑡  is called an “It𝑜  process” if there 

are two processes 𝐹𝑡  in 𝕃1[0, 𝑇] and 𝐺𝑡  in 𝕃2[0, 𝑇] such that for all times 0 ≤ 𝑠 ≤  𝑡 ≤ 𝑇; we have 

𝑋𝑡 = 𝑋𝑠 +  𝐹𝑢𝑑𝑢 +   𝐺𝑢𝑑𝑊𝑢                                                                                                            (2.2.1)

𝑡

𝑠

𝑡

𝑠

 

In particular 𝑠 = 0 
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𝑋𝑡 = 𝑋0 +  𝐹𝑢𝑑𝑢 +   𝐺𝑢𝑑𝑊𝑢

𝑡

0

𝑡

0

                                                                                                          (2.2.2) 

In this case we say that 𝑋𝑡has the “Stochastic differential "𝑑𝑋𝑡  =  𝐹𝑡𝑑𝑡 +  𝐺𝑡𝑑𝑊𝑡 . 

 

Proposition.2.2.2 (Martingale condition for It𝒐  processes). Let 𝑋𝑡  be It𝑜  process as above. Then 𝑋𝑡  is 

a ℙ-martingale with respect to natural filtration  𝔽𝑊  if and only if 𝐹𝑡 = 0 for all 𝑡 almost sure.  

 

Theorem.2.2.3 (It𝑜  formula for functions of It𝑜  processes). Let 𝑋𝑡  be It𝑜   process as above, and let 

𝑓:  0, 𝑇  𝓍 ℝ → ℝ be a 𝐶1,2 function such that 𝑓(𝑡, 𝑋𝑡) ∈ 𝕃2[0, 𝑇]. Then the process 𝑓(𝑡, 𝑋𝑡) is an It𝑜   process with 

stochastic differential, 

𝑑𝑓 𝑡, 𝑋𝑡 =  
𝜕𝑓

𝜕𝑡
+

1

2
𝐺𝑡

2 𝜕
2𝑓

𝜕𝑥2
 𝑑𝑡 +

𝜕𝑓

𝜕𝑥
𝑑𝑋𝑡                                                                                        (2.2.3) 

 

Definition.2.2.3. (Stochastic differential equation). A basic one-dimensional stochastic differential equation 

(abbreviated SDE) driven by a one-dimensional standard Brownian motion 𝑊𝑡  is defined as a stochastic differential 

with an initial conditional in the form, 

 
𝑑𝑋𝑡 = 𝜇 𝑡, 𝑋𝑡 + 𝜎(𝑡, 𝑋𝑡)𝑑𝑊𝑡

𝑋0 = 𝑥0 ∈ ℝ
                                                                                                                (2.2.4) 

The processes 𝜇 𝑡, 𝑋𝑡  and 𝜎(𝑡, 𝑋𝑡) are called drift and discussion coefficients of the SDE. 

 An 𝔽𝑊  adapted process 𝑋𝑡  is a solution to this SDE if 𝑋0 = 𝑥0 and if there are two coefficients processes 𝜇 𝑡, 𝑋𝑡 ∈

𝕃1[0, 𝑇] and 𝜎(𝑡, 𝑋𝑡)  ∈ 𝕃2[0, 𝑇].  such that 

𝑋𝑡 = 𝑋0 +  𝜇 𝑢, 𝑋𝑢 𝑑𝑢 +  𝜎 𝑢, 𝑋𝑢 𝑑𝑊𝑢

𝑡

0

       ∀𝑡 ∈ ℝ    

𝑡

0

                                                           (2.2.5)    

Existence and uniqueness for solutions of stochastic differential equations under certain conditions are discussed in 

[12], where explicit solutions are given for instance for linear SDE for which the coefficients are in the form 

𝜇 𝑡, 𝑋𝑡 = 𝛼𝑡 + 𝛽𝑡𝑋 𝑡  and 𝜎 𝑡, 𝑋𝑡 = 𝜆𝑡+𝛾𝑡𝑋𝑡   for some non-random functions of time  𝛼, 𝛽, 𝜆 and 𝛾. 

 

Definition.2.2.4. (Generator of an SDE). Consider any stochastic differential as in (2.2.4) above. The 

"generator" of this SDE is the operator denoted L, defined on the set of functions 𝑓(𝑡, 𝑥) in 𝐶1,2([0, 𝑇] → ℝ) by 

𝐿𝑡𝑓 𝑡, 𝑥 =
1

2
𝜎2 𝑡, 𝑥 

𝜕2𝑓

𝜕𝑥2
+ 𝜇 𝑡, 𝑥 

𝜕𝑓

𝜕𝑥
      ∀(𝑡, 𝑥) ∈ [0, 𝑇]𝑥ℝ                                                (2.2.6) 

Next, consider any real-valued bounded function 𝑟 and 𝑕 on [0, 𝑇] → ℝ and ℝ respectively. For all 
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(𝑡, 𝑥) ∈ [0, 𝑇]𝑥ℝ, defined the function C by 

𝐶 𝑡, 𝑥 = 𝔼  𝑒− 𝑟 𝑢,𝑋𝑢  𝑑𝑢
𝑇
𝑡 𝑕 𝑋𝑇 |𝑋𝑡 = 𝑥                                                                               (2.2.7) 

For any I𝑡 o process 𝑋𝑡  on a probability space  Ω, ℱ, ℙ  adapted to the natural filtration 𝔽𝑊  of the Brownian motion Wt. 

 

Theorem.2.2.5.(Feynman-Kac's formula).  𝑋𝑡  is a solution to the SDE (2.2.4) if and only if 𝐶(𝑡, 𝑥) solves the 

partial differential equation, 

 

𝜕𝑓(𝑡, 𝑥)

𝜕𝑡
𝑓 𝑥, 𝑇 = 𝑕(𝑥)

 + 𝐿𝑡  𝑓 𝑡, 𝑥 = 𝑟 𝑡, 𝑥  𝑓 𝑡, 𝑥                                                                              (2.2.8) 

 

III OPTIONS PRICING IN THE MULTI-STEP BINOMIAL MODEL 

3.1 Probabilistic set-up of the model 

In discrete-time setting, the multi-step binomial model is built as an iterated sequence of one-step binomial models 

as follows: consider a financial market with 𝑁 trading dates in the future (typically 𝑁 years,𝑁 ≥ 2), starting from 

today at time 𝑡 = 0. In this market model we assume two assets in trading: 

- A risk-less asset such as a risk-free bond or bank account with price or balance 𝐵0 =  1 Dollar (for simplicity) at 

time 𝑡 = 0, which attracts annual compounding interest at constant rate 𝑟 >  0. Hence its price (or balance) at any 

future time 𝑡 ∈ ℕ,1 ≤ 𝑡 ≤ 𝑁 is 𝐵𝑡 = (1 +  𝑟)𝑡  . 

- And a risky asset such as stock whose price at time 𝑡 = 0 , denoted 𝑆0  , is a positive constant, known by all 

investors. But its future prices, denoted 𝑆𝑡 , 1 ≤ 𝑡 ≤ 𝑁, are random and satisfy the recursive dynamics 

𝑆𝑡 =  
𝑢𝑆𝑡−1 =  1 + 𝑈 𝑆𝑡−1   with probability 𝑝𝑢
𝑑𝑆𝑡−1 =  1 + 𝐷 𝑆𝑡−1     with probability 𝑝𝑑

                                                                          (3.1)   

Defined recursively at each time-step (from 𝑡 −  1 𝑡𝑜 𝑡), under a given investors' feeling probability measure 

ℙ = (𝑝𝑢 ; 𝑝𝑑 ) assumed the same on every time-step possible movements of the stock price: up by factor 𝑢 =  1 + 𝑈 

or down by factor  𝑑 = 1 + 𝐷, where 𝑈 ∶=  
𝑆𝑡−𝑆𝑡−1

𝑆𝑡−1
  and 𝐷 ∶=  

𝑆𝑡−𝑆𝑡−1

𝑆𝑡−1
   are constant upward and downward returns 

on the stock price at every time-step[𝑡 − 1 , 𝑡], 1 ≤ 𝑡 ≤ 𝑁. We assume 0 < 𝑑 < 1 < 𝑢. The illustration of this 

market model for three N = 3 time steps is given by the following figure. 
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Figure 3.1 Illustration of multi-step binomial market model. 

The modeling sample space is Ω = {𝜔1,𝜔2,, … , 𝜔𝑁} where  𝜔𝑡  correspond to either the up scenario or the down 

scenario of the stock price at the end of each time-step  [𝑡 − 1 , 𝑡], 1 ≤ 𝑡 ≤ 𝑁. Consider  ℱ ∶= Ƥ( Ω), the power set 

of Ω , as the 𝜎 − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎 on  Ω . And we introduce here the natural filtration  𝔽 ∶= ℱ(𝑡)𝑡  of the stock prices 

process  𝑆𝑡 , where ℱ 𝑡  =  (𝑆0 , 𝑆1 , … , 𝑆𝑡) represents the information on the stock prices up to and including time 

𝑡, 1 ≤ 𝑡 ≤ 𝑁. 

Remark 3.1: From the recursive dynamics of equation (3.1) above, it follows that if by any time step 𝑡 ≤ 𝑁 the 

stock prices have gone up k times and (hence) have gone down 𝑡 − 𝑘 times, and then 𝑆𝑡  = 𝑢𝑘  𝑑𝑡−𝑘𝑆0  in particular 

we have 𝑆𝑁  = 𝑢𝑘  𝑑𝑁−𝑘𝑆0    

Hence, let 𝑋𝑁  be the random number of such up movements of the stock by step time 𝑁, then 𝑋𝑁   is follows a 

binomial distribution with parameters 𝑁 and 𝑝𝑢 . Since 𝑆𝑁   is therefore a function of 𝑋𝑡   as 𝑆𝑁  = 𝑢𝑋𝑁  𝑑𝑁−𝑋𝑁𝑆0 , it 

follows by Preposition.2.1.2.that 

𝔼 𝑆𝑁 =   
𝑁

𝑘
 𝑝𝑢

𝐾𝑝𝑑
𝑁−𝑘𝑢𝑘  𝑑𝑁−𝑘𝑆0

𝑁

𝑘=0

                                                  (3.2) 

Where 𝔼 is the expectation under the probability measureℙ. 

 

3.2 Investment strategies and arbitrage 

Definition  3.2 (Portfolio) A portfolio (investment strategy or trading opportunity) in this multi-step binomial 

model is any vector process  𝜑𝑡 := (𝑥t , yt) ∈ ℝ2  where 𝑥t  is the number of units of bond (or the bank account) and  

yt  is the number of units (or shares) of stock that an investor holds both from time 𝑡 − 1 to time 𝑡. 
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Definitation 3.3 (Investor's wealth or portfolio value) let 𝜑𝑡  be any such portfolio, the wealth of an investor or the 

value of this portfolio at time 𝑡, 0 ≤ 𝑡 ≤ 𝑁, is defined as 

𝑉𝑡 ∶=  𝑥𝑡𝐵 𝑡 + 𝑦𝑡𝑆𝑡                                                                                             3.3  

Definition 3.3 (Self-financing portfolio) A trading opportunity 𝜑𝑡    is said self-financing if for all time 𝑡 =

 1,2, … , 𝑁, we have 

𝑉𝑡 −  𝑉𝑡 − 1 =  𝑥𝑡 𝐵𝑡 − 𝐵𝑡 − 1 +  𝑦𝑡 𝑆𝑡 −  𝑆𝑡 − 1                                                                          (3.4)  

which means that the change in the investor's wealth results only from the change in the bank account balance (or 

the bond price) and in the stock prices, no need to deposit/withdraw from the bank account and no need to buy/sell 

more shares of the stock. 

 

Definition 3.4 (Arbitrage opportunity). An arbitrage opportunity in the multi-step binomial market model is any 

self-financing strategy verifying 

𝑉0 =  0 𝑎𝑛𝑑ℙ 𝑉𝑡 ≥  0 =  1    𝑤𝑖𝑡𝑕  ℙ 𝑉𝑡 >  0 >  0;  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑡𝑖𝑚𝑒 𝑡 =  1,2, … , 𝑁              (3.5) 

Which means an investor generates riskless profit by starting with nothing and terminating with an almost sure 

positive wealth with strictly positive probability of strictly positive wealth at some future trading time t. We say that 

the market (model) is arbitrage-free if there is no arbitrage opportunity in that market (model). Absence of arbitrage 

principle in the multi-step binomial model is verifiable with the result below. 

Proposition3.4. The multi-step binomial market model is arbitrage-free if and only  

𝑑 <  1 + 𝑟 <  𝑢. 

3.3 Absence of arbitrage and existence of equivalent martingale measures 

Set ~ 𝑆𝑡 ∶=
𝑆𝑡  

𝐵𝑡  
 =  (1 +  𝑟)−𝑡𝑆𝑡 , the discounted prices process of the stock, discounted by the bank account balance 

𝐵𝑡  at each time 𝑡 =  0, 1, … , 𝑁. Clearly the natural filtration 𝑆𝑡  of is also that of St. Also set 𝑉𝑡 : =  (1 +  𝑟)𝑡  𝑉𝑡  the 

discounted value process of any strategy 𝜑𝑡  in this multi-step binomial model. 

 

Definition 3.5. We say that a probability measure on (𝛺, 𝐹) is an equivalent martingale probability measure (usually 

denoted EMM) if ℚ  is equivalent to ℙ and the discounted stock prices process 𝑆𝑡  is a ℚ-martingale with respect to 

the natural filtration 𝔽 of the stock prices process. 

Remark3.5. If ℚ is an equivalent martingale measure, and then clearly, the discounted wealth process 𝑉𝑡  of an 

investor using any predictable strategy 𝜑𝑡   is also a ℚ -martingale with respect to the filtration 𝔽 

 

Theorem 3.6 (Fundamental Theorem of Asset Pricing). The multi-step binomial financial model is arbitrage-

free if and only if it’s admits an equivalent martingale measure. 



 
 

571 | P a g e  
 

Corollary3.6. If ℙ  is an equivalent martingale measure in this model, then for each time 𝑡 = 

0, 1, … , 𝑁 − 1 And for every𝑘 =  1, 2, … , 𝑁 − 𝑡, we have 

𝑆𝑡 =  (1 +  𝑟)𝑘  𝔼 (𝑆𝑡+𝑘/ ℱ𝑡)                                                                                                   (3.6) 

 Where 𝔼  denotes the expectation under ℙ . 

Proof. By applying induction on 𝑘 properties of conditional expectation. For more details see [4] 

Corollary3.7. The multi-step binomial model admits an equivalent martingale probability measure which is  ℙ  =

 (𝑝𝑢 ,𝑝𝑑 ), where 

𝑝𝑢 =
 1 + 𝑟 − 𝑑

𝑢 − 𝑑
   𝑎𝑛𝑑  𝑝𝑑 =

𝑢 − (1 + 𝑟)

𝑢 − 𝑑
                                                                         (3.7) 

Proof. It is a straightforward use of the corollary above. 

3.4 Arbitrage pricing of options in the multi-step binomial model. 

Let consider a European call option in this model, i.e., a financial contract initiated at time 𝑡 = 0 (today) which 

gives the holder the right (but not an obligation) to buy a share of stock at a fixed agreed price 𝐾 at a future time𝑡 =

 𝑁. Two scenarios may happen at this expiry date𝑁: 

- Either the stock price SN is strictly greater than K, and the European call option will be exercised and it worth 

𝑆𝑁 −  𝐾. 

- Or the stock price S𝑁  is less than𝐾, in this case the option will not be exercised by its holder because 𝑆𝑁 −  𝐾 is 

negative and it becomes worthless. 

Hence the payoff the call option is 𝐶𝑁: =  𝑚𝑎𝑥(𝑆𝑁 −  𝐾, 0). since the value of such a contract is known explicitly at 

time 𝑡 = 𝑁, it is naturally for investors to seek what does the options worth at prior time 𝑡 ≤ 𝑁. Hence, 

 

Definition3.7. (Fair-price for the option). The fair-price (or market price) for this call option at an earlier 

time𝑡 ≤ 𝑁, is the value 𝐶𝑡  of the option which does not generates arbitrage opportunities in the market model. 

Finding any possible such price can be done by mean of replicating portfolios. 

 

Definition .3.8. ( Replicating /hedging portfolio).  A self-financing strategy 𝜑𝑡  in the model is said to 

replicate (or hedge) the call option if its terminal value 𝑉𝑁  equals 𝐶𝑁 . 

 

Proposition3.8. (Pricing principle). Under no arbitrage condition, if a European call option can be hedged 

by a self-financing strategy 𝜑𝑡   with value process 𝑉𝑡 , then we have  𝐶𝑡    = 𝑉𝑡  , for all time  𝑡 = 0,1, … , 𝑁 − 1. 

Proof. See a general proof in Theorem 8.1 of [4, p. 173]. 
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Theorem3.9. (Options pricing rule). The discounted fair prices process 𝐶𝑡 
  for any replicated European call 

option in the multi-step binomial model is a 𝑃 -martingale with respect to the filtration 𝔽, implying after some 

simplification that the fair prices process   𝐶𝑡      satisfies, 

   𝐶𝑡    =  1 + r −1𝔼 (  𝐶𝑡+1
        /  ℱ𝑡  ) For all time 𝑡 =  0,1, … , 𝑁 − 1                                                      (3.8)     

Where 𝑃  =  (𝑝𝑢  , 𝑝𝑑   is the unique equivalent martingale measure in Corollary (3.7) and 𝔼   the expectation with 

respect to it.  In particular we have 

  𝐶𝑡    =  1 + r −𝑁+𝑡   𝔼  ( 𝐶𝑁/  ℱ𝑡  ); for all time  𝑡 = 0, 1, … , 𝑁                                                     (3.9) 

 

Proof. This directly follows from Proposition 3.8 and Remark 3.5. 

 

Corollary 3.10 (The Cox-Ross-Rubinstein's formula) Consider a replicable European call option with payoff 

𝐶𝑁  =  𝑚𝑎𝑥(𝑆𝑁 − 𝐾, 0) in the multi-step binomial model. Then the fair price at time 𝑡 =  0 of this call is given by 

𝐶0
 = (1 + 𝑟)−𝑁   

𝑁

𝑘
 𝑝𝑢 

𝐾𝑝𝑑 
𝑁−𝑘 max 𝑆0𝑢

𝑘  𝑑𝑁−𝑘 − 𝐾, 0                                

𝑁

𝑘=0

   (3.10)     

Proof: Given that 𝐶𝑁  =  𝑚𝑎𝑥(𝑆𝑁 − 𝐾, 0) is the payoff the European call option in the multi-step binomial Model. 

By using Theorem 3.9 above, the discounted fair price of European call option 𝐶𝑁  =  𝑚𝑎𝑥(𝑆𝑁 − 𝐾, 0) at time 

𝑡 ∈ 𝑁 is given by 

  𝐶𝑡    =  1 + r −𝑁+𝑡   𝔼  [ 𝐶𝑁/  ℱ𝑡  ] 

                                                  =  1 + r −𝑁+𝑡   𝔼  [ 𝑚𝑎𝑥(𝑆𝑁 − 𝐾, 0) /  ℱ𝑡  ]  
Setting 𝑡 = 0,   we get 

                            𝐶0
     =  1 + r −𝑁   𝔼  [ 𝑚𝑎𝑥(𝑆𝑁 − 𝐾, 0) /  ℱ𝑡  ]  

                                      =  1 + r −𝑁   𝔼  [ 𝑚𝑎𝑥(𝑆𝑁 − 𝐾, 0)  ]          

                                      = (1 + 𝑟)−𝑁   𝑁
𝑘
 𝑝𝑢 

𝐾𝑝𝑑 
𝑁−𝑘 max 𝑆0𝑢

𝑘  𝑑𝑁−𝑘 − 𝐾, 0     𝑁
𝑘=0  

using Remark 3.1 with the probability measureℙ , as required. 

 
IV OPTIONS PRICING BLACK-SCHOLES MODELS 

4.1 Model setting and assets prices dynamics 

Consider a financial market model with two assets in continuous-time trading from initial time 𝑡 = 0 to a fixed later 

time 𝑡 = 𝑇 > 0: 

-A riskless asset such as a bank account or a risk-free bond with price 𝐵𝑡  governed by the ordinary differential 

equation (ODE) with initial condition 

 

 
𝑑𝐵𝑡 = 𝑟𝑐  𝐵𝑡
𝐵0 = 1

                                                                                                                  (4.1) 

where 𝑟𝑐  is the constant continuously compounding interest rate. Solving this ODE with initial condition, we 

get 𝐵𝑡 = 𝑐1𝑒
𝑟𝑐𝑡 , for all time 𝑡 ∈  [0, 𝑇]. 
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- And a risky asset such as (share of) stock whose prices process𝑆𝑡 , assumed square integrable under a given 

probability space(𝛺, Ƒ, ℙ), follows an 𝐼𝑡𝑜 process as the following stochastic differential equation (SDE) with initial 

condition 

 
𝑑𝑆𝑡 = 𝜇𝑆𝑡 + 𝜎𝑆𝑡𝑊𝑡

𝑆0 = 𝑠0 ∈ ℝ+      
                                                                                                              (4.2) 

driven by a one-dimensional standard Brownian motion (𝑊𝑡)𝑡 ∈ [0, 𝑇 ] . The real constant 𝜇 and 𝜎 > are known 

as drift and volatility of the stock prices respectively. 

Applying 𝐼𝑡𝑜′𝑠 formula (Theorem.2.2.3) on the 𝐶2(ℝ+) function 𝑓(𝑥) ∶=  𝑙𝑜𝑔(𝑥) and the 𝐼𝑡𝑜 process 𝑆𝑡 , we obtain 

the explicit solution of this stochastic differential equation SDE as 

𝑆𝑡 =  𝑆0 𝑒𝑥𝑝 (𝑊𝑡 + (𝜇 − 𝜎2/2)𝑡 ;  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡𝑖𝑚𝑒   𝑡 𝜖  0, 𝑇                                                                   (4.3)  

 

4. 2 Investment strategies, arbitrage and model assumptions 
 

Definition.4.2.(Investment strategy and value). In this Black-Scholes model, an investment strategy is a pair of R-

valued continuous-time process 𝜑𝑡 ∶=  (𝛼𝑡 , 𝛾𝑡), where 𝛼𝑡 the investor’s holding in the bond and 𝛾𝑡  is the (random) 

number of units of shares s/he holds in the stock at time t. The value of such a portfolio (or investor's wealth) at time 

𝑡 ∈ [0, 𝑇] is defined as  

𝑉𝑡 ∶= 𝛼𝑡  𝐵𝑡  + 𝛾𝑡  𝑆𝑡  

Definition.4.3. (i)(Self-financing strategy). An investment strategy (portfolio) 𝜑𝑡  is said self-financing if 𝑑𝑉𝑡  =

𝛼𝑡  𝑑𝐵𝑡  + 𝛾𝑡  𝑑𝑆𝑡  ,  i.e., the change in the investor's wealth results only from the change in the bank account and in 

the stock price in the market. 

ii) (Arbitrage). A self-financing strategy is an arbitrage opportunity in the model if 𝑉0 = 0 but 𝑉𝑇  ≥  0  almost sure 

with ℙ(𝑉𝑇 > 0) > 0. 

4.3 Black Scholes Model assumptions 

 As stated in this  model assumes the following conditions: 

1. There is no arbitrage opportunity in this market model, 

2. There is no transaction cost in purchasing shares of stock, 

3. The stock pays no dividend, i.e., no benefit payment to the shareholders. 

4. Short-selling (i.e., borrowing and selling) is allowed in this market. 

5. The market model is liquid, i.e., one can hold any real number of shares of stock. 
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4.4. Arbitrage pricing of call options in the Black-Scholes model. 

Consider a European call option which is a contract set at time 𝑡 = 0 (today) and which gives the holder the right 

(but not an obligation) to buy a share of stock at a fixed agreed price 𝐾 at a future time 𝑇. Hence the payoff (at time 

T) of this option is 𝐶(𝑇, 𝑆𝑇  ) ∶=  𝑚𝑎𝑥(𝑆𝑇 −  𝐾, 0). 

As argued in the discrete-time binomial model setting, since the value of such a contract is known explicitly at 

time 𝑡 = 𝑇, it is naturally for investors to seek what does the options worth at prior time𝑡 ≤ 𝑇. 

Definition .4.4.(Fair-price of an option). The fair-price at time 𝑡 ≤ 𝑇 of the call option is the price 

𝐶(𝑡, 𝑆𝑡) that does not generate arbitrage opportunity in the model. Finding possibly such a price can also be done via 

replicating/hedging portfolios. 

Definition .4.5.(Replicating portfolio). A self-financing strategy φ𝑡  in the Black-Scholes model is a 

replicating (or hedging) strategy for a call option if its value at expiry date equals the payoff of the option, i.e., if 

𝑉𝑇 = 𝐶(𝑇, 𝑆 𝑇). 

Proposition 4.6.(Pricing principle). If a call option admits a replicating portfolio with value process 𝑉𝑡 , 

then we have 𝐶(𝑡, 𝑆𝑡)  =  𝑉𝑡  for all time𝑡 ≤ 𝑇. 

 Proposition 4.7 Under the equivalent martingale measure ℙ , the discounted fair-prices process 𝐶(𝑡, 𝑆𝑡) ∶=

 𝑒𝑟𝑐 𝑡  𝐶 𝑡, 𝑆𝑡   is martingale with respect to 𝔽𝑊 . 

Next, assuming that the underlying fair-price function 𝐶(𝑡, 𝑥) is in 𝐶1,2([0;  𝑇] 𝑥 ℝ+), then we have, 

 

Theorem 4.8.(The Black-Scholes PDE). For any replicable European call option, its fair-price function 

𝐶 𝑡, 𝑥 , 𝑥 ∈ ℝ+ , at any prior time 𝑡 ≤ 𝑇 solves the following initial value partial differential equation (PDE),  

 
𝐶𝑡 𝑡, 𝑥 + 𝜎2 𝑥𝑥

2
𝐶𝑥𝑥  𝑡, 𝑥 + 𝑟𝑐𝑥𝐶𝑥 𝑡, 𝑥 = 𝑟𝑐𝐶𝑥(𝑡, 𝑥)

𝐶 𝑇, 𝑥 = max 𝑥 − 𝐾, 0 
                                                               (4.4) 

Where 𝐶𝑦 and 𝐶𝑦𝑦 denote the partial and second partial derivatives of 𝐶 𝑡, 𝑥  with respect to 𝑦 =  𝑡 or 𝑥. 

 

Proof : Applying Ito's formula on the discounted fair-price process 𝐶(𝑡, 𝑆𝑡)  we obtain, 

  d𝐶(𝑡, 𝑆𝑡) = 𝑒−𝑟𝑐 𝑡  −𝑟𝑐𝐶 𝑡, 𝑆𝑡 + 𝐶𝑡 𝑡, 𝑆𝑡 +
1

2
𝑆𝑡

2𝜎2𝐶𝑥𝑥  𝑡, 𝑆𝑡 + 𝑟𝑐𝑆𝑡𝐶𝑥(𝑡, 𝑆𝑡) 𝑑𝑡 +  𝜎𝐶𝑥 𝑡, 𝑆𝑡 𝑆𝑡    𝑑𝑊𝑡
  

Under the martingale measure  ℙ , under which 𝐶 (𝑡, 𝑆𝑡) is a martingale by the preceding Proposition 4.7. Hence the 

result follows by Proposition 2.2.2, along with the payoff (boundary) condition 𝐶(𝑇, 𝑆𝑇)  =  𝑚𝑎𝑥(𝑆𝑇 −  𝐾, 0). 
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Corollary.4.9. (The Black-Scholes's formula). Under the condition of the theorem 4.8. the time 0 fair-

price of a replicable European call option is given by 

𝐶 0, 𝑆0 = 𝑆0Φ 𝑑1 − 𝐾𝑒−𝑟𝑐𝑇Φ 𝑑1 − 𝜎 𝑇                                                              (4.5) 

Where 𝑑1 =
log  

𝑆0
𝐾
 + 𝑟𝑐+𝜎

2

2  

𝜎 𝑇
 ,𝑆0 is the current price, 𝐾 is strike price, 𝑟𝑐   is the continuous compounded risk-free 

rate, 𝑇 is expiration date, and  𝜎2   is the variance of the continuously compounded return of the stock and Φ  is the 

cumulative distribution function of the standard normal distribution. 

 

Lemma 4.10.  Let𝑋 ∼ 𝑁(𝜇, 𝜎). If 𝑎 and 𝑐 are positive constants, then 

𝔼 𝑚𝑎𝑥 𝑎𝑒𝑥 − 𝑐, 0  = 𝑎𝑒
 𝜇  + 

𝜎2

2
 
Φ 

log 𝑎 𝑐  + 𝜇

𝜎
+ 𝜎 − 𝑐 Φ  

log 𝑎 𝑐  + 𝜇

𝜎
                        (4.7) 

Proof. Applying Proposition.2.1.5.(4), we get 

𝔼 max 𝑎𝑒𝑥 − 𝑐, 0  = 𝑎𝔼  𝑒𝑥1 𝑋>log  𝐶 𝑎    − 𝑐ℙ 𝑋 > log 𝑐 𝑎                                          

=  𝑎𝑒𝜇+
𝜎2

2  ℙ  𝑋 > 𝑙𝑜𝑔  
𝑐

𝑎
 − 𝜎2 − 𝑐ℙ 𝑋 > log 𝑐 𝑎                  

                                              = 𝑎𝑒𝜇+
𝜎2

2  1 − Φ 
log  𝑎 𝑐  −𝜇

𝜎
− 𝜎  − 𝑐  1 −  Φ  

log  𝑎 𝑐  

𝜎
− 𝜎        

By using the scaling property of the normal distribution in Proposition .2.1.5.(3). Finally using the property 

Φ −𝑥 = 1 − Φ(𝑥) for all 𝑥 ≥ 0 from Proposition.2.1.5. (1), we get 

𝔼 𝑚𝑎𝑥 𝑎𝑒𝑥 − 𝑐, 0  = 𝑎𝑒
 𝜇  + 

𝜎2

2
 
Φ 

log 𝑎 𝑐  + 𝜇

𝜎
+ 𝜎 − 𝑐 Φ 

log 𝑎 𝑐  + 𝜇

𝜎
                         

 

Proof. ( Theorem 4.8). Feynman-Kac's formula entitles from Theorem 2.2.5 that the solution of the Black-

Scholes PDE (of equation 4.4) for the fair-price at any time 𝑡 ≤ 𝑇 is 

𝐶 𝑡, 𝑥 = 𝔼  𝑒− 𝑇−𝑡 𝑟𝑐  max⁡ 𝑆𝑇 − 𝑥, 0   

Hence, the result follows for time 𝑡 = 0 by applying the preceding lemma. 

 

4.0. Convergence of the binomial to the Black-Scholes model 

 

In this section we discuss the convergence of the multi-step binomial model (which is discrete-time model) to the 

Black-Scholes model which is continuous-time model by using concept from probability theory. In fact, as exposed 

in [10], this convergence consists in showing that the Cox-Ross-Rubinstein (CRR) formula in Corollary 3.10 
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converges to the Black-Scholes formula of Corollary 4.9 for a European call option. Other related literatures also 

read are references [4, 6, 5]. 

1.1 Convergence of the CRR formula to the Black-Scholes formula 

In section 3, by corollary 3.10, we have seen that under Binomial model fair price at time 𝑡 = 0  of 

European call option which known as CRR formula is given by 

𝐶0
 = (1 + 𝑟𝑑)−𝑁   

𝑁

𝑘
 𝑝𝑢 

𝐾𝑝𝑑 
𝑁−𝑘 max 𝑆0𝑢

𝑘  𝑑𝑁−𝑘 − 𝐾, 0                                                         (5.1)   

𝑁

𝑘=0

 

where 𝑟𝑑  denotes here the per step constant rate r used in the multi-step binomial model. 

Moreover, in section 4 in Corollary 3.10, we have seen that in the Black-Scholes model, the fair price of a replicable 

European call option at time t = 0 is given by 

𝐶 0, 𝑆0 = 𝑆0Φ 𝑑1 − 𝐾𝑒−𝑟𝑐𝑇Φ 𝑑2                                                                                  (5.2) 

𝑑1 − 𝜎 𝑇 Where 𝑑1 =
log  

𝑆0
𝐾
 + 𝑟𝑐+

𝜎2

2
 

𝜎 𝑇
 ,  𝑑2 = 𝑑1 − 𝜎 𝑇 =

log  
𝑆0
𝐾
 + 𝑟𝑐−

𝜎2

2
 

𝜎 𝑇
 , 𝑆0 is the current price,  𝐾 is strike price, 

𝑟𝑐   is the continuous compounded risk-free rate, 𝑇 is expiration date, and  𝜎2   is the variance of the continuously 

compounded return of the stock and Φ  is the cumulative distribution function of the standard normal distribution. 

In Equation (5.1) above, the value of max 𝑆0𝑢
𝑘  𝑑𝑁−𝑘 − 𝐾, 0  is zero for 𝑎 < 𝑘 , where 𝑎 is the minimum number of 

upward movement for the call option finish the money. That means for smallest integer (𝑎 ≤ 𝑁) such 

that𝑆0𝑢
𝑎  𝑑𝑁−𝑎 > 𝐾. 

For 𝑘 < 𝑎, we have max 𝑆0𝑢
𝑘  𝑑𝑁−𝑘 − 𝐾, 0 = 0  and for 𝑎 ≤ 𝐾, 𝑆0𝑢

𝑘  𝑑𝑁−𝑘 > 𝐾, we have max 𝑆0𝑢
𝑘  𝑑𝑁−𝑘 −

𝐾,0= 𝑆0𝑢𝑘 𝑑𝑁−𝑘−𝐾 . Now we need to count the binomial path from 𝐾 = 𝑎 to 𝑁, hence the equation (5.1) becomes 

𝐶0
 = (1 + 𝑟𝑑)−𝑁   

𝑁

𝑘
 𝑝𝑢 

𝐾𝑝𝑑 
𝑁−𝑘   𝑆0𝑢

𝑘  𝑑𝑁−𝑘 − 𝐾                                                   (5.3)   

𝑁

𝑘=𝑎

 

 

Remark 5.2. Using equation (5.3), we can write fair price at time 𝑡 = 0 of European call option in Binomial 

model which known as 𝐶𝑅𝑅 formula as follows compactly 

𝐶0
    =  𝑆0𝐵1 −  1 + 𝑟𝑑 

−𝑁  𝐾𝐵2                                                                                        (5.4) 

Where 

         𝐵1 =    
𝑢

1 + 𝑟𝑑
 𝑝𝑢  

𝐾

  
𝑑

1 + 𝑟𝑑
 𝑝𝑑  

𝑁−𝐾𝑁

𝑘=𝑎

=  𝑝𝑢
∗ 𝐾
𝑝𝑑

∗ 𝑁−𝐾
                       (5.5)

𝑁

𝑘=𝑎

 

With 𝑝𝑢
∗ =

𝑢

1 + 𝑟𝑑
   ,     𝑝𝑑

∗ = 1 − 𝑝𝑢
∗   And 
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      𝐵2 =  𝑃𝑢 
𝐾
𝑃𝑑 

𝑁−𝐾
 

𝑁

𝑘=𝑎

                                                                                                            (5.6) 

Lemma 5.3 The call option formula in the given in equation (5.4) is equivalent to 

            𝐶0  =  𝑆0𝐵1 −  𝐾𝑒−𝑟𝑐𝑇𝐵2                                                                                                     (5.7) 

Proof. First note that  1 + 𝑟𝑑 
−𝑁 is the present value factor for 𝑁 periods. The per period rate 𝑟𝑑  can be related to an 

annual rate 𝑟𝑎  applied for 𝑇 years by the relationship 𝑟𝑑  =  𝑟𝑎
1

𝑁𝑎  where 𝑁𝑎  a is the number of periods per year. 

Hence, 

1 + 𝑟𝑑 =  1 + 𝑟𝑎 
1

𝑁𝑎   ⇒  1 + 𝑟𝑑 
𝑁 =   1 + 𝑟𝑎 

𝑁

𝑁𝑎   =   1 + 𝑟𝑎   
𝑇     Where    𝑇 =

𝑁

𝑁𝑎
               (5.8) 

Since the present value factor for 𝑇 years is 1 + 𝑟𝑎  
𝑇 , then the present value denoted 𝑃𝑉 of 1 Dollar is 

𝑃𝑉 =  1 + 𝑟𝑎 
−𝑇  ⇒ log 𝑃𝑉 = log  1 + 𝑟𝑎 

−𝑇 = −Tlog 1 + 𝑟𝑎  

𝑃𝑉 = 𝑒−Tlog  1+𝑟𝑎    

Hence, setting 𝑟𝑐  =  𝑙𝑜𝑔(1 +  𝑟𝑎), the present value factor ( 1 + 𝑟𝑑 
𝑁  in the multi-step binomial model is 

equivalent to the present value factor 𝑒−𝑟𝑐𝑇  when continuously compounded interest rate 𝑟𝑐  applies. It follows that 

the call option formula in the given in equation (5.4) is equivalent to 

            𝐶0  =  𝑆0𝐵1 −  𝐾𝑒−𝑟𝑐𝑇𝐵2 

 

Lemma 5.4. The minimum number of movements for call option finish the money a is given by 

                 𝑎 =
𝑙𝑜𝑔  

𝐾
𝑆0
 − 𝑁𝑙𝑜𝑔(𝑑)

𝑙𝑜𝑔  
𝑢
𝑑
 

+ 𝛾                                                                                               (5.9)      

Where 𝛾 ∈  0,1   which is the number added to 𝑎 to make integer. 

Proof.  For𝑎 ≤ 𝑘, we required that 𝑆0𝑢
𝑎𝑑𝑁−𝑎  >  𝐾 and by applying property of logarithm and doing some 

calculation, we have 

                       𝑎 >
𝑙𝑜𝑔  

𝐾
𝑆0
 − 𝑁𝑙𝑜𝑔(𝑑)

𝑙𝑜𝑔  
𝑢
𝑑
 

                                                                                                (5.10)      

When we see carefully equation (5.10), it is not integer. So to express 𝑎 as integer we have to add to it a number 

𝛾 ∈  0,1    

 Lemma 5.5 The binomial distribution of B1 converges to the normal distribution 𝜙 𝑥   which is given by 

                𝜙 𝑡 𝑑𝑡                                                                                    

𝑥

−∞

                               (5.11) 

Proof. De Moivre-Laplace Central Limit Theorem2.1.10. says that a binomial distribution converges to the normal 

distribution if 𝑁𝑝𝑢 → ∞ as𝑁 → ∞. In our case 𝐵1 →   𝜙 𝑘 𝑑𝑘 
∞

𝑎
 where 𝜙 𝑘 the density distribution function for 
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normal distribution.  But, 𝑘 is not standard normal random variable. So, let us convert k into standard normal 

random variable by defining  𝑥 =
𝑘−𝔼(𝑘)

𝜎𝑘
. Then, we have 

                𝜙 𝑘 𝑑𝑘 =   𝜙 𝑡 𝑑𝑡      𝑤𝑕𝑒𝑟𝑒 𝑥 =
𝑘 − 𝔼(𝑘)

𝜎𝑘
                                                  (5.12) 

∞

𝑥

 

∞

𝑎

 

Let  𝑥 = −
𝑘−𝔼(𝑘)

𝜎𝑘
, then equation (5.12) become 

  𝜙 𝑡 𝑑𝑡 =

𝑥

−∞

Φ(𝑡) 

 

Remark.5.6. By applying the same concept as 𝐵1 →  Φ(x),  then 𝐵2 also converges to normal distribution 𝛷 𝑥 . 

Lemma.5.7. Let 𝑆𝑇   be the stock price at expiration date 𝑇. After 𝑁 period of time and k up wards movements in 

the markets, 𝑆𝑇  = 𝑆0𝑢
𝑘𝑑𝑁 − 𝑘 , then expectation and variance of k are given by 

𝔼 𝐾 =
𝔼  𝑙𝑜𝑔  

𝑆𝑇
𝑆0
 − 𝑁𝑙𝑜𝑔(𝑑) 

𝑙𝑜𝑔  
𝑢
𝑑
 

   𝑎𝑛𝑑    𝕍𝑎𝑟 𝑘 =

𝕍𝑎𝑟  𝑙𝑜𝑔  
𝑆𝑇
𝑆0
  

 𝑙𝑜𝑔  
𝑢
𝑑
  

2                            (5.13) 

Proof.  Straightforward 

Remark.5.8.   i) Using lemma (5.4) and lemma (5.7), and then as 𝑁 →  ∞ the value of 𝑥 become 

𝑥 =

𝑙𝑜𝑔  
𝑆0

𝑘
 + 𝔼 𝑙𝑜𝑔  

𝑆𝑇
𝑆0
  

 𝕍𝑎𝑟  𝑙𝑜𝑔  
𝑆𝑇
𝑆0
  

                                                                                                (5.14) 

ii)  Since our discrete binomial process converge to continuous log-normal process, and then we 

have 𝕍𝑎𝑟  𝑙𝑜𝑔  
𝑆𝑇

𝑆0
  = 𝜎2𝑇 . Using this result, and substituting in equation (5.14), we have 

𝑥 =

𝑙𝑜𝑔  
𝑆0

𝑘
 + 𝔼 𝑙𝑜𝑔  

𝑆𝑇
𝑆0
  

𝜎2𝑇 
                                                                                    (5.15) 

 

Theorem.5.9. The call option price formula in the binomial model written as in Lemma (5.3) converges to call 

option price formula in the Black-Scholes model given in equation 5.7. In particular 𝐵1 and 𝐵2  converge to 𝛷(𝑑1) 

and 𝛷(𝑑2) respectively. 
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Proof.  We need the value of 𝑥 in equation (5.15) to equal 𝑑1  and 𝑑2  as defined by the Black-Scholes formula with 

the probabilities are 𝑝𝑢
∗  and  𝑝𝑢 . That means we need to verify 

 

𝔼 𝑙𝑜𝑔  
𝑆𝑇
𝑆0

  =  𝑟𝑐 +
𝜎2

2
 𝑇, 𝑖𝑓 𝑡𝑕𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑠 𝑝𝑢

∗   

𝔼 𝑙𝑜𝑔  
𝑆𝑇
𝑆0

  =  𝑟𝑐 +
𝜎2

2
 𝑇,   𝑖𝑓 𝑡𝑕𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑠 𝑝𝑢      

Let verify one by one. From remark (5.2), we have 

𝑝𝑢
∗  =

𝑢

1 + 𝑟𝑑
𝑝𝑢 =

𝑢

1 + 𝑟𝑑
 
𝑟𝑑 − 𝑑

𝑢 − 𝑑
      ⇒  𝑟𝑑 =  𝑝𝑢

∗   
1

𝑢
 +  1 − 𝑝𝑢

∗    
1

𝑑
  

−1

 

Then, using equation (5.7), we have 

 1 + 𝑟𝑑 
𝑁 =  𝑝𝑢

∗   
1

𝑢
 +  1 − 𝑝𝑢

∗    
1

𝑑
  

−𝑁

=  𝑝𝑢
∗   

1

𝑢
 + 𝑝𝑑

∗   
1

𝑑
  

−𝑁

=  1 + 𝑟𝑎  
𝑇             5.16  

Note that we can express 
𝑆0

𝑆𝑇
 by the following sequence, 

𝑆0

𝑆𝑇
=  

𝑆0

𝑆1

  
𝑆1

𝑆2

  
𝑆2

𝑆3

 , … ,  
𝑆𝑁−2

𝑆𝑆𝑁−1

  
𝑆𝑁−1

𝑆𝑇
 =   

𝑆𝑖−1

𝑆𝑖
 

𝑁

𝑖

                                                                 5.17     

Then, using equation 4.2.16, the expectation of 
𝑆0  

𝑆𝑇   
 is given by 

          𝔼  
𝑆0 

𝑆𝑇   
 = 𝔼    

𝑆𝑖−1

𝑆𝑖
 

𝑁

𝑖

 =  𝔼 
𝑆𝑖−1

𝑆𝑖
 

𝑁

𝑖

                                                                    5.18   

From lemma (5.3), the probability for 𝐵1 is   𝑝𝑢
∗ . Since𝑆𝑖 =  𝑆𝑖−1𝑢 with probability    𝑝𝑢

∗  and 𝑆𝑖 =  𝑆𝑖−1𝑑 with 

probability 𝑝𝑑
∗  .  Hence, we have 

𝔼  
𝑆0  

𝑆𝑇   
 = 𝑝𝑢

∗   
1

𝑢
 + 𝑝𝑑

∗   
1

𝑑
                                                                                                     (5.19) 

When we substitute equation (5.18) into (5.19), we have 

𝔼  
𝑆0  

𝑆𝑇   
 =   𝑝𝑢

∗   
1

𝑢
 + 𝑝𝑑

∗   
1

𝑑
    

𝑁

𝑖

=  𝑝𝑢
∗   

1

𝑢
 + 𝑝𝑑

∗   
1

𝑑
    

𝑁

=  1 + 𝑟𝑎 
𝑇                 

 

By using equation  5.16   

This implies, 

                        −𝑇𝑙𝑜𝑔 1 + 𝑟𝑎  = 𝑙𝑜𝑔  𝔼  
𝑆0  

𝑆𝑇   
  = 𝔼 𝑙𝑜𝑔  

𝑆0  

𝑆𝑇   
                                                       (5.20)   
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Since  
 𝑆𝑇  

 𝑆0  
  log-normally distributed, its inverse also log-normally distributed. Hence, 

𝑆0  

𝑆𝑇   
 is also log-normally 

distributed. By using the 𝔼 𝑥 = 𝑒𝑥𝑝  𝜇 +
𝜎2

2
 ,  then we have 

          𝑙𝑜𝑔  𝔼 𝑥  = 𝜇 +
𝜎2

2
                                                                                                                    (5.21)  

By using the relation in equation (5.21), equation (5,20) and using the property of logarithm and expectation, we 

have 

𝔼 𝑙𝑜𝑔  
 𝑆𝑇
𝑆0   

  = 𝑇𝑙𝑜𝑔 𝑟 +

 𝕍𝑎𝑟  𝑙𝑜𝑔  
 𝑆𝑇
𝑆0   

   

2

2
                                                                     (5.22) 

Since 𝑙𝑜𝑔 1 + 𝑟𝑎 =  𝑟𝑐   and 𝕍𝑎𝑟  𝑙𝑜𝑔  
 𝑆𝑇

𝑆0   
  = 𝜎2𝑇 equation (5.22) becomes 

𝔼 𝑙𝑜𝑔  
 𝑆𝑇
𝑆0   

  =  𝑟𝑐𝑇 +  
𝜎2𝑇

2
                                                                                                         (5.23)   

By substituting equation (5.22) into equation (5.15), we have 

𝑥 =
𝑙𝑜𝑔  

𝑆0

𝑘
 +   𝑟𝑐 +  

𝜎2

2
 

𝜎2 𝑇 
                                                                                                             (5.24)    

Hence, using Lemma (5.5), 𝐵1 converges to Φ 𝑥 = Φ(𝑑1) where 𝑥 is given by equation (5.24). 

 

We can show the convergence of 𝐵2  to Φ(𝑑1)   by adopting the same procedure. Therefore, the call option pricing 

formula in the multi-step binomial model converges to call option pricing formula in the Black-Scholes model 

 

V CONCLUSION 

We introduced some useful preliminary concept from probability theory and basic concept of stochastic calculus 

which helped us as background of the paper. Later, We introduced the two common option pricing: multi-step 

binomial model and Black-Scholes model as discrete-time and continuous-time model respectively by using 

probability theory and basic stochastic calculus. 

At the end, we introduced the main purpose of the paper which is the convergence of binomial model to Black-

Scholes model. This is done by using de Moivre Laplace central limit theorem from probability theory, Cox-Ross-

Rubinstein European call option formula in multi-step binomial model as discrete-time model converge to Black-

Scholes pricing formula for European call option in Black-Scholes as continuous-time model. 
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