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ABSTRACT 

Millimeter  wave (mmWave) multiple-input multiple- output  (MIMO)  communication with  large  antenna 

arrays has been  proposed  to enable  gigabit  per  second communication for next generation  cellular  

systems and  local area  networks.  A key difference relative to lower frequency solutions is that in mmWave 

systems, preceding/combining can  not  be performed entirely  at digital  baseband, due  to the  high  cost 

and  power  consumption of some components  of the  radio  frequency  (RF)  chain.  In this paper we 

develop a low complexity algorithm for finding hybrid precoders that split the precoding/combining 

process between the analog and digital domains. Our approach exploits sparsity  in the received signal to 

formulate the design of the precoder/combiners as a compressed  sensing optimization problem.  We use the 

prop- erties of the matrix containing the array response vectors to find first an orthonormal analog 

precoder,  since sparse approximation algorithms  applied to orthonormal sensing matrices  are based on 

simple computations of correlations. Then, we propose to perform a  local  search  to  refine the  analog  

precoder   and  compute  the baseband   precoder.   We present   numerical results demonstrate substantial 

improvements in complexity  while maintaining good spectral  efficiency. 

I.  INTRODUCTION 

Millimeter wave (mmWave) is the new spectral frontier for next generation cellular networks and wireless local 

area net- works [1], [2], [3], [4]. An important requirement in mmWave systems is the use of large arrays at the 

transmitter and receiver to  provide a  reasonable link  budget. The antennas form  a multiple-input multiple-

output (MIMO) communication link that can be configured for different objectives. The de facto ap- proach is 

spatial directivity, which provides beam forming gain needed to achieve a reasonable signal-to-noise ratio (SNR) 

at the receiver. MmWave channels though also have the ability to support spatial multiplexing of multiple 

data streams due to scattering and polarization [5], [6], [7], [8]. Unfortunately, power and cost requirements 

in the mmWave analog front- end make it challenging to implement the typical MIMO preceding transceiver 
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found in lower frequency systems, which is  implemented in  entirely  in  baseband.  A solution is  the hybrid 

precoding framework, where the precoding/combining process is divided between analog and digital domains 

[9], [10], [11]. 

A popular design of hybrid precoders for mmWave channels based  on  variable  phase  shifters  was  

proposed  in  [9]  for a particular mmWave system model incorporating: i) the constraints on the analog 

precoder/combiner, ii) presence of large  antenna  arrays,  and  iii)  the  limited  scattering  nature of the 

mmWave channel. The design of the precoders and combiners is formulated as a sparsity seeking optimization 

problem with hardware constraints. It resembles the problem of sparse signal recovery via multiple 

measurement vectors (MMV), also known as the simultaneous sparse recovery problem (S–OMP) [12]. The 

approach in [9] is elegant yet solving  for  the  precoders  still  results  in  high  complexity. A  limitation  of  

the  work  in  [9],  is  that  perfect  channel state information is assumed at the receiver. This has been 

overcome in work on adaptive channel estimation [10], where the mmWave channel estimation problem is 

formulated as a compressed sensing problem, so that the channel parameters are estimated using standard CS 

tools. Training beamforming and combining vectors during the channel estimation phase are designed using a 

multi-resolution codebook. The main limita- tion of this work is that it assumes known array geometries for 

both the transmitter and receiver. Further investigation is also needed to obtain lower complexity solutions to 

both the channel estimation and  the  hybrid analog/digital precoding design problems. Hybrid precoding 

structures based on the use of variable phase shifters have been proposed earlier for general  MIMO  

architectures in  [13],  but  do  not  take  into account the characteristics of millimeter wave propagation or 

leverage sparsity of  the  received signal. A  related concept called beamspace MIMO communication has 

been proposed in [14], which uses a high-resolution discrete lens array for analog spatial beamforming. This 

avoids the need for phase shifters but does not have uniform performance across a broad range of angles. 

In this paper we propose a low-complexity solution to the hybrid precoding optimization problem posed in 

[9]. We take into account the full structure of the optimization problem by exploiting the semi-unitary 

optimum precoder (optimum in the absence of hardware constraints). This structure reduces significantly the 

search space in the array manifold and thus leads to a lower complexity procedure versus that found in [9]. 

The reduction in complexity is due to an orthogonal matching step that fits the optimum precoder with the 

closest semi- unitary structure in the array manifold that emulates its behav- ior. The orthogonal matching step 

eliminates the need for the, slow, greedy matching pursuit steps deployed in the previous approach [9]. This 

step is then followed by a local search that further improves the solution by using either a fast one- by-

one selection procedure or a full matching pursuit search but both only on a reduced section of the array 

manifold, around the semi-unitary solution previously found. Numerical results show that the computational 

advantage comes with no significant performance degradation in the proposed method as compared to 

previous results. 
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II. PROBLEM FORMULATION 

Hybrid precoding in mmWave MIMO systems, i.e., the fully -connected architecture as shown in Fig. 1 (a) and 

the sub-connected architecture as shown in Fig. 1 (b). In both cases the BS has N M antennas but only N RF 

chains. From Fig. 1, we observe that the sub-connected architecture will likely be more energy-efficient, since it 

only requires N M PSs, while the fully-connected architecture requires   PSs. To fully achieve the spatial 

multiplexing gain, the BS usually transmits N independent data streams to users employing K receive antennas. 

 

 

Fig. 1: Block diagram of a mmWave single user system with hybrid precoding: baseband precoding 

and  radio frequency precoding with RF phase shifters. 

 

In the sub-connected architecture as shown in Fig. 1 (b), N data streams in the baseband are precoded 

by the digital precoder D. In cases where complexity is a concern, D can be further specialized to be a diagonal 

matrix as 

  where  for . Then the role of D essentially performs some 

power allocation. After passing through the corresponding RF chain, the digital-domain signal from each RF 

chain is delivered to only M PSs [22] to perform the analog precoding, which can be denoted by the analog 

weighting vector , whose elements have the same amplitude  but different phases [22]. After the 

analog precoding, each data stream is finally transmitted by a sub-antenna array with only M antennas 

associated with the corresponding RF chain. Then, the received signal vector  at the user 

in a narrowband system 

can be presented as 

----------------------------------------(1) 

Where  is the average received power;  denotes the channel matrix, A is the NM × N analog 

precoding 

matrix comprising N analog weighting vectors  as  

---------------------------------------------(2) 
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 represents the transmitted signal vector in the baseband. In this paper, we assume the 

widely used Gaussian signals [10]–[13], [15]–[17] with normalized signal power  

 

while the practical system with finite alphabet inputs [23], [24] will be also briefly discussed in Section IV. P = 

AD presents the hybrid precoding matrix of size NM × N, which satisfies  to meet the total 

transmit power constraint. Finally  is an additive white Gaussian noise (AWGN) vector, 

whose entries follow the independent and identical distribution (i.i.d.) . 

It is known that mmWave channel H will not likely follow the rich-scattering model assumed at low 

frequencies due to the limited number of scatters in the mmWave prorogation environment [3]. In this paper, we 

adopt the geometric SalehValenzuela channel model to embody the low rank and spatial correlation 

characteristics of mmWave communications as 

-----------------------------------------(3) 

Where  is a normalization factor, L is the number of effective channel paths corresponding to the 

limited number of scatters, and we usually have   for mmWave communication systems.   is the 

gain of the L path.  and .  are the azimuth (elevation) angles of departure and arrival 

(AoDs/AoAs), respectively.   and  denote the transmit and receive antenna array gain at a 

specific AoD and AoA, respectively. 

 

III. LOW COMPLEXITY HYBRID PRECODING SOLUTIONS 

 

SIC-BASED HYBRID PRECODING FOR MMWAVE MIMO SYSTEMS: 

A low-complexity SIC-based hybrid precoding to achieve the near-optimal performance. The 

evaluation of computational complexity is also provided to show its advantages over current solutions. 

A. Structure of SIC-based hybrid precoding 

to maximize the total achievable rate R of mmWave MIMO systems , while other criteria such as the max-min 

fairness criterion [27] are also of interest. Specifically, R can be expressed as [11]. 

---------------------------------------------------(4) 

According to the system model (1) in Section II, since the hybrid precoding matrix P can be represented  asP 

= AD = diag {_a1, · · · , _aN} · diag {d1, · · · , dN}, there are three constraints for the design of P: Constraint 1: 
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P should be a block diagonal matrix similar to the form of A as shown in (2), i.e., P = diag {_p1, · · · , _pN}, 

where _pn = dn_an is the M × 1 non-zero vector of the nth column pn of P, i.e., pn = [ 01×M(n−1), _pn, 

01×M(N−n)]T ; Constraint 2: The non-zero elements of each column of P should have the same amplitude, 

since the digital precoding matrix D is a diagonal matrix, and the amplitude of non-zero elements of the analog 

precoding matrix A is fixed to 1/ ; Constraint 3: The Frobenius norm of P should satisfy ∥P∥ F ≤ N to meet 

the total transmit power constraint, where N is the number of RF chains equal to the number of transmitted data 

streams.  Unfortunately, these non-convex constraints on P make maximizing the total achievable rate (6) very 

difficult to be solved. However, based on the special block diagonal structure of the hybrid precoding matrix P, 

we observe that the precoding on different sub-antenna arrays are independent. This inspires us to decompose 

the total achievable rate (6) into  a series of sub-rate optimization problems, each of which only considers one 

sub-antenna array. In particular, we can divide the hybrid precoding matrix P as P = [PN−1 pN], where pN is the 

Nth column of P, and PN−1 is an NM × (N − 1) matrix containing the first (N − 1) columns of P. Then, the total 

achievable rate R in (6) can be rewritten as  where (a) is obtained by defining the auxiliary matrix TN−1 = IK + 

ρ Nσ2HPN−1PHN−1HH, and (b) is true due to the fact that |I + XY| = |I + YX| by defining X = T −1 N−1HpN 

and Y = Phn HH. Note that the second term log2(1 + ρNσ2 pHNHHT−1N−1HpN) on the right side of (7) isthe 

achievable sub-rate of the Nth sub-antenna array, while the first term log2 (|TN−1|) shares the same form as (6). 

This observation implies that we can further decompose log2 (|TN−1|) using the similar method in (7) as  where 

we have Tn = IK + ρ Nσ2HPnPHn HH and T0 = IN. From (8), we observe that the total achievable rate 

optimization problem can be transformed into a series of sub-rate optimization problems of sub-antenna arrays, 

which can be optimized one by one3. After that, inspired by the idea of SIC for multi-user signal detection [21], 

we can optimize the achievable sub-rate of the first sub-antenna array and update the matrix T1. Then, the 

similar method can be utilized to optimize the achievable sub-rate of the second sub-antenna array. Such 

procedure will be executed until the last subantenna array is considered. Fig. 2 shows the diagram of the 

proposed SIC-based hybrid precoding. Next, we will discuss how to optimize the achievable sub-rate of each 

sub-antenna array. 

 

 

Fig. 2. Diagram of the proposed SIC-based hybrid precoding. 

B. Solution to the sub-rate optimization problem 
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In this subsection, we focus on the sub-rate optimization problem of the nth sub-antenna array, which can be 

directly applied to other sub-antenna arrays. According to (8), the subrate optimization problem of the nth sub-

antenna array by 

designing the nth precoding vector pn can be stated as popt n = arg max pn∈F log2 ( 1 + ρ Nσ2 pHn Gn−1pn ),  

where Gn−1 is defined as Gn−1 = HHT −1 n−1H, F is the set of all feasible vectors satisfying the three 

constraints described in Section III-A. Note that the nth precoding vector pn only has M non-zero elements from 

the (M(n − 1) + 1)th one to the (Mn)th one. Therefore, the sub-rate optimization problem (9) can be equivalently 

written as popt n = arg max_pn∈F￣ log2 ( 1 + ρ Nσ2 _pHn _G n−1_pn),  where F_ includes all possible M × 1 

vectors satisfying Constraint 2 and Constraint 3, _Gn−1 of size M ×M is the corresponding sub-matrix of Gn−1 

by only keeping the rows and columns of Gn−1 from the (M(n − 1) + 1)th one to the (Mn)th one, which can be 

presented as 

------------------------------------------------------(4) 

Define the singular value decomposition (SVD) of the Hermitian matrix _Gn−1 as _Gn−1 = V_VH, where _ is 

an M ×M diagonal matrix containing the singular values of _G n−1 in a decreasing order, and V is an M ×M 

unitary matrix. It is known that the optimal unconstrained precoding vector of (10) is the first column v1 of V, 

i.e., the first right singular vector of _Gn−1 [11]. However, according to the constraints mentioned in Section 

III-A, we cannot directly choose _popt n as v1 since the elements of v1 do not obey the constraint of same 

amplitude (i.e., Constraint 2). To find a feasible solution to the sub-rate optimization problem (10), we need to 

further convert (10) into another form, which is given by the following Proposition 1. 

Proposition 1. The optimization problem   

--------------------------------------(5) 

is equivalent to the following problem 

--------------------------------------(6) 

Proposition 1 indicates that we can find a feasible precoding vector _pn, which is sufficiently close (in terms of 

Euclidean distance) to the optimal but unpractical precoding vector v1, to maximize the achievable sub-rate of 

the nth subantenna array.  
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Since _pn = dn_an according to (1 -------------------------------

-------(7) 

""Optimization" and "Optimum" redirect here. For other uses, see Optimization(disambiguation) and Optimum 

(disambiguation). 

 

Graph of a paraboloid given by z = f(x, y) = −(x² + y²) + 4. The globalmaximum at (x, y, z) = (0, 0, 4) is 

indicated by a blue dot. 

 

Nelder-Mead minimum search ofSimionescu's function. Simplex vertices are ordered by their value, with 1 

having the lowest (best) value. 

In mathematics, computer science and operations research, mathematical optimization or mathematical 

programming, alternatively spelled optimisation, is the selection of a best element (with regard to some 

criterion) from some set of available alternatives.
[1]

 

https://en.wikipedia.org/wiki/Optimization_(disambiguation)
https://en.wikipedia.org/wiki/Optimum_(disambiguation)
https://en.wikipedia.org/wiki/Optimum_(disambiguation)
https://en.wikipedia.org/wiki/Optimum_(disambiguation)
https://en.wikipedia.org/wiki/Paraboloid
https://en.wikipedia.org/wiki/Maximum_(mathematics)
https://en.wikipedia.org/wiki/Test_functions_for_optimization
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Mathematical_optimization#cite_note-1
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In the simplest case, an optimization problem consists of maximizing or minimizing a real function by 

systematically choosing input values from within an allowed set and computing the value of the function. The 

generalization of optimization theory and techniques to other formulations constitutes a large area of applied 

mathematics. More generally, optimization includes finding "best available" values of some objective function 

given a defined domain (or input), including a variety of different types of objective functions and different 

types of domains. 

An optimization problem can be represented in the following way: Given: a function f : A  R from 

some set A to the real numbers Sought: an element x0 in A such that f(x0) ≤ f(x) for all x in A ("minimization") 

or such that f(x0) ≥ f(x) for all x in A ("maximization"). Such a formulation is called an optimization problem or 

a mathematical programming problem (a term not directly related to computer programming, but still in use for 

example in linear programming – see History below). Many real-world and theoretical problems may be 

modeled in this general framework. Problems formulated using this technique in the fields 

of physics and computer vision may refer to the technique as energy minimization, speaking of the value of the 

function f as representing the energy of the system being modeled. 

Typically, A is some subset of the Euclidean space R
n
, often specified by a set of constraints, equalities 

or inequalities that the members of A have to satisfy. The domain A of f is called the search space or the choice 

set, while the elements of A are called candidate solutions or feasible solutions. 

The function f is called, variously, an objective function,a loss function or cost 

function (minimization), a utility function or fitness function (maximization), or, in certain fields, an energy 

function or energy functional. A feasible solution that minimizes (or maximizes, if that is the goal) the 

objective function is called an optimal solution. 

In mathematics, conventional optimization problems are usually stated in terms of minimization. 

Generally, unless both the objective function and the feasible region are convex in a minimization problem, 

there may be several local minima. A local minimum x* is defined as a point for which there exists some δ > 0 

such that for all x where holds; that is to say, on ome region around x* all of the function values are greater 

than or equal to the value at that point. Local maxima are defined similarly. While a local minimum is at least 

as good as any nearby points, a global minimum is at least as good as every feasible point. In a convex 

problem, if there is a local minimum that is interior (not on the edge of the set of feasible points), it is also the 

global minimum, but a nonconvex problem may have more than one local minimum not all of which need be 

global minima.A large number of algorithms proposed for solving nonconvex problems—including the 

majority of commercially available solvers—are not capable of making a distinction between locally optimal 

solutions and globally optimal solutions, and will treat the former as actual solutions to the original 

problem. Global optimization is the branch of applied mathematics and numerical analysis that is concerned 

https://en.wikipedia.org/wiki/Optimization_problem
https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Function_of_a_real_variable
https://en.wikipedia.org/wiki/Argument_of_a_function
https://en.wikipedia.org/wiki/Value_(mathematics)
https://en.wikipedia.org/wiki/Applied_mathematics
https://en.wikipedia.org/wiki/Applied_mathematics
https://en.wikipedia.org/wiki/Applied_mathematics
https://en.wikipedia.org/wiki/Domain_of_a_function
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Optimization_problem
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Mathematical_optimization#History
https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Constraint_(mathematics)
https://en.wikipedia.org/wiki/Domain_(mathematics)
https://en.wikipedia.org/wiki/Candidate_solution
https://en.wikipedia.org/wiki/Loss_function
https://en.wikipedia.org/wiki/Functional_(mathematics)
https://en.wikipedia.org/wiki/Feasible_region
https://en.wikipedia.org/wiki/Convex_function
https://en.wikipedia.org/wiki/Global_minimum
https://en.wikipedia.org/wiki/Convex_optimization
https://en.wikipedia.org/wiki/Convex_optimization
https://en.wikipedia.org/wiki/Convex_optimization
https://en.wikipedia.org/wiki/Global_optimization
https://en.wikipedia.org/wiki/Applied_mathematics
https://en.wikipedia.org/wiki/Numerical_analysis
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with the development of deterministic algorithms that are capable of guaranteeing convergence in finite time to 

the actual optimal solution of a nonconvex problem. 

C. Low-complexity algorithm to obtain the optimal solution 

In computational complexity theory, a language B (or a complexity class B) is said to be low for a complexity 

class A (with some reasonable relativized version of A) if A
B
 = A; that is, A with an oracle for B is equal 

to A.
[1]

 Such a statement implies that an abstract machine which solves problems in A achieves no additional 

power if it is given the ability to solve problems in B at unit cost. In particular, this means that if B is low 

for A then B is contained in A. Informally, lowness means that problems in B are not only solvable by machines 

which can solve problems in A, but are "easy to solve." An A machine can simulate many oracle queries 

to B without exceeding its resource bounds. Results and relationships that establish one class as low for another 

are often called lowness results. The set of languages low for a complexity class A is denoted Low(A). 

. We start by considering how to avoid the SVD involving high computational complexity as well as a large 

number of divisions, which are difficult to be implemented in hardware. In computational complexity theory, a 

language B (or a complexity class B) is said to be low for a complexity class A (with some reasonable 

relativized version of A) if A
B
= A; that is, A with an oracle for B is equal to A. Such a statement implies that an 

abstract machine which solves problems in A achieves no  Computational complexity theory is a branch of 

the theory of computation in theoretical computer science that focuses on classifying computational 

problems according to their inherent difficulty, and relating those classes to each other. A computational 

problem is understood to be a task that is in principle amenable to being solved by a computer, which is 

equivalent to stating that the problem may be solved by mechanical application of mathematical steps, such as 

an algorithm. 

A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm 

used. The theory formalizes this intuition, by introducing mathematical models of computation to study these 

problems and quantifying the amount of resources needed to solve them, such as time and storage. 

Other complexity measures are also used, such as the amount of communication (used in communication 

complexity), the number of gates in a circuit (used in circuit complexity) and the number of processors (used 

in parallel computing). One of the roles of computational complexity theory is to determine the practical limits 

on what computers can and cannot do. Closely related fields in theoretical computer science are analysis of 

algorithms and computability theory. A key distinction between analysis of algorithms and computational 

complexity theory is that the former is devoted to analyzing the amount of resources needed by a particular 

algorithm to solve a problem, whereas the latter asks a more general question about all possible algorithms that 

could be used to solve the same problem. More precisely, computational complexity theory tries to classify 

problems that can or cannot be solved with appropriately restricted resources. In turn, imposing restrictions on 

the available resources is what distinguishes computational complexity from computability theory: the latter 

theory asks what kind of problems can, in principle, be solved algorithmically. Several natural complexity 

https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Complexity_class
https://en.wikipedia.org/wiki/Oracle_machine
https://en.wikipedia.org/wiki/Low_(complexity)#cite_note-KT15-1
https://en.wikipedia.org/wiki/Abstract_machine
https://en.wikipedia.org/wiki/Theory_of_computation
https://en.wikipedia.org/wiki/Theoretical_computer_science
https://en.wikipedia.org/wiki/Computational_problems
https://en.wikipedia.org/wiki/Computational_problems
https://en.wikipedia.org/wiki/Computational_problems
https://en.wikipedia.org/wiki/Complexity_class
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Models_of_computation
https://en.wikipedia.org/wiki/Communication_complexity
https://en.wikipedia.org/wiki/Communication_complexity
https://en.wikipedia.org/wiki/Communication_complexity
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Circuit_complexity
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Analysis_of_algorithms
https://en.wikipedia.org/wiki/Analysis_of_algorithms
https://en.wikipedia.org/wiki/Analysis_of_algorithms
https://en.wikipedia.org/wiki/Computability_theory
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classes are known to be low for themselves. Such a class is sometimes called self-low.
[2]

 Scott Aaronson calls 

such a class a physical complexity class.
[3]

 Note that being self-low is a stronger condition than being closed 

under complement. Informally, a class being low for itself means a problem can use others problems in the class 

as unit-cost subroutines without exceeding the power of the complexity class.  

The following classes are known to be self-low:  

 P is self-low (that is, P
P
 = P) because polynomial-time algorithms are closed under composition: a 

polynomial-time algorithm can make polynomially many queries to other polynomial-time algorithms, 

while retaining a polynomial running time. 

 PSPACE (with restricted oracle access mechanism) is also self-low, and this can be established by 

exactly the same argument. 

 L is self-low because it can simulate log space oracle queries in log space, reusing the same space for 

each query. 

 NC is also self-low for the same reason. 

 BPP is also low for itself and the same arguments almost work for BPP, but one has to account for 

errors, making it slightly harder to show that BPP is low for itself. 

 Similarly, the argument for BPP almost goes through for BQP, but we have to additionally show that 

quantum queries can be performed in coherent superposition.  

 Both Parity P  and BPP are low for themselves. These were important in showing Toda's theorem.
[5]

 

 NP ∩ coNP is low for itself.
[1]

 

Every class which is low for itself is closed under complement, provided that it is powerful enough to negate the 

boolean result. This implies that NP isn't low for itself unless NP =co-NP, which is considered unlikely because 

it implies that the polynomial hierarchy collapses to the first level, whereas it is widely believed that the 

hierarchy is infinite. The converse to this statement is not true. If a class is closed under complement, it does not 

mean that the class is low for itself.  

An example of such a class is EXP, which is closed under complement, but is not low for itself. While low-

complexity art does not require a priori restrictions of the description size, the basic ideas are related to the size-

restricted intro categories of the demoscene, where very short computer programs are used to generate pleasing 

graphical and musical output. Very small (usually C) programs that create music have been written: the style of 

this music has come to be called "bytebeat" 

D. Summary of the proposed SIC-based hybrid precoding 

Image inpainting refers to lling in the missing parts or modifying the damaged parts of an image in a visually 

plausible way. Image inpainting , an artistic term used from ancient times, refers to restoration or retouching 

works of paintings. This technique can be used for restoring the missing parts of an image or for removing the 

https://en.wikipedia.org/wiki/Low_(complexity)#cite_note-Rothe_2006-2
https://en.wikipedia.org/wiki/Scott_Aaronson
https://en.wikipedia.org/wiki/Low_(complexity)#cite_note-Aaronson-3
https://en.wikipedia.org/wiki/Complement_(complexity)
https://en.wikipedia.org/wiki/Complement_(complexity)
https://en.wikipedia.org/wiki/Complement_(complexity)
https://en.wikipedia.org/wiki/P_(complexity)
https://en.wikipedia.org/wiki/PSPACE
https://en.wikipedia.org/wiki/L_(complexity)
https://en.wikipedia.org/wiki/NC_(complexity)
https://en.wikipedia.org/wiki/Bounded-error_probabilistic_polynomial
https://en.wikipedia.org/wiki/BQP
https://en.wikipedia.org/wiki/Parity_P
https://en.wikipedia.org/wiki/Bounded-error_probabilistic_polynomial
https://en.wikipedia.org/wiki/Toda%27s_theorem
https://en.wikipedia.org/wiki/Low_(complexity)#cite_note-5
https://en.wikipedia.org/wiki/Low_(complexity)#cite_note-KT15-1
https://en.wikipedia.org/wiki/Complement_(complexity)
https://en.wikipedia.org/wiki/NP_(complexity)
https://en.wikipedia.org/wiki/Co-NP
https://en.wikipedia.org/wiki/Polynomial_hierarchy
https://en.wikipedia.org/wiki/EXP
https://en.wikipedia.org/wiki/Demo_(computer_programming)#Size_restrictions
https://en.wikipedia.org/wiki/Demo_(computer_programming)#Size_restrictions
https://en.wikipedia.org/wiki/Demoscene
https://en.wikipedia.org/wiki/Procedural_generation
https://en.wikipedia.org/wiki/C_programming_language
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unwanted objects from an image. In digital images, role of image inpainting techniques grow from mere 

restoration of images, photographs and lms to powerful image enhancement and image completion Successive 

interference cancellation (SIC) is a physical layer capability that allows a receiver to decode packets that arrive 

simultaneously. While the technique is well known in communications literature, emerging software radios are 

making practical experimentation feasible. This motivates us to study the extent of throughput gains possible 

with SIC from a MAC layer perspective. Contrary to our initial expectation, we find that the gains from SIC are 

not easily available in many realistic situations. Moreover, we observe that the scope for SIC gets squeezed by 

the advances in bitrate adaptation, casting doubt on the future of SIC based protocols. Let us define collision as 

the simultaneous arrival of two 

or more packet transmissions at a receiver. Traditionally, only the strongest signal can be decoded, treating the 

other signal as interference. However, SIC facilitates recovery of even the weaker signal. For this, the bits of the 

stronger 

signal are decoded as before. The original (stronger) signal is then reconstructed from these bits, and subtracted 

(i.e., cancelled) from the combined signal. The bits of the weaker packet are then decoded from this residue. 

This can be an iterative process to recover multiple packets and hence it is termedsuccessive interference 

cancellation. It is worth pointing out that the idea of SIC-based hybrid precoding can be also extended to the 

combining at the user following the similar logic in [11]. When the number of RF chains at the BS is smaller 

than that at the user, we first compute the optimal hybrid precoding matrix P according to Algorithm 2, where 

we assume that the combining matrix Q = I. Then, given the effective channel matrix HP, we can similarly 

obtain the optimal hybrid combining matrix Q by referring to Algorithm 2, where the input _G0 and the optimal 

unconstrained solution v1 should be correspondingly replaced. Conversely, when the number of RF chains at the 

BS is larger than that at the user, we can assume P = I and obtain the optimal hybrid combining matrix Q. After 

that, the optimal precoding matrix P can be acquired given the effective channel matrix QH. Additionally, to 

further improve the performance, we can combine the above method with the ―Ping-pong‖ algorithm [22], 

which involves an iteration procedure between the BS and the user, to jointly seek the optimal hybrid precoding 

and combining matrices pair. Further discussion about hybrid combining will be left for future work.  

E. Complexity evaluation 

In this subsection, we provide the complexity evaluation of the proposed SIC-based hybrid precoding in terms 

of the  required numbers of complex multiplications and divisions. The notion of communication 

complexity was introduced by Yao in 1979,
[1]

 who investigated the following problem involving two separated 

parties (Alice and Bob). Alice receives an n-bit string x and Bob another n-bit string y, and the goal is for one of 

them (say Bob) to compute a certain function f(x,y) with the least amount of communicationbetween them. Note 

that here we are not concerned about the number of computational steps, or the size of the computer 

memory used. Communication complexity tries to quantify the amount of communication required for 

such distributed computations. Of course they can always succeed by having Alice send her whole n-bit string to 

Bob, who then computes the function, but the idea here is to find clever ways of calculating fwith fewer 
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than n bits of communication. This abstract problem, and its general form with more than two parties, is relevant 

in many contexts: in VLSI circuit design, for example, one wants to minimize energy used by decreasing the 

amount of electric signals required between the different components during a distributed computation. The 

problem is also relevant in the study of data structures, and in the optimization of computer networks. For a 

survey of the field, see the book by Kushilevitz and Nisan.  From Algorithm 2, we observe that the complexity 

of SICbased hybrid precoding comes from the following four parts:  

1) The first one originates from the computation of _G 0 = RHHHRH according to (11). Note that R is a 

selection matrix and H has the size K × NM. Therefore, this part involves KM2 times of multiplications without 

any division.  

2) The second one is from executing Algorithm 1. It is observed that in each iteration we need to compute a 

matrixto- vector multiplication z(s) = _Gn−1u(s−1) together with the Aitken acceleration method (20). 

Therefore, we totally require 

S( M2 + 2)− 4 and (2S − 2) times of multiplications and divisions, respectively.  

3).The third one stems from acquiring the optimal solution popt n in step 2 of Algorithm 2. We find that this part 

is quite 

simple, which only needs 2 times of multiplications without any division, since v1 has been obtained is a fixed 

constant. 

4) .The last one comes from the update of _Gn. According to Proposition 2, we know that this part mainly 

involves a outer product v1Vh 1 . Thus, it requires M2 times of multiplications with only one division. To sum 

up, the proposed SIC-based hybrid precoding approximately requires O (M2 (NS+K))times of 

multiplicationsand O(2NS) times of divisions.  

Table 1 provides thecomplexity comparison between SIC-based hybrid precodingand therecently proposed 

spatially sparse precoding [11],which requires O(N4M +N2L2 + N2M2L)times of multiplicationsand 

O(2N3)times of divisions. Here, L is thenumber of effective channel paths as defined in (3). Consideringthe 

typical mmWave MIMO system with N = 8, M = 8, K = 16, L = 3 [11], we observe that the complexity of SIC-

based hybrid precoding is about 4 × 103 times of multiplications and 102 times of divisions, where we set S = 5 

(note that S ≥ 5 is usually sufficient to guarantee the performance, which is verified through intensive 

simulations). By contrast, the complexity of the spatially sparse precoding is about 5 × 104 times of 

multiplications and 103 times of divisions. Therefore, the proposed SIC-based hybrid precoding enjoys much 

lower complexity, which is only about 10% as complex as that of the spatially sparse precoding. 

 

IV. NUMERICAL RESULTS 

the proposed SIC-based hybrid precoding. We compare the performance of SIC-based hybrid precoding with the 

recently proposed spatially sparse precoding and the optimal unconstrained precoding based on the SVD of the 

channel matrix, which are both with fully-connected architecture. Additionally, we also include the conventional 

https://en.wikipedia.org/wiki/Multiparty_communication_complexity
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analog precoding  and the optimal unconstrained precoding (i.e.,_popt n = v1) which are both with sub-

connected architecture as benchmarks for comparison.  

The simulation parameters are described as follows. We generate the channel matrix according to the channel 

model described in Section II. The number of effective channel paths is L = 3. The carrier frequency is set as 

28GHz. Both the transmit and receive antenna arrays are ULAs with antenna spacing d = λ/2. Since the BS 

usually employs the directional antennas to eliminate interference and increase antenna gain, the AoDs are 

assumed to follow the uniform distribution within[-π/6, π/6].  Meanwhile, due to the random position of users, 

we assume that the AoAs follow the uniform distribution within [−π, π], which means the unidirectional 

antennas are adopted by users. Furthermore, we set the maximum number of iterations S = 5 to run Algorithm 2. 

Finally, SNR is defined as  Firstly, we consider the perfect channel state information (CSI) scenario.  

 

Fig. 3 shows the achievable rate comparison in mmWave MIMO system, where NM × K = 64 × 16 and the 

number of RF chains is N = 8. We observe from Fig. 3 that the proposed SIC-based hybrid precoding 

outperforms the conventional analog precoding with sub-connected architecture in whole simulated SNR range. 

Meanwhile, 
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 Fig. 3 also verifies the near-optimal performance of SIC-based hybrid precoding, since it can achieve about 

99% of the rate achieved by the optimal unconstrained precoding with sub-connected architecture. 

 

V.  CONCLUSIONS 

In this paper we developed a new optimization algorithm for the design of hybrid precoders and combiners for 

mmWave MIMO systems. Our two solutions incorporate constraints that account for the practical hardware 

limitations at these frequen- cies: analog beamforming based on quantized variable phase shifters and the use 

of a limited number of RF chains. The main innovation in our work is to exploit the array geometry in a 

way that allows us to reduce the search complexity and thus the overall complexity of the algorithm. Simulation 

results show that the spectral efficiency achieved by using the new algorithms is comparable to the 

unconstrained solution, yet with substantially lower overall complexity. 
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