Volume No.07, Special Issue No.01, February 2018

www.ijarse.com

IJARSE ISSN: 2319-8354

## WATER TREATMENT RESOURCES

# ShantanuSharma<sup>1</sup>,Valiram Maurya<sup>2</sup>,Talha Khan<sup>3</sup>

B.Tech 7th Semester, Department of Civil Engineering,

IIMT college of engineering, Greater Noida, U.P., (India).

#### **ABSTRACT**

This study was designed to evaluate the global scientific output in the ISI subject category of "water resources" for the past 16 years. Data were based on the online version of the Science Citation Index Expanded, Web of Science, from 1993 to 2008. Articles referring to water resources were assessed for many aspects, including distributions of source countries, institutes, words in the title, author keywords, and KeyWords Plus. The hindex was also calculated in terms of the characteristics of publications. Distributions of paper titles, the author's keywords, and KeyWords Plus at different periods were applied to evaluate research trends. The analysis showed that researchers paid most attention to groundwater and water quality parameters. Modeling and adsorption were the most popular techniques in water resources research. In addition, the relationship between the impact factor and h-index was significant for journals in the fi rst group. The impact of the most cited articles each year were also discussed along with the article life information.

#### **I.INTRODUCTION**

Three-quarters of the Earth's surface is covered by oceans, which dominate the overall impact on the weather and climate system.

- [1]. Water is the most preciousglobal commodity with its myriad uses like drinking, industrial production, irrigation and the production of fish, waterfowl and shellfish.
- [2]. These include waterfor freshwater systems that provides many non-extractive or instream benefits like flood control, transportation, recreation, waste processing, hydroelectric power, and habitat for aquatic life
- [3]. Some benefits, such as irrigation and hydroelectric power, are achieved only by major changes to the flow regime and flow paths from dams and water diversions.
- [4]. Degradation of water resources with time is a social concern. Therefore, researchers have investigated the unbalanced distribution of water resources
- [5]. According to a review on history of water resource studies, the earliest research was presented in 1910.
- [6], and many investigations were implemented in the following years, for example about central and east African water resources

# Volume No.07, Special Issue No.01, February 2018

### www.ijarse.com

ISSN: 2319-8354

[7], whereas today, water resources science has become one of the most important areas in the water researchfield. The issue of water resources plays an important role in the global environment. Over the years, a great deal of progress has been made in water resource monitoring.

- [8], water treatment techniques.
- [9] water resource management.
- [10] adsorption technology
- [11] aerosol
- [12], hydrologic sciences
- [13]hydrogeology
- [14] wetland
- [15], solid waste
- [16] desalination
- [17]. The Science Citation Index Expanded (SCI-Expanded), from the Institute for Scientific Information (ISI) Web of Science databases, is the most important and frequently used source database of choice for a broad review of scientific accomplishment in all fields.
- [18] Many bibliometric investigations have been carried out in various subject areas, for example the medical fields of oncology.
- [19], radiology, nuclear medicine and medical imaging.
- [20], otolaryngology
- [21], tropical medicine
- [22], virology
- [23], and dentistry, oral surgery & medicine
- [24] as well as the science and engineering fields ecology
- [25], microbiology
- [26], psychology
- [27], biology
- [28], and ocean engineering

# Volume No.07, Special Issue No.01, February 2018

### www.ijarse.com

ISSN: 2319-8354

[29]. Conventional bibliometric methods often evaluate research trends by the publication outputs of countries [30], research institutes .

#### II. DATA SOURCES AND METHODOLOGY

The data were collected by analyzing articles and citations from the Thomson Reuters Web of Science database which is based on the online version of SCI expanded. According to Journal Citation Reports (JCR), it indexed 6,426 major journals with citation references across 172 scientific disciplines in 2007. All journals that publish articles mostly on water resources, were selected from among 59 journals listed in the category of "water resources" indexed by ISI in 2007. Articles originating from England, Scotland, Northern Ireland, and Wales were reclassified as from the United Kingdom (UK). Papers addressed in Hong Kong were not included in China. The impact factor (IF) of a journal is defined by the JCR, and is derived by dividing the number of current citations to articles published in the two previous years by the total number of articles published in the two previous years. It is a measure of the frequency with which the average article in a journal has been cited in a particular year. The IF is used to evaluate a journal's relative importance, especially when compared to others in the same field [37,58]. The IF of each journal was obtained from the 2008 JCR. Contributions from different institutes and countries were estimated by the affiliation of at least one author to the article. Collaboration type was determined by the addresses of the authors, where the term "single country article" was assigned if the researchers' addresseswere from the same country. The term "internationally collaborative article" was designated to those articles that were coauthored by researchers from more than one country. The term "single institute article" was assigned if the researchers' addresses were from the same institute. The term "interinstitutionally collaborative article" was assigned if authors were from different institutes. All the articles referring to the subject category of water resources during 1993-2008 were assessed from the following aspects document type and language of article, characteristics of article output, distribution of output in journals, article output of source country, source institute, author number per single country or institute article, and analysis of words in the title, author keywords, and KeyWords Plus. Keywords were defined as comma-separated items of one or more words. All keywords, both those reported by authors and those assigned by ISI, as well as words in the title were identified and separated into 4 four-year spans (1993-1996, 1997-2000, 2001-2004, and 2005-2008), then their ranks and frequencies were calculated, and different words with identical meaning and misspelled keywords were grouped and considered as a single keyword. In addition, the h-index was also calculated as a representative indicator of scientific achievement [47]. It was defined as the number of papers with citation number greater than or equal to h[47]. Hirsch suggests that the h-index has a better predictive power than other measures such as total number of published papers and total number of acquired citations [48]. Studies assessing the efficiency of the h-index have pointed out its convergent validity as a major advantage [49–51]. Moreover, quantity and quality of output are usually assessed by "number of publications" and "total citation counts", respectively [50,51]. Therefore, as a quality measure of publication activity, the h-index of languages, journals, research institutes and countries were calculated to evaluate achievements.

Volume No.07, Special Issue No.01, February 2018 www.ijarse.com

#### IJARSE ISSN: 2319-8354

#### III. RESULTS AND DISCUSSION

#### 3.1. Document type and language of publication.

The distribution of document type identified by ISI was analyzed. From this study, 18 document types were found in the total 96,574 publications during 1993-2008. Journal articles (62,258) were the most-frequently used document type with 64% of the total production, followed by proceedings papers (19,769; 20%), editorial materials (5,743; 5.9%), and reviews (1,806; 1.9%). The others were less significant, including news items (799), letters (660), corrections (569), discussions (513), notes (485), addition corrections (208), biographical items (136), software reviews (38), meeting abstracts (30), items about an individual (25), reprints (21), bibliographies (8), book reviews (6), and database review (1). As journal articles were dominant in the document types and peer-reviewed within this field, they were identified and further analyzed. The emphasis of the following discussion was to determine the pattern of scientific production and research activity trends which consisted of authorship, institutes, countries, and trends in the research subjects addressed. Ninety Eight percent of all these journal articles were published in English (60,793) with an h-index of 151. Compared with other investigations, English was the dominant language [21,43,52], followed by French (913), Spanish (407), German (130), Afrikaans (10), Dutch (2), Rumanian (2), and Danish (1) with h-indexes of 14, 6, 11, 2, 0, 1, and 1 for each respectively. A significant correlation was found between the yearly cumulative number of articles and the year from 1993 to 2008 [53,54]. The relationship between the cumulative number of articles published each year (P) and the number of consecutive years (Y) studied from 1993 to 2008 was found to be: P = 2088Y1.144 (r2 = 0.997) until 2002 and P = 9568exp (0.1173Y) (r2 = 1.000) for 2002–2008 (Fig. 1).

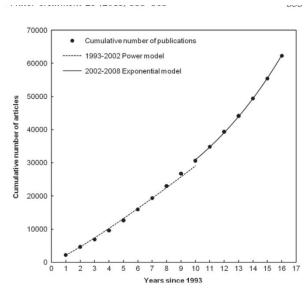



Fig. 1. Cumulative number of articles by year during 1993–2008.

# Volume No.07, Special Issue No.01, February 2018

### www.ijarse.com

IJARSE ISSN: 2319-8354

#### 3.2. Distribution of outputs in journals

All journals with their impact factor, impact factor rank, number of articles in 2007, and h-index were statistically analyzed (Table 1). In total, 62,258 articles were published in the 59 searched journals under the category of water resources. Seventeen journals had more than 1,000 published articles referring to water resources research from 1993 to 2008. The h-index provides a new indicator for the research performance and the impact factor is a mature indicator. Water Research published the most articles (6,880; 11%), and had the highest h-index (117). The coefficients of determination between the h-index and the impact factor of journal outputs were calculated (Figs. 2 and 3). Group 1 journals had a coefficient of determination (r2) of 0.81 while group 2 had 0.63.Moreover, Bradford's Law of Scattering [55] was applied. The journals were sorted in descending order in terms of number of articles, and then divided into three "zones".

Zone 1 represents the most productive one-third of the total articles, with 5 (8.5%) of 59 journals.Zone 2 represents the next most productive one-third of total articles, with 14 (24%) of 59 journals, and Zone 3 represents the least productive one-third of total articles with 40 (68%) of 59 journals. The number of journals in the three zones approximately followed Bradford'slaw. To reiterate, the number of journals was approximately 1: n: n2 (1: 2.8: 8). The water resources category contained five Bradford's core journals, Water Research, Water Resources Research, Journal of Hydrology, Water Air and Soil Pollution, and Environmental Geology

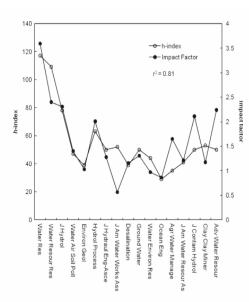
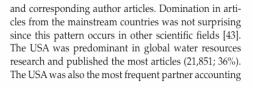




Fig. 2. Relationship between h-index and impact factor (Group 1).



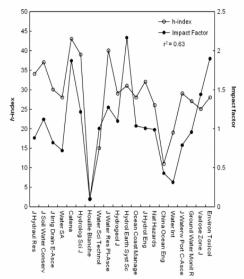



Fig. 3. Relationship between *h*-index and impact factor (Group 2).

for 42% of all the internationally collaborative articles. However, the collaborative articles represented only 23% of the total articles from the USA, which was lower than that of European countries (Table 2). The article impact of the USA was excellent with the highest *h*-index (123) among all the countries, followed by

# Volume No.07, Special Issue No.01, February 2018 www.ijarse.com

IJARSE ISSN: 2319-8354

Table 1 All journals in the category of water resources in SCI-Expanded  $\,$ 

| Journal title                                                      | TA (%)      | IF    | IFR | TA (2007) | h-index |
|--------------------------------------------------------------------|-------------|-------|-----|-----------|---------|
| Water Research                                                     | 6,880 (11)  | 3.587 | 1   | 509       | 117     |
| Water Resources Research                                           | 5,345 (8.6) | 2.398 | 2   | 505       | 109     |
| Journal of Hydrology                                               | 4,223 (6.8) | 2.305 | 3   | 404       | 78      |
| Water Air and Soil Pollution                                       | 2,961 (4.8) | 1.398 | 15  | 249       | 50      |
| Environmental Geology                                              | 2,674 (4.3) | 1.026 | 31  | 459       | 26      |
| Hydrological Processes                                             | 2,396 (3.8) | 2.002 | 7   | 415       | 50      |
| Journal of Hydraulic Engineering-ASCE                              | 1,855 (3.0) | 1.272 | 20  | 185       | 30      |
| Journal American Water Works Association                           | 1,678 (2.7) | 0.561 | 51  | 91        | 21      |
| Desalination                                                       | 1,602 (2.6) | 1.155 | 25  | 747       | 15      |
| Ground Water                                                       | 1,522 (2.4) | 1.304 | 18  | 84        | 34      |
| Water Environment Research                                         | 1,480 (2.4) | 0.966 | 36  | 153       | 25      |
| Ocean Engineering                                                  | 1,444 (2.3) | 0.857 | 41  | 163       | 19      |
| Agricultural Water Management                                      | 1,386 (2.2) | 1.646 | 12  | 138       | 29      |
| Journal of the American Water Resources Association                | 1,285 (2.1) | 1.208 | 23  | 117       | 39      |
| Journal of Contaminant Hydrology                                   | 1,253 (2.0) | 2.106 | 6   | 97        | 63      |
| Clays and Clay Minerals                                            | 1,169 (1.9) | 1.171 | 24  | 47        | 2       |
| Advances in Water Resources                                        | 1,129 (1.8) | 2.235 | 4   | 137       | 47      |
| Journal of Hydraulic Research                                      | 991 (1.6)   | 0.883 | 40  | 92        | 22      |
| Journal of Soil and Water Conservation                             | 984 (1.6)   | 1.121 | 28  | 87        | 31      |
| Journal of Irrigation and Drainage Engineering-ASCE                | 981 (1.6)   | 0.822 | 42  | 115       | 23      |
| Water SA                                                           | 946 (1.5)   | 0.721 | 46  | 82        | 20      |
| Catena                                                             | 907 (1.5)   | 1.874 | 11  | 147       | 44      |
| Hydrological Sciences Journal-Journal des Sciences Hydrologiques   | 906 (1.5)   | 1.216 | 22  | 90        | 43      |
| Houille Blanche-Revue Internationale de L Eau                      | 815 (1.3)   | 0.096 | 57  | 66        | 7       |
| Water Science and Technology                                       | 757 (1.2)   | 1.005 | 33  | 604       | 19      |
| Journal of Water Resources Planning and Management-ASCE            | 750 (1.2)   | 1.275 | 19  | 61        | 37      |
| Hydrogeology Journal                                               | 732 (1.2)   | 1.100 | 29  | 115       | 28      |
| Hydrology and Earth System Sciences                                | 719 (1.2)   | 2.167 | 5   | 104       | 39      |
| Ocean & Coastal Management                                         | 697 (1.1)   | 1.036 | 30  | 72        | 32      |
| Journal of Hydrologic Engineering                                  | 694 (1.1)   | 1.007 | 32  | 134       | 11      |
| Natural Hazards                                                    | 684 (1.1)   | 0.989 | 35  | 108       | 27      |
| China Ocean Engineering                                            | 659 (1.1)   | 0.430 | 53  | 46        | 11      |
| Water International                                                | 616 (1.0)   | 0.315 | 55  | 30        | 8       |
| Journal of Waterway Port Coastal and Ocean Engineering-ASCE        | 602 (1.0)   | 0.789 | 43  | 32        | 18      |
| Ground Water Monitoring and Remediation                            | 583 (0.94)  | 0.957 | 37  | 25        | 28      |
| Vadose Zone Journal                                                | 567 (0.91)  | 1.441 | 14  | 122       | 41      |
| Environmental Toxicology                                           | 531 (0.85)  | 1.899 | 9   | 92        | 39      |
| Aquatic Conservation-Marine and Freshwater Ecosystems              | 506 (0.81)  | 1.619 | 13  | 107       | 35      |
| Journal of Water Supply Research and Technology-Aqua               | 489 (0.79)  | 0.626 | 49  | 57        | 11      |
| Water Resources Management                                         | 488 (0.78)  | 1.350 | 16  | 112       | 53      |
| Acta Hydrochimica et Hydrobiologica                                | 476 (0.76)  | 0.907 | 39  | 0         | 19      |
| Environmental Geochemistry and Health                              | 457 (0.73)  | 1.238 | 21  | 61        | 28      |
| Natural Hazards and Earth System Sciences                          | 448 (0.72)  | 1.345 | 17  | 131       | 50      |
| Ingenieria Hidraulica en Mexico                                    | 409 (0.66)  | 0.112 | 56  | 51        | 14      |
| River Research and Applications                                    | 387 (0.62)  | 1.959 | 8   | 92        | 52      |
| Water Quality Research Journal of Canada                           | 373 (0.60)  | N/A   | 59  | N/A       | 5       |
| Stochastic Environmental Research and Risk Assessment              | 367 (0.59)  | 0.951 | 38  | 77        | 31      |
| Irrigation Science                                                 | 331 (0.53)  | 1.891 | 10  | 49        | 50      |
| Irrigation and Drainage                                            | 318 (0.51)  | 0.480 | 52  | 45        | 10      |
| Physics and Chemistry of the Earth                                 | 287 (0.46)  | 1.138 | 27  | 186       | 29      |
| Nordic Hydrology                                                   | 270 (0.43)  | 0     | 58  | 40        | 8       |
| International Journal of Water Resources Development               | 243 (0.39)  | 0.738 | 45  | 42        | 25      |
| Lake and Reservoir Management                                      | 209 (0.34)  | 0.746 | 44  | 0         | 5       |
| Water and Environment Journal                                      | 173 (0.28)  | 0.648 | 48  | 36        | 24      |
| Clean-Soil Air Water                                               | 170 (0.27)  | 1.145 | 26  | 118       | 40      |
| Environmental Fluid Mechanics                                      | 142 (0.23)  | 1.000 | 34  | 42        | 29      |
| Proceedings of the Institution of Civil Engineers-Water Management | 133 (0.21)  | 0.333 | 54  | 38        | 8       |
| Journal of Hydroinformatics                                        | 107 (0.17)  | 0.681 | 47  | 24        | 17      |
| Proceedings of the Institution of Civil Engineers-Maritime         | 72 (0.12)   | 0.571 | 50  | 14        | 18      |
| Engineering                                                        |             |       |     |           |         |

# Volume No.07, Special Issue No.01, February 2018 www.ijarse.com

ISSN: 2319-8354

Table 2
Top 20 most productive countries/territories of articles during 1993–2008

| Countries    | Region   | TA     | TA R (%) | SA R (%)  | CA R (%) | FA R (%) | RA R (%) | %C | h-index |
|--------------|----------|--------|----------|-----------|----------|----------|----------|----|---------|
| USA          | American | 21,851 | 1 (36)   | 1 (34)    | 1 (42)   | 1 (31)   | 1 (31)   | 23 | 123     |
| UK           | European | 4,647  | 2 (7.6)  | 2 (5.9)   | 2 (14)   | 2 (6.1)  | 2 (6.1)  | 37 | 77      |
| Canada       | American | 4,293  | 3 (7.0)  | 3 (5.7)   | 3 (12)   | 3 (5.7)  | 3 (5.6)  | 34 | 76      |
| China        | Asian    | 3,209  | 4 (5.2)  | 4 (4.0)   | 5 (10)   | 4 (4.2)  | 4 (4.3)  | 39 | 47      |
| France       | European | 3,158  | 5 (5.1)  | 6 (3.7)   | 4 (11)   | 5 (3.9)  | 5 (3.9)  | 42 | 62      |
| Germany      | European | 2,847  | 6 (4.6)  | 8 (3.3)   | 6 (10)   | 7 (3.4)  | 7 (3.5)  | 43 | 66      |
| Australia    | Oceania  | 2,693  | 7 (4.4)  | 7 (3.5)   | 7 (8.2)  | 6 (3.5)  | 6 (3.5)  | 37 | 66      |
| India        | Asian    | 2,338  | 8 (3.8)  | 5 (3.7)   | 13 (4.1) | 8 (3.4)  | 8 (3.4)  | 21 | 49      |
| Italy        | European | 2,326  | 9 (3.8)  | 9 (3.0)   | 10 (6.9) | 9 (3.1)  | 9 (3.2)  | 36 | 59      |
| Spain        | European | 2,171  | 10 (3.5) | 10 (3.0)  | 11 (5.8) | 10 (3.0) | 10 (3.0) | 32 | 57      |
| Japan        | Asian    | 2,138  | 11 (3.5) | 11 (2.5)  | 9 (7.3)  | 11 (2.6) | 11 (2.7) | 41 | 53      |
| Netherlands  | European | 1,834  | 12 (3.0) | 14 (1.9)  | 8 (7.6)  | 12 (2.2) | 12 (2.1) | 49 | 61      |
| Taiwan       | Asian    | 1,282  | 13 (2.1) | 12 (2.1)  | 24 (2.1) | 13 (1.9) | 13 (2.0) | 20 | 51      |
| Turkey       | European | 1,216  | 14 (2.0) | 13 (2.0)  | 25 (2.0) | 14 (1.8) | 14 (1.9) | 20 | 42      |
| Switzerland  | European | 1,142  | 15 (1.9) | 20 (1.0)  | 12 (5.3) | 17 (1.3) | 18 (1.3) | 56 | 51      |
| South Korea  | Asian    | 1,127  | 16 (1.8) | 16 (1.3)  | 14 (3.9) | 16 (1.5) | 16 (1.5) | 41 | 46      |
| South Africa | African  | 1,093  | 17 (1.8) | 15 (1.8)  | 27 (1.7) | 15 (1.7) | 15 (1.6) | 19 | 29      |
| Sweden       | European | 1,026  | 18 (1.7) | 17 (1.2)  | 15 (3.8) | 18 (1.3) | 17 (1.3) | 44 | 47      |
| Israel       | Asian    | 872    | 19 (1.4) | 19 (1.1)  | 17 (2.7) | 19 (1.1) | 19 (1.2) | 37 | 45      |
| Belgium      | European | 814    | 20 (1.3) | 23 (0.76) | 16 (3.7) | 22 (1.0) | 22 (1.0) | 54 | 41      |

#### IV. CONCLUSIONS

In this study on the articles in the category of water resources journals listed in SCI-Expanded, significant points on worldwide research performance from 1993 to 2008 were revealed. The effort provided a systematic structural picture, as well as clues to the impact of research on water resources. Even though English was the dominant language, eight other languages were also used, which indicated global concern about water resources. Apparently more authors, institutes, and countries were engaged in this research over the 16 years. The United States Geological Survey was the pioneer in the field of water resources, with the most independent, interinstitutionally collaborative, first author, and corresponding author articles. Furthermore, the h-index (64) of the United Stated Geological Survey was the highest. The G7 along with China, India, Australia, and Spain had a long research history in this field. China showed a rapidly ascending trend in the number of articles during the last 6 years. Not only did they have the absolute ascendancy of articles, but were also the mostfrequent research partners and had higher h-in dices. The number of journals published in three zones of articles approximately followed Bradford's law. We calculated the coefficients of determination of the impact factor and the h-indices, and found that the journals in the second group had a weaker relationship than that in the first group. In terms of the distributions of words in the paper titles, "river" and "groundwater" were the most concerned "water bodies". In the author keywords analysis, the two most frequently used keywords were "groundwater" and "water quality". The topics, "runoff", "wastewater", "irrigation", and "evapotranspiration" had become new foci. The top four most frequently used KeyWords Plus were "water", "model", "flow", and "transport".

# Volume No.07, Special Issue No.01, February 2018 www.ijarse.com

ISSN: 2319-8354

"Management", "waste-water", "runoff", and "variability" were active research areas. In addition, "modelling" and "adsorption" were the most popular techniques. The most frequently cited paper each year was a backstage pioneer in the research field. The article published in *Water Research* by Tern's in 1998 had been cited 630 times up to 2008. But its citation rate decreased in the past two years. Another paper published in 2000 by Ho and McKay still has a great impact on current water resources research. This study provided researchers with a panorama of global water resources research and established further research directions.

#### REFERENCES

- [1] S. Rahmstorf, Ocean circulation and climate during the past 120,000 years, Nature, 419 (2002) 207–214.
- [2] D. Vidyasagar, Global minute: water and health walking for water and water wars, J. Perinatol., 27 (2007) 56–58.
- [3] S. Postel and S. Carpenter, (1997). Freshwater ecosystem services. In G. C. Daily, editor. Nature's services: societal dependence on natural ecosystems. Island Press, Washington, D.C., USA. 195–214.
- [4] D.R. Rosenberg, P. McCully and C.M. Pringle, Global-scale environmental effects of hydrological alterations: Introduction, BioScience, 50 (2000) 746–751.
- [5] E. Alperovits and U. Shamir, Design of optimal water distribution-systems. Water Resour. Res., 13 (1977) 885–900.
- [6] D.R. Morgan and I.C. Goulter, Optimal urban water distribution design. Water Resour. Res., 21 (1985) 642–652.
- [7] M.D. Cunha and J. Sousa, Water distribution network design optimization: Simulated annealing approach,J. Water Res. PIASCE, 125 (1999) 215–221.
- [8] M.T. Bogert, Chemistry and the conservation of our water resources, Journal of the Franklin Institute, 169 (1910) 385–388.
- [9] W.D. Brind, Central and east African water resources, Nature, 163 (1949) 551–552.
- [10] F.A. Swenson, Geology and ground-water resources of Iwo Jima, Geol. Soc. Am. Bull., 59 (1948) 995–1008.
- [11] V.H. Resh, R.H. Norris and M.T. Barbour, Design and implementation of rapid assessment approaches for water-resource monitoring using benthic macroinvertebrates, Aus. J. Ecol., 20 (1995) 108–121.
- [12] K.E. Sawaya, L.G. Olmanson, N.J. Heinert, P.L. Brezonik and M.E. Bauer, Extending satellite remote sensing to local scales: land and water resource monitoring using high-resolution imagery, Remote Sens. Environ., 88 (2003) 144–156.