Volume No.07, Special Issue No.01, February 2018 www.ijarse.com

THERMODYNAMIC ANALYSIS OF MULTI-PURPOSE REFRIGERATION SYSTEM

Satyendra Chaturvedi¹, Satyaveer Singh²

^{1,2}Department of Mechanical Engineering,

IIMT College of Engineering, Greater Noida, U. P., (India)

ABSTRACT

Crisis of energy takes place in all over the world. Therefore we need to take the necessary step to solve the energy related issue. In refrigeration system a amount of heat is released from the condenser must be utilized in order to meet energy crisis. By the help of that energy we can use it to meet our domestic purpose. We can use it for heating water, heating tea, and can be used as a thermal flask and so on. We can also control the situation of global warming by utilizing the heat. So it is necessary to utilize the energy in order to meet energy crisis.

Key Words: Energy crisis, Refrigeration System,

I.INTRODUCTION

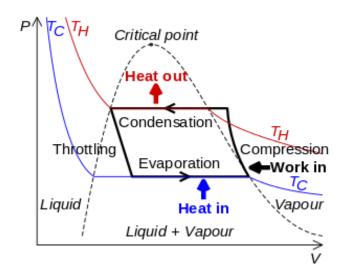
Whenever the temperature gradient occur within the system heat will transfer from high temperature to low temperature within the body. All the heat flow process obey 1st and 2nd law of thermodynamics. All the heat flow process involve exchange of heat. Heat transfer play an very important role in the field of mechanical engineering so that right equations are calculated and utilized to solve problem related to heat and thermodynamics.

1.1 REFRIGERATION SYSTEM

A household refrigerator is a common household appliance that consists of a thermally insulated compartment and which when works, transfers heat from the inside of the compartment to its external environment so that the inside of the thermally insulated compartment is cooled to a temperature below the ambient temperature of the room. In most cases, household refrigerator uses air cooled condenser. Tetrafluoroethane (HFC134a) refrigerant was now widely used in most of the domestic refrigerators and automobile air- conditioners and are using POE oil as the conventional lubricant. Generally, heat from the condenser side is dissipated to room air. If this heat is not utilised, it simply becomes waste heat. Refrigerator has become an essential commodity rather than need. Very few of us are aware about the fact that lot of heat is wasted to ambient by the condenser of refrigerator. If this energy can be utilized effectively then it will be an added advantage of commodity our project aims towards the same goal. Refrigerator in simple language is removal of heat from the place where it is objectionable and

International Journal of Advance Research in Science and Engineering Volume No.07, Special Issue No.01, February 2018 IJARSE

www.ijarse.com


dissipation of heat to the place where it is not objectionable. The working process of the refrigerator is explained as below. The systematic diagram of the refrigerator and its various parts is as shown below:-

A. Compressor: The compressor is the heart of the refrigerator. The input power that is electricity is used to run the compressor. The compressor compresses the refrigerant(R-12 or R-22) which is in the gaseous form to increase its pressure and temperature. The capacity(tons) of the refrigerator decides the power input to the compressor.

B. Condenser: The main purpose of condenser is to transfer the heat generated in refrigerant during the compression process. The temperature of the refrigerant entering in condenser is about 400-600c depending input power of compressor. The atmospheric temperature is about 250-300c. Due to such large temperature difference heat transfer takes place from condenser to atmosphere. That means this heat is wasted to atmosphere.

C. Expansion Tube :capillary tube (small bore copper tube) is used to reduce pressure of refrigerant from condenser to evaporator pressure.

D. Evaporator: This part is placed at the freezer compartment. The working is same as the condenser. The refrigerant boiling in the evaporator tubes takes latent heat from surrounding and in turn cools the space.

II. LITERATURE REVIEW

2.1 Waste Heat Recovery System in the Application of Water Heating

Romdhane ben slama: Developed a system that can recover heat from the condenser of the refrigerator. In this work air-cooled conventional condenser is replaced by another heat exchanger to heat water. The results show that water at a temperature of 60°C was produced by the system. This paper also analyzed the economic importance of the waste heat recovery system from the energy saving Water and It can be concluded that the system while operating under full load condition gives a better COP as compared to no load condition. Hence if

ISSN: 2319-8354

Volume No.07, Special Issue No.01, February 2018 www.ijarse.com

IJARSE ISSN: 2319-8354

the system continuously operates under full load, the COP can be improved. The heat absorbed by water has been observed to be highest during full load. The heat recovery technique, which can be applied to a refrigeration system, provides a compound air-cooling and water-cooling. The use of heat recovery system illustrates the improvement in COP and also the reduction in power consumption. The temperature difference obtained between the water inlet and outlet exceeds 10 OC. Thus a more optimum and efficient system can be built to give better results. The heat recovery module can thus be used in various refrigeration applications as well as in air conditioning Patil and Dange: modified a domestic 190 liter refrigerator to recover the waste heat by installing a water tank containing the condenser coils of refrigerator. Experiment showed that maximum temperature increment was up to 40 degree centigrade. But major drawback with this type of arrangement was that it had no mobility and cannot be used for domestic purposes point of view. Shinde, V. Dhanal: presented a case study on Super Heat Recovery

2.2 Waste Heat Recovery System in the Application of Air Heating

S.C. Walawadeet al presents an attempt is made to recover the waste heat from 165 L refrigerator used for domestic purpose. As indicated in this paper, recovered heat can be utilized as food and snacks warmer, water heater, grain dryer. In the proposed system, the basic requirement is to utilize more and more energy (waste heat). For that purpose some calculations are made regarding size and length of condenser and then WHRS is designed. But after different discussions and calculations for heat transfer rates we approached to the final design of insulated cabin with compact construction and with reasonable cost. So as to extract more and more heat, we have mounted two sections of air cooled condenser one at bottom and one at top side of the insulated cabin. This whole assembly is placed on the top of the refrigerator. The main advantage of this design is that we can get maximum heat with minimum losses.

SR	NAME OF	TITLE	JOURNAL/VOL/ISSUE	RESEARCH	OVERALL
	AUTHOR			METHODOLOGY	CONCLUSION
1.	1. P. Sarat Babu,	Experimental Study	International Journal of	In this	Hence
	2.Prof.N.HariBabu	of Domestic	Engineering Research &	experimental work,	experimental
		Refrigerator/Freezer	Technology (IJERT)	it is proposed to	investigations
		Using Variable	Vol. 2 Issue 12, Dec	optimize condenser	are the best in
		Condenser Length	2013	length for domestic	terms of
				refrigerator of 165	optimization of
				liters capacity. It	certain design
				may give a chance	parameters
				to find a different	
				length other than	
				existing length will	

Volume No.07, Special Issue No.01, February 2018 www.ijarse.com

IJARSE ISSN: 2319-8354

				give better	
				concluded that the	
				optimum length of	
				coil is 7.01m	
				con is 7.01iii	
2	1. S. C. Walawade	Design&	IOSR Journal of	An attempt has	This system is
	2. B.R. Barve,	Development of	Mechanical and Civil	been made to	much useful for
	3. P. R. Kulkarni	WHR System for	Engineering (IOSR-	utilize waste heat	domestic
		Domestic	JMCE) ISSN:	from condenser of	purpose.
		Refrigerator	22781684,PP: 2832,June	refrigerator. In	Recovered heat
		C	2014	minimum	can be utilized
				constructional,	as food and
				maintenance and	snacks warmer,
				running cost,	water heater,
				investigated a	grain dryer.
				WHRS and	Technical
				experimented to	analysis has
				recover	shown that it is
				condensation heat	economically
				from domestic	viable.
				refrigerator of 165	
				liter.	
3	1.Tanaji Shinde,	Experimental	IAEME, Volume 5,	Fabrication,	It can seen
	2. Shailendra. V.	Investigation Of	Issue 8, pp. 73-83,	Experimentation	system while
	Dhanal,	Waste Heat	August 2014	and performance	operating under
	3. Shirish S.	Recovery System		evaluation of	full load
	Mane	For Domestic		Waste Heat	condition gives
		Refrigerator		Recovery System	a better COP as
				under the	compared to no
				following test	load condition.
				conditions,	Thus more
				1)Refrigerator 2)	optimum and
				Refrigerator-cum-	efficient system

Volume No.07, Special Issue No.01, February 2018

www.ijarse.com

				Water Heater	can be built to
					give better
					results.
4	1. N. B.Chaudhari,	Heat Recovery	IJTARME, ISSN	Heat transfer	Theoretical
	2. P. N. Chaudhar	System from the	(Print): 23193182,	processes by	COP without
		Condenser of a	Volume -4, Issue-2,	utilizing real life	heat recovery is
		Refrigerator – an	April 2015	applications such	about 1.88 and
		Experimental		as using waste heat	with heat
		Analysis		from a condenser	recovery
				of a refrigerator to	system it is
				heat water for	2.53. The actual
				residential and	COP of air
				commercial use.	cooled
				Heat recovery	condenser
				from condenser of	system is 1.078
				a refrigerator by	and For water
				thermo siphon	cooled with
				system because it	heat recovery
				eliminates the need	system
				of a circulating	practically COP
				pump	is 3.79
5	1. A. M. Vibhute,	Waste heat recovery	IERJ, Special Issue Page	As domestic	Increase in
	2. Avinash M.	in Domestic	131-133, November	refrigerators reject	overall
	Patil	Refrigerator	2015	large heat inside	effectiveness of
				room which make	domestic
				us uncomfortable	refrigerator and
				in summer due to	saving in
				temperature rise	energy.
				inside the room. So	Increase in
				it is now essential	COP of
				to reject this heat	domestic
				outside the room or	refrigerator.
				utilize it for	Efficient and
				different purposes.	economical
				Rejected heat is	combination of
				used for keeping	refrigerator and
				food hot, heating	food / water

IJARSE

ISSN: 2319-8354

Volume No.07, Special Issue No.01, February 2018

www.ijarse.com

				water which may	warmer
				be used for	6
				different purposes	
6	1. P. Elumalai,	Experimental Study	Middle-East Journal of	Recovered waste	By this system
	2. R. Vijayan,	on Energy	Scientific Research 23	heat from	the power
	3. K.K. Ramasam	Recovery from	(3): 417-420, Dec 2015	condenser unit of a	consumption
	4. M. Premkumar	Condenser Unit of		household	and LPG
		Small Capacity		refrigerator to	consumption in
		Domestic		improve the	a house for
		Refrigerator		performance of the	heating food
				system by using a	items and water
				thermo siphon. The	can be reduced.
				effect of operating	Thus the waste
				temperature in the	energy emitted
				oven and heater for	to the
				varying operating	atmosphere is
				time of a	utilized for
				refrigeration	useful purposes
				system have all	and the demand
				been studied and	for power is
				feasible heat	reduced
				recovery have been	
				ascertained	
7	1.Sreejith K,	Experimental	International Journal of	Analysed the	They found that
	2.T.R. Sreesastha	Investigation of	Engineering And	system at various	the waste heat
	Ram	Waste Heat	Science Vol.6, Issue 4	load conditions	recovery
		Recovery System	PP 19-23, April 2016	(No load, 40 W	system
		for Household		load and 100W	performs well
		Refrigerator		load). They carried	along with the
				out the techno	household
				economic analysis	refrigerator.
				by comparing the	This
				waste heat	modification
				recovery system	made the
				with the	household
				conventional	refrigerator to
				geyser	be work as both

IJARSE

ISSN: 2319-8354

Volume No.07, Special Issue No.01, February 2018 www.ijarse.com

IJARSE					
ISSN: 2319-8354					

					refrigerator and
					water heater
8	Lakshy Soni,	Study of an	Imperial Journal of	To utilize waste	The results
	2. Pawan Kumar	adsorption	Interdisciplinary	heat from	show that water
	3.rahul goyal	refrigeration system	Research Vol-2, Issue-	condenser of	at a temperature
		powered by	8,ISSN: 2454-1362,May	refrigerator. This	of 60°C was
		parabolic trough	2016	system is nothing	produced by the
		collector and		but a cabin that	system. If this
		coupled with a heat		they are going to	system is
		pipe		install over the	established all
				head of the simple	over world,
				refrigerator this	excessive
				cabin will be an	amount of LPG
				arrangement of	gas gets saved.
				coils that will work	
				as a heat	
				exchanger.	

III.CONCLUSION

From the above conclusion, we have concluded the there are various method to utilize the heat rejected by the refrigerator. The heat rejected by the condenser can be utilized for various domestic and other purposes. This can able to compensate the losses made by energy crisis and also reduce the problem related to global warming. However the heat released by condenser is not so large that we can cook food but we can used it for smaller task like heating food, boil milk and water to $40\text{-}50^{\circ}\text{C}$ where people, now a day's use microwave oven which consume electricity. However this cannot meet the whole need of us but we can say that something is better than nothing.

REFERANCES

[1.] P. Sarat Babu, and Prof.N.Hari Babu, Experimental Study of Domestic Refrigerator/Freezer Using Variable Condenser Length, International Journal of Engineering Research & Technology (IJERT) Vol. 2 Issue 12, Dec 2013

Volume No.07, Special Issue No.01, February 2018 www.ijarse.com

- ISSN: 2319-8354
- [2.] S. C. Walawade et al, Design& Development of WHR System for Domestic Refrigerator, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN: 22781684,PP: 2832,June 2014
- [3.] Tanaji Shinde et al, Experimental Investigation Of Waste Heat Recovery System For Domestic Refrigerator, IAEME, Volume 5, Issue 8, pp. 73-83, August 2014
- [4.] . N. B.Chaudhari and . P. N. Chaudhary, Heat Recovery System from the Condenser of a Refrigerator an Experimental Analysis, IJTARME, ISSN (Print): 23193182, Volume -4, Issue-2, April 2015
- [5.] A. M. Vibhute and Avinash M. Patil, Waste heat recovery in Domestic Refrigerator, IERJ, Special Issue Page 131-133, November 2015
- [6.] P. Elumalai et al, Experimental study on energy recovery from condenser unit of small capacity domestic refrigerator, Middle-East Journal of Scientific Research 23 (3): 417-420, Dec 2015
- [7.] Sreejith K,T.R. Sreesastha Ram, Experimental Investigation of Waste Heat Recovery system of household refrigerator, International Journal of Engineering And Science Vol.6, Issue 4 PP 19-23, April 2016
- [8.] Lakshy Soni et al., Study of an adsorption refrigeration system powered by parabolic trough collector and coupled with a heat pipe, Imperial Journal of Interdisciplinary Research, Vol-2, Issue-8,ISSN: 2454-1362,May 2016