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ABSTRACT  

Mobile telephony is often performed in the presence of background noise, such as traffic noise or murmur. In 

this situation, the near-end listener perceives a mix of clean speech from the far end and ambient noise coming 

from the near-end side, which entails a greater listening effort and possibly an intelligibility of the lower speech. 

This article deals with the problem of predicting the average intelligibility of noisy and potentially processed 

vocal signals towards the end, as observed by a group of listeners with normal hearing.  The proposed model 

can make a short-term prediction based on the hypothesis that the intelligibility is monotonic correlated with the 

mutual information between the amplitude envelopes of the critical cleaning signal band and the corresponding 

noise signal. The resulting intelligibility predictor is a simple function of the mean square error(MSE) that 

occurs when an amplitude of the clean critical band is estimated using a minimum mean square error(MMSE) 

estimator based on the noise amplitude. The proposed model predicts that speech intelligibility will be improved 

by processing the cochlear filter of noisy critical bandwidths. 

Keywords- ; Mean square error (MSE), Minimum mean square error (MMSE). 

I.INTRODUCTION  

Cell phones can work incredibly well, such as music players, web browsers and email clients, but it's easy to 

overlook their main function: allowing two people to converse from a distance. Even the most modern and 

feature-rich smartphone becomes useless if the user can not hear the voices of the callers clearly[11]. And 

because ambient noise is one of the factors that can reduce speech intelligibility in mobile voice calls, mobile 

phone manufacturers now employ a variety of software-based techniques to mitigate their effects. Because 

everyone who uses a cell phone in a busy train station, airport, or sports stadium knows these software 
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techniques typically leave the user with unsatisfactory sound quality in voice calls in noisy environments. This 

is because these techniques of  

digital signal enhancement and automatic volume control are approximate methods that can only mitigate the 

effects of ambient noise and not eliminate it. Active Noise Canceling (ANC) technology, on the other hand, is a 

well-known method for attenuating unwanted ambient noise very effectively, but is currently only found in 

high-end stereo headphones. Here, it is much appreciated by wealthy consumers, for example, frequent travelers 

who wish to stop the irritating roar of jet engines. 

The NELE algorithm was the one that maximizes the speech intelligibility index (SII) and, therefore, the speech 

intelligibility through the selective increase in the frequency of the vocal signal strength [12-13]. The filtering in 

the time domain with the filter coefficients adapted in the frequency domain was carried out using a frequency 

deformed filter bench equalizer. This allows processing with a spectral resolution of the Bark scale according to 

the human auditory system and a low signal delay. 

 

Applications where the loudspeaker signal strength is considered are limited to the original signal strength [8]. A 

recursive optimization of the closed-form solution of the spectral vocal signal power allocation is obtained that 

maximizes the SII under this restriction. However, for small speakers used in mobile phones, the thermal load 

during continuous playback is an important limitation. Therefore, most mobile phone applications limit the 

overall power of the speaker signal to a constant maximum power instead of the original signal strength. 

II. METHODOLOGIES USED 

A.    Short time objective intelligibility prediction 

The basic structure of STOI is illustrated in Fig.1. It is a clean and degraded language function, indicated by 

and, respectively. The STOI output is a scalar value that is expected to have a monotone relationship with the 

average intelligibility of (for example, the percentage of words correctly understood mediated in a group of 

users). A sampling rate of 10 kHz is used to capture a frequency range related to speech intelligibility [9-10]. 

First, both signals are decomposed by TF to obtain a simplified internal representation that resembles the 

transformation properties of the auditory system. This is achieved by segmenting both signals into the 50% 

overlap, the frames with a Hann window with a length of 256 samples, in which each frame has zero fills up to 

512 samples. Before evaluation, silent regions that do not contribute to speech intelligibility are eliminated. This 

is done first by finding the box with the maximum energy of the clean voice signal. Both signals are then 

reconstructed, excluding all frames in which the energy of the clean voice is less than 40 dB compared to this 

frame of maximum clean speech energy[15-18]. Thus, a one third of octave band analysis is performed by 

grouping the DFT-bins. In total, 15 one-third of octave bands are used, where the lowest central frequency is set 

at 150 Hz and the highest one-third of octave band has a central frequency of about 4.3 kHz. 

Let X (k, m) denote the DTH-bin frame of mth frame of a clean speech[1-5]. The standard jth of the third-octave 

band, called the TF unit, is defined as 
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         (1)      

 

 

 

Figure 1:Block diagram of STOI 

 

STOI is a function of the clean and degraded speech, which are first decomposed into DFT-based, one-third 

octave bands. Next, short-time (384 ms) temporal envelope segments of the clean and degraded speech are 

compared by means of a correlation coefficient. Before comparison, the short-time degraded speech temporal 

envelopes are first normalized and clipped (see text for more details). These short-time intermediate 

intelligibility measures are then averaged to one scalar value, which is expected to have a monotonic increasing 

relation with the speech intelligibility. 

Where k1and k2 denote the one-third octave band edges, which are rounded to the nearest DFT-bin. The TF-

representation of the processed speech is obtained similarly, and is denoted by Yj(m). 

STOI is a function of a TF-dependent intermediate intelligibility measure, which compares the temporal 

envelopes of the clean and degraded speech in short time regions by means of a correlation coefficient. The 

following vector notation is used to denote the short-time temporal envelope of the clean speech 

 

=  

 

B. Cochlear filter 

A In this work, by exploiting the hybrid of Cochlear Filter and Short Time Objective Intelligibility Prediction 

algorithm improves the quality of speech and intelligibility which in turn perform this in the less duration and 

with low complexity[14-15]. As shown in fig 2, which explain about the cochlear filter based intelligibility 

prediction. The parameter extraction procedure for auditory-based spectral coefficients, consists of series of 

cochlear filter bank based on the auditory transform, hair cell function, nonlinearity and Discrete Cosine 

Transform (DCT). 
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Figure 2: Cochlear filter based intelligibility prediction scheme 

 

C.  Auditory transform 

The auditory transform has well defined wavelet properties with an existing inverse transform. It converts the 

time domain signal into a set of filter bank output with frequency responses similar to those in the BM of the 

cochlea. Let s(t) be the speech signal and the cochlear filter be _(t). Thus, the auditory transform of s(t) (i.e., 

W(a,b)), with respect to _(t) as the impulse response of BM in the cochlea is defined as follows 

 

W (a,b) = s(t) * a,b (t)                                     (3) 

 

W (a,b) = *a,b (t-T)dT           (4) 

 

a,b (t) =  1 ⁄                                     (5)                  

 

where in eq. (1), * indicates convolution operation, a _ R+ and b _ R, s(t) and _(t) belongs to Hilbert space 

L2(R) and W(a,b) represents traveling waves in the BM. The factor a is the scale or dilation parameter, which 

allows changing the center frequency, fc, while factor b is the time shift or translation parameter. The energy 

remains equal for all a and b.  

III. SIMULATION RESULTS 

A. Noise database 

NOIZEUS is a noisy speech corpus recorded at the Center for Robust Speech Systems, Department of Electrical 

Engineering, University of Texas, Dallas. The noisy database contains 30 IEEE sentences produced by three 

male and three female speakers (five sentences /speaker), and was corrupted by eight different real-world noises 

at different SNRs. Thirty sentences from the IEEE sentence database were recorded in a sound proof booth 

using Tucker Davis Technologies (TDT) recording equipment.  
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The sentences were originally sampled at 25 KHz and down sampled to 8 KHz. To simulate the receiving 

frequency characteristics of telephone handsets, the speech and noise signals were filtered by the modified 

Intermediate Reference System (IRS) filters used in ITU-T P.862 for evaluation of the PESQ measure. Noise 

signals were taken from the AURORA database and included the following recordings from different places: 

babble (crowd of people), car, exhibition hall, restaurant, street, airport, train, station, and train 

 

The noise signals were added to the speech signals at SNRs of 0, 5, 10, and 15dB. From NOIZEUS database, 

different noise signals are added to the speech signal and are denoised using cochlear based STOIP modeling 

with different Signal to Noise Ratio (SNR) levels. The algorithm proposed in the previous chapter is 

implemented and tested with different database to analyze its performance 

 

 

B. Short time objective speech intelligibility and quality prediction 

The significant standardization efforts have been made by the International Telecommunications Union (ITU) 

for standardizing both intrusive and nonintrusive algorithms using NH listeners and mobile speaker[6,7]. On the 

other hand, only a handful of algorithms that are proposed are specifically tuned to assistive listening devices. In 

the following sections, the choice of measures used was guided only by the applicability to the task in Mobile 

Speaker, but also by the availability of publicly available source code licensed at a reasonable cost. The 

performance evaluation of this database contains IEEE sentences produced by male and 3 female speakers and 

was corrupted by 8 different real time noises at various levels of SNR at the input level to the Mobile Speakers 

Noise signals from the AURORA database is taken as input, also including the recordings from different 

environments such as: babble (multi talker), car, restaurant, exhibition hall, street and airport, station. The noisy 

signals were interpreted with the speech signals at SNRs of 0,  10,and 15dB. The clean signal which is 

subjective to different noisy signals is given as input to the Cochlear Implants, which is then processed with the 

noise suppression Algorithm. This process is evaluated using Signal to Noise Ratio (SNR) and Perceptual 

Evaluation of Speech Quality (PESQ) metrics. 

 

 C. Spectrogram plot 

 

   (a) 
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   (b) 

 

   (c)                                                                                                                                            

Figure 3:Spectrogram of (a) Clean speech (b) Noisy speech (c) Enhanced speech  

 

D.  SNR estimation 

The signal-to-noise ratio (SNR) is one of the oldest and most used objective measures. It is mathematically 

simple to calculate, but requires distorted and non-distorted (clean) speech samples. Where, x (n) is a clean 

speech, x (n) a distorted speech and N the number of samples. This classic definition of SNR is not well 

correlated with the quality of speech for a wide range of distortions. Therefore, there are several variations of 

classic SNR that show a much higher correlation with subjective quality. It has been observed that classic SNR 

is not well correlated with voice quality because although the voice is not a stationary signal, SNR averages the 

relationship in the whole signal. The energy of the speech fluctuates over time, so the parts where the speech 

energy is large and the relatively inaudible noise should not be washed from other parts where the speech energy 

is small and the noise can be heard from the speech . Therefore, the SNR was calculated in short squares and 

then calculated as an average. This measure is called segmental SNR and can be defined as where L is the frame 

length (number of samples), and M the number of frames in the signal (N = ML). The frame length is normally 

set between 15 and 20 ms. Since, the logarithm of the ratio is calculated before averaging, the frames with an 

exceptionally large ratio is somewhat weighed less, while frames with low ratio is weighed somewhat higher. It 

can be observed that this matches the perceptual quality well, i.e., frames with large speech and no audible noise 

does not dominate the overall perceptual quality, but the existence of noisy frames stands out and will drive the 

over all quality lower.  

 

However, if the speech sample contains excessive silence, the overall SNRseg values will decrease significantly 

since silent frames generally show large negative SNRseg values. In this case, silent portions should be excluded 

from the averaging using speech activity detectors. In the same manner, exclusion of frames with excessively 

large or small values from averaging generally results in SNRseg values that agree well with the subjective 
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quality. A typical value for the upper and the lower ratio limit is 35 and −10 dB. These ranges are also used for 

SNRseg calculation throughout this book. Another variation to the SNR is the frequency-weighed SNR 

(fwSNRseg). This is essentially a weighted SNRseg within a frequency band proportional to the critical band. 

The fwSNRseg can be defined as follows 

 

where W(j,m) is the weight on the j
th

 sub band in the m
th

 frame, K is the number of sub bands, X(j,m) is the 

spectrum magnitude of the j
th

 sub band in the m
th

 frame, and ˆX(j,m) its distorted spectrum magnitude. 

 

SNR COMPARISION 

 

Figure4:Output SNR comparison for IBM,ENMF-HNM,STOI &Cochlear filter 

 

From the fig:4 shows the SNR comparison in dB for 0dB Exhibition noise .It can be seen from the figure that 

compared 

to IBM,ENMF-HNM wiener methods ,STOI and cochlear filter showed improved performance for various noise 

types and at various input SNR levels . 

 

Table 1 

Output signal to noise ratio result at different input 

SNR levels 

NOISE METHOD SNR 

(0 dB) 

SNR 

(10 dB) 

SNR 

(15 dB) 

Car ENMF-

HNM 

Wiener 

10.0385 12.2582 19.5275 

IBM 8.1860 12.2537 12.7424 

STOI and 

Cochlear 

filter 

24.4382 27.4981 28.1385 
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Exhibition ENMF-

HNM 

Wiener 

10.3592 16.9273 18.5176 

IBM 8.1875 12.2636 12.7321 

STOI and 

Cochlear 

filter 

23.3754 27.1690 28.3633 

 

E.  PESQ estimation 

Perceptual assessment of speech quality (PESQ) is an international standard for estimating the average opinion 

score (MOS) of both the clean signal and its degraded signal. It has been developed from a number of previous 

MOS estimation attempts and is considered one of the most sophisticated and accurate estimation methods 

available today. PESQ has been officiallystandardized by the International Telecommunication Union 

Telecommunication Standardization Sector (ITU-T) as standard P.862 in February 2001PESQ uses a perceptive 

model to hide the degraded input and speech in an internal representation. The degraded entry is aligned over 

time with the original signal to compensate for the delay that may be associated with degradation. The 

difference in the internal representations of the two signals is used by the cognitive model to estimate the MOS. 

The PESQ values obtained using the cochlear filter and the STOI method and the same methods used separately 

are compared and the values are tabulated. PESQ scores were expressed using the mean auditory quality 

objective score scale (MOS LQO) and range from 1 (worst quality) to 5 (best quality) 

 

.PESQ COMPARISON 

 

Figure5:Output PESQ Comparison for IBM,ENMF-    HNM,STOI &Cochlear filter 
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Table 2 

Result of objective measure(PESQ) with different 

input SNR(0dB,10dB,15dB) 

 

NOISE METHOD PESQ 

with 

(0 dB) 

PESQ 

with 

(10 dB) 

PESQ 

with 

(15 dB) 

Car ENMF-

HNM 

Wiener 

0.6692 1.1825 1.1377 

IBM 3.0189 3.4402 3.6508 

STOI and 

Cochlear 

filter 

3.8967 3.9429 4.2298 

Exhibition ENMF-

HNM 

Wiener 

0.8322 0.4529 1.1323 

IBM 3.2391 3.4363 3.7953 

STOI and 

Cochlear 

filter 

3.5980 4.0127 4.3279 

 

IV.  CONCULSION 

The proposed  speech enhancement method combines  STOI and cochlear filter. The combined technique 

reduces the near end noise and also increase the intelligibility of the speech signal. The combined algorithm 

shows the better results in the evaluation parameters such as SNR (dB) and PESQ (Out of 4.5) at various noise 

levels than the existing algorithms. The maximum SNR(28.3633)  and  PESQ (4.3279)  achieved by the 

proposed method.  
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