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ABSTRACT 

Lighthill has considered the diffraction of normal shock wave past a bend of small angle for ,4.1  being 

the ratio of specific heats. Srivastava extended the work of Lighthill to monoatomic gases for which 
3

5
 .  

Srivastava and Srivastava further extended the work for carbon dioxide (CO2) gas. In the present paper, 

diffraction of normal shock waves has been solved for Sulphur Hexafluoride (SF6) gas. 
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I.INTRODUCTION 

Lighthill (1949) considered the diffraction of normal shock wave past a small bend for ,4.1  being the 

ratio of specific heats. This work has been extended for 
3

5
  by Srivastava (1963) and Srivastava (2016) and 

further treated by Srivastava and Srivastava (2017) for 29.1  Carbon dioxide (CO2 gas). In the present 

paper, the pressure distribution over the diffracted shock has been obtained for Sulphur Hexafluoride (SF6) 

gas.The Mach number of the shock wave has been assumed to be 1.36.  It may be mentioned here that 

Srivastava (2011) has obtained the vorticity distribution over the diffracted shock for monoatomic gases.  

Reference may be made to the book by Srivastava (1994) for more details. 

 

Let the velocity, pressure, density, sound speed behind the shock wave before it has crossed the bend be 

1111  , ,  , apq   and ahead of the shock wave be 
000   ,  ,  ,0 ap  .  Then applying the principle of conservation 

of mass, momentum and energy for general value of   ( being the ratio of specific heats) 
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U being the velocity of shock wave, Mach number of the shock 
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The wedge is made up of two walls having a small angle  between them.  The shock wave gets diffracted after 

it has crossed the corner and the flow is two dimensional behind the diffracted shock wave.  Let 
222   ,  , pq


 

and 
2S  be the velocity vector, pressure, density and entropy at any point behind the diffracted wave shock.  We 

take the X-axis along the original wall produced, the origin on the leading edge of the wedge and Y axis normal 

to the leading edge. 

In this coordinate system, the equations of ofconservation of mass, momentum and energy can be written as  
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Now we introduce the following transformations 
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We assume that 
222  , , pq


 differ by small quantities from the values   111   ,  ,0 , pq  which they had before 

diffraction, then using the equations (4), (5), (6) and (7), (8), (9), (10) we obtain a single second order partial 

differential equation in p. This equation is 
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The characteristics of the differential equation (11) are tangents to the unit circle ,122  yx  signifying that 

the disturbed region is enclosed by the arc of unit circle ,122  yx , the diffracted shock and the wedge 

surface. 

The position of the straight portion of the shock wave in x, y coordinates is given by ,kx   

where

1

1
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qU
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
 .The coordinates of the corner is  0 ,1M  where 
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1
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Using Busemann transformation and complex variable techniques, Lighthill (1949) worked out a function which 

satisfies all the boundary conditions.  The function  1zw is given by 
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In (12), 
111 iyxz   

In the final 
1z -plane, the imaginary part on the left hand side of (17) gives the pressure derivative which 

determines the pressure distribution over the diffracted shock. If one does that, then the expression for pressure 

derivative is given by 
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In(13),all the quantities are functions of the Mach number of the shock wave M except 
1x  which runs from 1 to 

 on the diffracted shock in the transformed plane and is connected to y in the physical plane through the 

relation 
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When ,11 x 0
k

y
 (wall surface), when 1x , 1

k

y
 (point of intersection of shock and unit circle). 

 

II.NUMERICAL SOLUTION 

The pressure distribution over the diffracted shock is obtained by integrating equation(13).The pressure pis zero 

at 1x i.e. at 1
k

y
 (the point of intersection of shock wave and unit circle) and so pressure at other points 

could be known by integrating in intervals. The points chosen over the diffracted shock are  
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The equations(13) and (14)have been used to get the results.  The following table gives the results after 

integration. The table is for 
k

y

versus 

k

p
 . For this table M is 1.36 and  

Table-1 

k
y


 0 0.2 0.4 0.6 0.8 1 

k

p
  3.67 3.62 3.44 2.68 1.86 0 

 

The table shows that k

p


 is maximum at 
0

k
y

 i.e. at the point of intersection of the wall and shock. The 

value of k

p


 falls from there and attain the value zero at 
1

k
y

 i.e. at the point of intersection of shock 

and unit circle.  The results are physically consistent.   

The value of 
k

p
  here are lower than those of the CO2 gas. For the paper of Sakurai (2017) et al may be 

referred.  

 

III.CONCLUSION 

The results are quite useful in the area of aeronautics.The problem is complex and difficult. The solution will be 

available to aeronautical engineers for future work,  
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