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ABSTRACT

Anxiety has become a moiety of day today life for many, an inseparable complement of every endeavor. The
prevalence of anxiety in patients with cardiovascular disease is threefold higher when compared to general
population. This serves as a fountain head of several complications and health hazards. Thus it is a need of the
hour to assess and quantify the existence of such emotion in the target group and take prompt action towards its
normalization. Although anxiety causes various changes in the body, those reflected by the Central Nervous
System and the Cardiovascular System are predominant. This work proposes an atypical approach towards
anxiety quantification, wherein an elaborate analysis of two paramount biomedical signals namely the
Electroencephalogram and the Electrocardiogram are made independently.
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I. INTRODUCTION

Well being refers to ardent nurturing of one’s own self, establishing the right kind of climate within and
cherishing the joy of an unchaotic peaceful mind. Well being incorporates physical, social, emotional,
psychological and economic spheares of it in a single nutshell. Of all the afore mentioned, Emotional well being
is the one that is often ignored. Our body and mind are mutual mirror images of each other. Ignorance of the
later shows its reflection in the former, ie., the physiological health gets affected.

Emotional health gets affected greatly due to stress and anxiety. These are the two emotions that are often
confused; stress is the one that disappears once the stressor is removed whilst anxiety is a strong unpleasant
feeling of nervousness that might have been a response to a feared situation that has occurred in the past, which
is also feared to happen in the near future. Also stress can give both positive as well as negative impacts. They
are categorised as Eustress and Distress respectively. However anxiety has only negative impact on
physiological well being. It is also important to note that anniversary dates or times of traumatic events are
causatives of anxiety and so the trauma survivors are 100% sure and liable to experience peaks of anxety and
depression.

The trauma under concern in this work is the event of Heart Attack. Heart attack survivors are extremely liable

to experience events of anxiety which might lead to further complications such as tachycardia, increased heart
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rate and lowered blood pressure. These may ultimately lead to heart failure. It is therefore extremely essential to

quantify anxiety in heart attack survivors in order to ensure all forms of their well being.

1. ANXIETY QUANTIFICATION

Anxiety to be quantified necessitates tapping of vital biomedical information. Stress detection is conventionally
done by estimating galvanic skin response, processing of facial cues, throat contraction estimation, measuring
salivary cortisol levels, perspiration assessment etc. however these become irrelevant when it comes to anxiety
detection. This paper deals with anxiety quantification by tapping three vital biomedical signals namely,
Electroencephalogram (EEG), Heart Rate (HR), Electrocardiogram (ECG). In addition profound classification
algorithms such as Linear Discriminant Analysis, Quadratic Discriminant Analysis, K Nearest neighbours,
Complex Decision Tree [ ] and Feed Forward Neural network are employed to segregate normal inputs from
those corresponding to anxiety. Here the datasets are taken from MIT-BIH Arrhythmia database through

Physionet ATM and yet other databases.

I11. ANALYSIS OF EEG

EEG signals taken from various databases are employed as inputs for anxiety quantification. For each dataset,
the whole band EEG signal is taken and is split into its sub bands namely Delta (0-3.5 Hz), Theta (4-7Hz),
Alpha (8-13 Hz), Beta (14-30 Hz), Gamma (30-80 Hz). After this the region of occurrence of maxima in
amplitude is estimated. For this evaluation the region of peak occurrence and emotions corresponding to them
are obtained from several literature referred, from which, it was inferred that the Gamma band becomes
insignificant when it comes to anxiety. The input whole band EEG, its sub bands in time domain, its sub bands

showing amplitude peaks in frequency domain are shown in figures below.
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Fig. 1: Whole band EEG
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Fig. 2: (a) Time domain sub bands (anxiety); (b) Graph showing Amplitude peaks (anxiety)
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Fig. 3: Message box displaying current emotional state of individual analysed (anxious)
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Fig. 4: (a) Time domain sub bands (non anxious); (b) Graph showing peaks (hon anxious)
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Fig.6: Message box displaying current emotional state of individual analysed (non anxious)
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Fig.7: Overall ROC curves
The result of anxiety detection is given by the message box. The above figures corresponds to dataset belonging

o

to a person with anxiety. The following figures shows signals representing normal individual. The above figure
shows ROC curves of four classifiers Linear Discriminant Analysis, Quadratic Discriminant Analysis, Complex
Decision Tree and K Nearest Neighbours.

IV. PERUSAL OF HEART RATE
The next part of the work describes quantification of anxiety through analysis of heart rate. As no real time
data acquisition through relevant hardware circuits is done in this work, we need to extract heart rate from
ECG signals taken from MIT BIH databases. The Pan Tompkin’s Algorithm is employed for extraction of
Heart Rate from ECG.
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Fig.8: (a) Raw ECG signal; (b) Smoothened ECG signal
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Fig.9: (a) Noise free ECG signal; (b) Heart Rate computed
The various approaches available in the literature to arrive at HR from ECG are spectral analysis, short term
autocorrelation method and wavelet based approach. Here in this work the later is employed where
Daubechies Wavelet is the Discrete Wavelet Transform (DWT) technique employed with dB4 as mother
wavelet.
Previous researches referred state that when we are anxious our heart begins to pace and the heart beat raises

by 20 beats per minute more than when calm. Therefore the widely accepted threshold prescribed by
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physicians and cardiologists are considered for this work as well ie., 60 to 100 bpm is interpreted as normal

and beyond this as pertaining to anxiety.

V. EXAMINATION OF ECG

ECTROCARDIOGRAM (ECG or EKQG) is a diagnostic tool that measure and records the Electrical activity of
the heart in exquisite detail. The first phase includes the acquisition of real time ECG data. In the next phase
pre-processing is done. Thirdly, the procured ECG signal is subjected to feature extraction. The extracted
features detect abnormal peaks present in the waveform Thus the normal and abnormal ECG signal could be
differentiated based on the features extracted. The work is implemented in the most familiar multipurpose tool,
MATLAB. This software efficiently uses algorithms and techniques for detection of any abnormalities present
in the ECG signal. Proper utilization of MATLAB functions (both built-in and user defined) can lead us to work
with ECG signals for processing and analysis in real time applications.

A normal ECG consists of a P wave, a QRS complex, and a T wave. The P wave is caused by electric currents
produced by the depolarization of the atria before their contraction, while the QRS complex is caused by electric
currents produced by the depolarization of the ventricles prior to their contraction, during the extending of the
depolarization in the ventricular myocardium. The QRS complex usually consists of three different waves, the
Q, R, and S waves. Note that both the P wave, and the waves that form the QRS complex, are depolarization
waves. The T wave is caused by the electric currents produced during recovery of the ventricles from the state
of depolarization. This process is takes place in the ventricular myocardium 0.25s to 0.35s after the
depolarization. The T wave is characterized as the wave of repolarization. Of which most of our pre processing
procedures will aim at distinguishing the QRS complexes alone.

5.1Signal Acquisition

Input ECG signals were taken from MIT-BIH Physionet Arrhythmia database. Totally 41 ECG records that
were used to train the neural network, of which 22 correspond to normal records and 19 correspond to abnormal
records. This categorization was done with the help of expert cardiologists. The records are digitized at 360
samples per second per channel with 11-bit resolution over a 10 mV range. Those records are fed to the
denoising block to start the processing of the acquired ECG signals.

5.2Signal Pre Processing

Digital signal processing and data analysis are very often used methods in a biomedical engineering research. In
this work, the descriptions of a detection algorithm for ECG characteristic points is enclosed. The detection
algorithm presented in this work is based on Pan and Tompkins’ algorithm for signal de-noising and detection
of QRS complexes. At first efficiently designed filters focus on removing supply network 50 Hz frequency and
baseline drift due to breathing. A special digital bandpass filter reduces false detection caused by the various
types of interference present in ECG signals. The next process after filtering is differentiation followed by
squaring, and then integration. The integrated signal is detected by thresholding for QRS complex. P wave and

T wave detection are performed by using detected QRS complexes. MATLAB program is developed for the
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characteristic points’ detection. The algorithm for peak detection case is modified and it is applied to show ECG
characteristic points. Finally, P wave and T wave detection are performed by using detected QRS complexes.
5.3Pan Tompkin’s Algorithm
It recognizes QRS complexes based on analysis of the slope, amplitude, and width. In order to attenuate noise,
the signal is passed through a bandpass filter composed of cascaded high-pass and low-pass integer filters.
Subsequent processes are differentiation, squaring, and time averaging of the signal. The various levels of pre
processing done using the Pan Tompkin’s Algorithm is mentioned below;

e DCdrift cancellation & normalization

e Low pass filtering

e High pass filtering

o Differentiator

e Squaring

e Averaging

e Integration
5.4Dc Drift Cancellation And Normalization:
The DC drift cancellation algorithm reduces noise in the ECG signal by matching the spectrum of the average
QRS complex. This attenuates noise due to muscle noise, power line interference, baseline wander, T wave
interference. Baseline wandering noise can mask some important features of the ECG signal; hence it is
desirable to remove this noise for proper analysis of the ECG signal. The simplest method of baseline wander
(drift) removal is the use of a high-pass filter that blocks the drift and passes all main components of ECG
though the filter.
The main components of ECG include the P-wave, QRS-complex, and T wave. Specifically, the PR-Segment,
ST-Segment, PR-Interval, and QT-Interval are considered as the main segments of the ECG. Each of these
intervals/segments has its corresponding frequency components, and according to the American Health
Association (AHA), the lowest frequency component in the ECG signal is at about 0.05Hz. However, a
complete baseline removal requires that the cut-off frequency of the high-pass filter be set higher than the lowest
frequency in the ECG; otherwise some of the baseline drift will pass through the filter. The frequency of the
baseline wander high-pass filter is usually set slightly below 0.5Hz.Therefore, knowing that the actual ECG
signal has components between 0.05Hz and 0.5Hz, the afore mentioned simple approach for baseline.
The below figure shows the ECG signal with baseline drift, and the following figure shows baseline wander

normalized signal.
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Fig.10: (a) ECG signal with Baseline drift; (b) Baseline wander removed ECG signal
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VI. BAND PASS FILTER IMPLEMENTATION
A bandpass filter is designed from a special class of digital filters that require only integer coefficients. Since it
was not possible to directly design the desired bandpass filter with this special approach, the design actually
consists of cascaded low-pass and high-pass filter sections. This filter isolates the predominant QRS energy
centered at 10 Hz, attenuates the low frequencies characteristic of P and T waves and baseline drift, and also
attenuates the higher frequencies associated with electromyographic noise and power line interference.
The transfer function of the second-order low-pass filter is given below. The cutoff frequency is about 9 Hz, the
delay is five samples or 25 ms.

H(Z) = [(1-27-6)"2)/[(1-Z2"-1)"2]
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Fig.11: Low pass filtered signal
The high-pass filter is implemented by subtracting a first order low-pass filter from an all-pass filter with delay.
The transfer function of the resultant high pass filter is given below. This filter has a delay of 15.5 samples ie;
77.5 ms.
H(Z) = (27-16)-[(1-2"-32)/(1-2"-1)]
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Fig.12: High pass filtered signal

First, in order to attenuate noise, the signal passes through a bandpass filter composed of cascaded high-pass and
low-pass filters. Fig.15 shows the ECG signal after processing with the low-pass filter. The most noticeable
result is the attenuation of the higher frequency QRS complex. Any 50-Hz noise or muscle noise present would
have also been significantly attenuated. Fig. 6.4 is the resultant signal after the ECG signal passes through the
high pass filter. Note the attenuation of the T wave due to the high-pass filter. According to the results, the low
frequency portions of Fig.10 by using highpass filter.

6.1Derivative Filtering

The next processing step is differentiation, a standard technique for finding the high slopes that normally
distinguish the QRS complexes from other ECG waves. This derivative approximates the ideal derivative in the
dc through 30-Hz frequency range. The derivative has a filter delay of 10 ms. Fig 6.5 shown below is the
resultant signal after passing through the cascade of filters including the differentiator. Note that P and T waves

are further attenuated while the peak-to-peak signal corresponding to the QRS complex is further enhanced.
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ECG Signal after Derivative Filtering
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Fig.13: Differentiated ECG signal

6.2 Squaring:

To this point in the algorithm, all the processes are accomplished by linear digital filters. Next is a nonlinear
transformation that consists of point-by-point squaring of the signal samples. This transformation serves to
make all the data positive prior to subsequent integration, and also accentuates the higher frequencies in the
signal obtained from the differentiation process. Thus this operation makes all data points in the processed
signal positive, and it amplifies the output of the derivative process nonlinearly. It emphasizes the higher

frequencies in the signal, which are mainly due to the QRS complex.
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Fig.14: Squared ECG signal

6.3 Averaging:

Signal averaging is done inorder to remove interference and reveal small variations in the QRS complex also
called the late potentials. Late potentials are thought to be caused by early after depolarisations of cells in the
right ventricle. Their amplitude is often too small to show up on a normal ECG. However, when multiple QRS
recordings are averaged, random noise is filtered out and late potentials can show up. Such a recording is called
a Signal Averaged ECG (SAECG).

Late potentials imply that the substrate for re entry is present, and then be precipitated by such triggers as
premature ventricular beats, myocardial ischemia (lack of oxygen), electrolyte imbalance (like low potassium),

or autonomic nervous system instability.
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Fig.15: Averaged ECG removing late potentials
VII. INTEGRATION
The squared waveform passes through a moving window integrator. This integrator sums the area under the
squared waveform over a suitable interval, advances one sample interval, and integrates the new predefined
interval window. Fig. 6.8 shows the output of the moving window integral for the sample ECG signal. The slope

of the R wave alone is not a guaranteed way to detect a QRS event. Many abnormal QRS complexes that have
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large amplitudes and long durations (not very steep slopes) might not be detected using information about slope

of the R wave only. Thus, we need to extract more information from the signal to detect a QRS event. Moving

window integration extracts features in addition to the slope of the R wave.
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Fig.16: Integrated ECG signal
7.1Feature Extraction

A wide range of heart condition is determined by thorough examination of the features of the ECG report.

Automatic extraction of time plane features is important for identification of vital cardiac diseases. The wavelet

transform describes a multi-resolution decomposition process in terms of expansion of a signal onto a set of

wavelet basis functions. Discrete Wavelet Transformation has its own excellent space frequency localization

property. Application of DWT in 1D signal corresponds to 1D filter in each dimension.

A wavelet is a small wave-like oscillation with an amplitude that begins at zero, increases and then decreases

back to zero. The wavelet transform is based on a set of analysis wavelet allowing the decomposition of ECG

signal in a set coefficient. Each analysis wavelet has its own time duration, time location and frequency band.

The wavelet coefficient resulting from the wavelet transform corresponds to a measurement of the ECG

components in the time requirements and frequency band.

VIll. DAUBECHIES WAVELET TRANSFORM:

The below figures shows the features extracted from the input ECG signal using Daubechies wavelet transform.

The input Daubechies Wavelet as mother wavelet is divided into 8 non-overlapping multi-resolution sub-bands

by the filters, namely db1, db2, db3up to db8, where db is acronym for Daubechies.
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decomposition for d3,d4,a3,a4
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Fig.17: (a), (b) Decomposition of ECG into approximate and detailed coefficients using db6
mother wavelet
Symlet Wavelet Transform:
The process of distinguishing the pertinent signal characteristics from extraneous content and representing them

in a compact and/or meaningful form, amenable to interpretation by human/machine.
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Fig.18: (a) Low frequency feature of sym4 wavelet; (b) High frequency feature of sym4 wavelet
SymN (sym4) wavelets are known as Daubechies’ least asymmetric wavelets. They are more symmetric than
the external phase wavelets. Thus they are an improvised version of daubechies wavelets on account of their
increased symmetry.
Classification Using Artificial Neural Network:
An artificial neuron network (ANN) is a computational model based on the structure and functions of biological
neural networks. ANNs are considered nonlinear statistical data modeling tools where the complex relationships
between inputs and outputs are modeled or patterns are found. ANN is also known as a neural network. ANNs
have three layers that are interconnected. The first layer consists of input neurons. Those neurons send data on
to the second layer, which in turn sends the output neurons to the third layer.
Feed Forward Neural Network:
A Feedforward Neural network is a biologically inspired classification algorithm. It comprises of a number of
simple neurons, organized in layers. It consists of an input layer, hidden layers and output layer. Any layer that

is not an output layer is called a hidden layer. Every unit in a layer is connected with all the units in the previous
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layer. These connections are said to have different weights, which explains the knowledge of the network. Each
unit in the network is called a node. The different phases involved in the functioning of neural network classifier
are;

1. Learning phase

2. Classification phase
Feed-forward neural networks are used to learn the relationship between independent variables, which serve as
inputs to the network, and dependent variables that are designated as outputs of the network. Learning takes
place when a set of ‘training set’ samples for which the spectra and the class labels are known is presented to the
network and network weights are adjusted to minimize the differences between the network outputs and the
known ‘true’ outputs. Once the weights have been adjusted using the samples in the training set, the network

can be used to predict the class membership of unknown samples from their spectra.

Level 1: Input Laver

Levels 2 3: Hidden
Layers

Level 4: Output Layes

Fig.19: Model of Feed forward neural network
Training Window:
The training window and the schematic of neural network is shown below. Specialized versions of the
feedforward network include fitting (fitnet) and pattern recognition (patternnet) networks of which the fitting

network is chosen in this work.

Fig.20: Schematic of NN
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Fig.21: NN Training tool window

i. Analysis Of Classifier Performance
From the training window, the following
1.  performance
2. training state
3. error histogram
4

Regression

IX. PERFORMANCE PLOT

four plots can be accessed:
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The performance plot shows the value of the performance function versus the iteration number. It plots training,

validation, and test performances.
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Fig.27: Performance plot
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In the above graph the blue line denotes the training phase. A well trained neural network should have very low
Mean Square Error (MSE) at the end of the training phase as shown in the graph above. The performance plot
and the training state plot shows the MSE dynamics for all datasets in logarithmic scale. The validation plot has
reached its minimum during the zero™ epoch and after which the training has proceeded for six more iterations.
Although the validation and test curves are similar always, the test curve did not increase beyond validation
curve, this denotes that no over fitting has occurred.

TRAINING STATE PLOT:

The training state plot shows the progress of other training variables, such as the gradient magnitude, the

number of validation checks, etc.
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Fig.22: Training state plot
It comprises of three sub plots namely;

1. Validation Gradient coefficient value vs number of epochs: this gives the manner in which the training
progresses. Minimum the value of gradient coefficient, better will be the training and testing of
network

2. Learning rate (mu) vs epochs: it gives the rate at which the network error decreases as training
progresses

3. Validation fail vs epochs: gives the iterations when the validation MSE reaches increased value

ERROR HISTOGRAM:

Error Histogram with 20 Bins

Instances

Errors = Targets - Outputs

Fig.23: Error histogram
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The error histogram plots the instances vs the errors for stipulated number of bins, where bin is the number of
class intervals.

REGRESSION PLOT:

This plot gives the relation between output of network and target. For the training to be perfect, the network

outputs and targets must be equal.
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Fig.30: Regression Plot

X. CONCLUSION

Depression & Anxiety are as serious a risk to health as that of smoking in people with heart diseases. The ways
in which the body reacts to anxiety is liable to imbibe an extra strain to the heart (tachycardia, increased BP &
low pulse rate), which may lead to sudden heart failure. Heart attack survivors are monitored with 24 hrs holter
for ECG and BP. It is a wearable device that is used for post cardiac cath monitoring and analysis of adaptability
of the patient’s health towards the pills prescribed and medication given. Upon analysis of these records with
regard to anxiety quantification, if the results prove that traces of abnormality in the waves are encountered
many times during the holter period, it evidently indicates that the person is entering into or experiencing Post

Traumatic Stress Syndrome which will further worsen the condition and lead to further complication. Therefore
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these signals are made use of to assess anxiety. In order to add to precision we have taken EEG also into

account.
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