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ABSTRACT

Several different clustering algorithms have been proposed to deal with clusters with various geometric shapes.
Those algorithms can detect compact clusters, straight lines, shells, and contours with polygonal boundaries or
well-separated non-convex clusters. One thing that should be highlighted is that there is no clustering algorithm
which can tackle all kinds of clusters. In this paper, the evolutionary clustering technique is described that uses
the new line symmetry based distance measure. At first the traditional K-Means algorithm is described that uses
the simple yet effective mean-based distance measure. Then we proceed on with the point symmetry based
distance measure called SBKM (Symmetry Based K-Means Algorithm) and then we discuss the line symmetry
based distance measure and their results on artificial and real data sets. The mentioned algorithms are all
applicable to unsupervised clustering paradigms. Our first objective is to determine automatically the optimal
number of clusters in any data set. Second, it attempts to find clusters of arbitrary shapes and sizes. We show
that line symmetry based distance can give very promising results, without a priori knowledge of the actual
number of clusters, if applied to the automatic clustering problem. We have compared the line symmetry based
distance algorithm with two other clustering techniques: K-Means and SBKM.

Keywords: K-means, SBKM, Rand index, DB index, Line symmetry, Clustering.

I.INTRODUCTION

Clustering is one of the most common unsupervised data mining methods to explore the hidden structures
embedded in a data set. In Supervised Learning: the data we feed our algorithm is "tagged" to help our logic
make decisions. Example: Bayes spam filtering, where we have to flag an item as spam to refine the results but
in Unsupervised Learning: it tries to find correlations without any external inputs other than the raw data.
Example: data-mining clustering algorithms.

Clustering gives rise to a variety of information granules whose use reveals a structure of data. In order to
identify clusters mathematically in a data set, it is usually necessary to first define a measure of similarity or

proximity. This measure will allow us to assign data points to a cluster i.e., assign patterns to the domain of a
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particular cluster center. One commonly used measure of similarity is the Euclidean distance, D between two
patterns % and Z defined by D = |l — zl|. Smaller Euclidean distance means better similarity and vice-versa.

Symmetryis considered as a pre-attentive feature that enhances recognition and reconstruction of shapes and
objects. The word Pre-attentive: Derived from Pre-attention that is noticing of something before attention is
fully focused on it. The exact mathematical definition of symmetry (Symmetry is a type of invariance: The
property that something doesn’t change under a set of transformations) is inadequate to describe and quantify
symmetry found in the natural world or those found in the visual world.

It is reasonable to assume that some kind of symmetry occur in the structures of clusters, because symmetry is
so common in the abstract and in the nature. But the immediate problem is how to measure
symmetry.Zabrodsky et al [1] have proposed a kind of symmetry distance to detect symmetry in a figure
extracted from an image. Their basic strategy is to choose the symmetry that is closest to the figure measured by
an appropriated measure. Here the minimum sum of the squared distances (Euclidean distance) over which the
vertices must be removed to impose the assumed symmetry is adopted. The goal of clustering is to reduce the

amount of data by categorizing or grouping similar data items together.

I1.RELATED WORK

A. K-MEANS CLUSTERING ALGORITHM

K-Means is one of the simplest unsupervised learning algorithms, which is used when we have unlabeled data
(i.e., data without defined categories or groups). The goal of this algorithm is to find groups in the data, with the
number of groups represented by the variable K. The algorithm works iteratively to assign each data point to one
of K groups based on the features that are provided. Data points are clustered based on feature similarity. So, its
aims to find the positions of the clusters that minimize the square of the distance from the data points to the

cluster center. Finally, it targets at minimizing an objective function. The objective function is given by Eq. 1.

JO) = ZEL Byl — v 1D* (1)
Where, ||, — v is the Euclidean distance between x; andw;, “c;’is the number of data points in i cluster,
‘c’is the number of cluster centers.Let X = {xy . x5 Xgun . .x,} be the set of data points and
V = {1,175 17 e o ..+ be the set of centers. Randomly select ‘c” cluster centers. Calculate the distance

between the data point and cluster centers. Assign the data point to the cluster center whose distance from the
cluster center is the minimum of all the centers. Recalculate the new cluster center using Eq. 2.

v = {1-"('5'5:] EELj_x_i' (2)
Where, C; represents the number of data points in the i** cluster. Recalculate the distance between each data
point and the new obtained cluster centers.If no data point was reassigned then stop, otherwise repeat these
process.
Advantages:Fast, robust and easier to understand. Relatively efficient: 0(tknd’), where n is no. of objects, k is

no. of clusters, € is no. of dimension of each object, and t is no. of iterations. Normally &.£.d =< n, gives best
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result when data set are distinct or well separated from each other.Disadvantages:The learning algorithm
requires a priori specification of the number of cluster centers. If there are two highly overlapping data then K-
means will not be able to resolve that there are two clusters. The learning algorithm is not invariant to non-linear
transformations (i.e., with different representations of data we get different results). Euclidean distance measures
can unequally weight underlying factors. It is unable to handle noisy data and outliers. Algorithm fails for non-
linear data set and easy to get stuck at the local optimal solutions.

B. SBKM Algorithm

In order to improve the performance of the K-means algorithm, several improved K-means algorithms have
been developed in the past several years. A new type of non-metric distance, based on point symmetry, is
proposed by Su and Chou [2] which is used in a K-means based clustering algorithm, referred to as symmetry
based K-means (SBKM) algorithm. SBKM is found to provide good performance on different types of data sets
where the clusters have internal symmetry. However, it can be shown that SBKM will fail for some data sets
where the clusters themselves are symmetrical with respect to some intermediate point since the point symmetry
distance ignores the Euclidean distance in its computation.

It has been mentioned in a subsequent paper by Chou et al [3] where they have suggested a modification, the
modified measure has the same limitation of the previous one [2]. No experimental results have been provided
in [3]. In order to overcome the limitation of being easy to get stuck at the local optimal solutions, (which is a
drawback of the regular K-means clustering algorithm), some attempts have been made to use genetic
algorithms for clustering data sets [4-6]. To overcome the problem of automatic cluster determination from the
data sets. Recently, many automatic clustering techniques have been introduced. These automatic clustering
techniques are based on genetic algorithm methods and Differential Evolution (DE) methods.

Handl and Knowles [7] proposed multi-objective clustering with automatic K-determination (MOCK) to detect
the optimal number of clusters from data sets. But due to the heuristic nature of the algorithm, it provides an
approximation to the real (unknown) Pareto front only. Saha and Bandyopadhyay [8] proposed a multi objective
clustering technique. In this algorithm points are assigned to different clusters based on the point symmetry
based distance. It is able to detect clusters having point symmetry property. However it will fail for clusters
having nonsymmetrical shape.

Most clustering algorithms assume the number of clusters to be known a priori. The desired granularity [9] is
generally determined by external, problem criteria. There seems to be no definite answer to how many clusters
are in data set a user defined criterion for the resolution has to be given instead. Second, most of the existing
clustering algorithms adopt 2-norm distance measures in the clustering. These measures fail when clusters tend
to develop along principal axes. The symmetry based clustering techniques also seek for clusters which are
symmetric with respect to their centers. Thus, these techniques will fail if the clusters do not have this property.
e Point Symmetry Based Distance:

Symmetry is considered as a pre-attentive feature that enhances recognition and reconstruction of shapes and

objects. Su and Chou [2] presented an efficient point symmetry distance (PSD) measure to help partitioning the
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data set into clusters where each cluster has the point symmetry property. Given Npatterns x (j = 1.....N}.
and a reference vector ¢(e.g., a cluster centroid), the point symmetry distance (PSD) between a pattern x;and the

reference vector cis defined by Eq. 3.

_ . [|(=7—c}+ -]
d.g{-l'_h E‘} = M=y wandiz] G-l + =l (3)

Where the denominator term is used to normalize the distance so as to make it insensible to the Euclidean
distances 1(x; — £}l and [[{x; — £}]||. It may be noted that the numerator of the equation is actually the
distance between the mirror image point of xwith respect to & and its nearest neighbor in the data set. If the
right hand term of the above equation is minimized when i; = % then the pattern iis denoted as the
symmetrical pattern relative to «;with respect to . Here it can be easily seen that the above equation is
minimized when the patternz; = (2 — x)exists in the data set {:‘.e.,ds{%j} = 0).Based on this point
symmetry based distance, the algorithm was proposed that mimics the K-Means algorithm but assigns the
patterns to a particular cluster depending on the symmetry based distance d:rather than the Euclidean distance,
only when d; is greater than some user specified threshold [2], # = 0.18 . Otherwise assignment is done

according to the Euclidean distance, as in normal K-means.
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Figure 1

In the above Figure 1, we have three clusters that are well separated. The centers of these clusters are denoted by
1.6, €7, respectively. Let us take the pointx . After the application of K-means algorithm, point & is being
assigned to the cluster 1. But when SBKM is applied on the result given by K-means algorithm, the following
will happen. The symmetrical point of X with respectto ¢ ;isX 4 Since it is the first nearest neighbor of the
point x_l = (2 = &; — ). Let the Euclidean distance between x_;and x,be d; So the symmetrical distance of x
with respect to ¢is given by Eq. 4.

d(%.67) =d,/(d.(x.67) +d. (] .61)) 4)
Here d.(%.;) and d,(¥; .67} are the Euclidean distances of © and X; fromc¢ 4, respectively. Similarly,
symmetrical point of x with respectto ¢ , isx; And the symmetrical distance of i with respectto ¢ , is given
by Eqg. 5.

d(%.65) =d./(d.(x. )+ d. (7.6 (5)
Let &; = d;; and obviously the denominator term of Eq. 4 is less than the denominator term of Eq. 5, because
the Euclidean distance between x and ¢ , and the Euclidean distance between x; (its symmetrical point) and
€ ,isso much larger than the Euclidean distance between x and ¢ ; and the Euclidean distance between X (its
symmetrical point) and ¢ ; Therefore d.(¥.;) = d.(%.) and ¥ is assigned to ¢~ , This will happen for
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other points as well finally resulting in merging of the three clusters after application of SBKM Su and Chou
have chosen & equals to 0.18. However we have observed that clustering performance is significantly affected
by the choice of & and its best value is dependent on the data characteristics. No guideline for the choice of # is
provided in [2]. To overcome the limitations, a new definition of the point symmetry based distance was
proposed [10].
e A New Definition of Point Symmetry Distance:
The PS-based distances, dswill fail when the clusters themselves are symmetrical with respect to some
intermediate point. It has been shown, in such cases the points are assigned to the farthest cluster. In order to
overcome this limitation, [10] proposed a new PS distance which is called dpsli,f, £ Jassociated with point X°
with respect to a center ¢ . The proposed point symmetry distance is defined as follows: let a point be X . The
symmetrical (reflected) point of X with respect to a particular center ¢ is 2 = £ — x. Let us denoting this by
X . Let the first and the second unique nearest neighbors of X~ “be at Euclidean distances of d; and dj,
respectively. Then d,,.(£. £) is given by Eq. 6

dps(%,8) =222 x 4, (5,2) (6)
Where, d.(%, &) is the Euclidean distance between the point £ and©. The basic differences between the PS-
based distance in [2] and the point symmetry distanced,,; (%, &), in [10] are as follows:

1. Instead of finding the Euclidean distance between the original reflected point x “ and its first nearest

neighbor in [2], here the average distance between x = ~ and its first and second unique nearest neighbor

':I'...'1+d::'

have been taken. Consequently, the term here: will never be equal to 0, and the effect of d,(x. &),

the Euclidean distance, will always be considered. This will reduce the problems talk over in Figure 1.
2. Considering both d;and d; in the computation of &,.makes the PS-distance more robust and noise resistant.
3. Arough guideline of the choice of @, the threshold value on the PS-distance is also provided in [10]. It is to
be noted that if a point is indeed symmetric with respect to some cluster center then the symmetrical
distance computed in the above way will be small, and can be bounded. Let 3" be the maximum nearest
neighbor distance in the data set can be represented by Eq. 7.

dyyn = lﬂﬂv d:.r:v.r':fl:] @)

Where, dy(x;) is the nearest neighbor distance of:;.Assuming that X~ “ lies within the data space, it may be

noted that:
dmﬂ

d, < 2 ®)

Max

Thus, the threshold & equals d35*. Hence for N points and K clusters, the time complexity of assigning the

points to the different clusters is O (N°K).

78| Page




International Journal of Advance Research in Science and Engineering ¢
Volume No.07, Special Issue No. (03), January 2018 IJARSE

www.ijarse.com ISSN: 2319-8354
2.1PROPOSED WORK

C. Existing Line Symmetry Based Distance

What is line symmetry? For a 2-dimenstional figure, if it can be folded in such a way that one-half of it lies
exactly on the other half is said to have line symmetry. The idea of line symmetry is very clear and simple but
an immediate problem is how to find a metric to measure line symmetry. A kind of line symmetry distance was
proposed in [11-13].In this approach, the symmetrical line of a data set is defined by a center vector and an
angle between the major axis of the data set and the x-axis. The information of the major axis of the data points
belonging to a class or a cluster is computed by the moment of order (p + ) method. Then the major axis is
treated as the symmetrical line of that class or cluster.

Saha and Maulik [14] proposed new line symmetry based automatic genetic clustering technique called variable
string length genetic line symmetry distance based clustering (VGALS-Clustering). To measure amount of line
symmetry of a point xwith respect to a particular linei, d;.(x. i), the following steps are followed:

1. For a particular data point x, calculate the projected point &; on the relevant symmetrical line .

2. Find dgy, (x, p; Jusing Eq. 9.

E:‘= d;
ds}.m(.r, ]‘5'[] = Ti (9)

Where k-nearest neighbors of x* = (2= p—-=x) are at Euclidean distances ofd;, i = 1,2.,....%k. Then the
amount of line symmetry of a particular point x with respect to that particular symmetrical line of cluster i is
calculated using Eqg. 10.

di(x, ) = doy (x. ;) 3 d oz, ) (10)
Where ¢ is the centroid of the particular cluster ¢ and g.(x.c} is the Euclidean distance between the points x
and c.
But a problem may exist in this line symmetry measure. This is called lacking of closure property and this
would result in a poor clustering. The closure property can be expressed as follows: if the data point z is
currently assigned to a cluster centroid c; in the current iteration, the determined most symmetrical point p;
relative to ¢ must have been assigned to ¢ in the previous iteration. To overcome this problem we have
described the line symmetry measure in different way.
D. The Newly Proposed Line Symmetry Based Distance measure:
Given a particular dataset, we first find the symmetrical line of each cluster by using the central moment
technique [15]. Let the data set is denoted by X = {{xy.3 1 (X290 o s (4.9 13, then the {p,q:]rh order
moment is defined by Eq. 11.

Mpg = Teglryyex X1 (11)
This is basically derived from the moment formula represented by Eq. 12.

My o = ffxpjrqf{.r, y) dxdy 12)
Moments are generally classified by the order of the moments. The order of a moment depends on the indices p
and g of the moment, m,, . and vice versa. Order of the moment m, . = p + g (sum of the indices)
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Considering this, the 1% order moments ((p, q) = (1, 0) or (0, 1)) are given by Eq. 13 and Eq. 14.

myp = [ xf (e, ) dxdy (13)

Mpy = ) vf (e, y) dxdy (14)
The first order moments contain information about the center of gravity of the object given by Eq. 15 and Eg.
16.

e = m (15)
. = Mo
Yo = ma o (16)

The centroid of the given data set for one cluster is defined as(?; ?J From the spatial moments the central
0.0 0,0

moments can be derived by reducing the spatial moments with thecenter of gravity (x.3.} of the object. The
central moment is defined by Eq. 17.
Upg = E?":I,:,}',::'El'{x[ _-f:]p{}’[ - }—:]q' 17)

Herex = ?andf = ? . According to the calculated centroid and the Eq. 17, the major axis of each cluster
0.0 0.0

can be determined by the following two items:

1. The major axis of the cluster must pass through the centroid.

2. The angle between the major axis and the x-axis is equal to 0.5 x tan™*(2 3 uy, fuzp — ug,)

Here, central moment of 2™ order is used in the computation. Thus, we see that for one cluster, its analogous
major axis is represented by Eq. 18.

Mi,0 Mgy

((_ _) » 0.5 x tﬂﬂ_l{z X ulj_.-"rum - un::]) (18)

f
g0 oo

The acquired major axis is treated as the symmetric line of the related cluster.In order to measure the amount of

line symmetry of a point (x;J w.r.t. a particular line k of cluster Cy, d;(x;. Ci) the following steps are followed.

e R
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Figure 2 Figure 3

1. (As in Figure 2) for a particular data point x; calculate the projected point  on the appropriate
symmetrical line k of the cluster C; and then find out all the possible symmetrical data points x; relative to
each symmetrical linekforl = i<nl=j=<nandl =k =K.

2. Find dgyp () by Eq. (19).

kneaor d-
L

d.s_].'rr. l::-riJFi:] ===

fmear

(19)
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Where & nearest neighbors of x;and they are at Euclidean distances of d;, i = 1.2..... knear. The parameter
Knear can be set by the user based on specific knowledge of the application. In general, a fixed value of Knear
may have many drawbacks. For clusters with too few points, the points likely to be scattered and the distance
between two neighbors may be too large. For very large cluster fixed number of neighbors may not be enough
because few neighbors would have a distance close to zero. Knear should be much smaller than the number of
objects in the data. To gain a clear idea of the distance of the neighborhood of a point, we have chosen
knear = +/n in our implementation. The amount of line symmetry of a particular point x;with respect to
particular symmetrical line of cluster £, is calculated by Eq. 20.
die (x5, Cpd = doym (xpprd x do(xpcy) (20)

Here, ¢, is the centroid of the cluster Crand d.{x;.cy ) is the Euclidean distance between data point x;and cluster
center ¢.

Now to satisfy the closure property in our proposed line symmetry distance measure, we have to impose some
constraint. To compute the line symmetry distance of the data point x; we have restricted the candidate
symmetrical points x; & C; relative to each symmetrical line & of the corresponding cluster £. For the data
point x; relative to symmetrical line of cluster ., this restriction can help us to search more suitable
symmetrical point x;, because we ignore the candidate most symmetrical point x; which is not in the cluster .

We applied the second modification in which the first and second symmetrical points x3 and x3 of point x; are
found in cluster £y (as in Figure 3) relative to the symmetrical line, not in all data points; that is, each point x;,
1 =i =mn is assigned to cluster C; iff dy(x.C)= d-,s{xl-, r:j-},where Lk =1l...k and j # k,
di(x;.Cp)/do(xcp) = 8,and x7 and x3 belong to cluster Cy. The distance d;(x;.Cy) is calculated by Eg. 20,

and & =dj is the symmetrical threshold, where &% = [_rr]:‘axﬁdm{.ﬂ] and the distance dyy () is the

maximum nearest neighbor distance in the data set. The value of & is kept equal to the maximum nearest
neighbor distance among all the points in the data set. Point assignment based on proposed line symmetry
distance is given in Algorithm A.
Algorithm A: Clustering based on proposed line symmetry distance.
¢ Assignment of data points:
for(i=1;i<=n;i++)
{
for(k=1;i<=K;i++)
{
Find the first and the second symmetrical points x} and x; of x; relative to a projected point z; on line
k of cluster ;. /+to ensure the closure property */
Calculate the line symmetry-based distance di;(x;.C;), & = 1.2.....K by Eq. 20.
} /* end of inner for */
Find Cy = Argming _; 4 65 (x;.Ci)
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if(ds (. C) < dg(x.C))  Fwherek,j=1,...Kand k # j */
{
Assign the point x; to the cluster C. Provided that dp, (x;.Cp)/d (x.c ) = 8
}
Else
{
Assign the point =x; to the cluster C; based on the Euclidean distance measure,
Cp = Argming_, ,d.(xpcp).
}

} /* end of outer for */

e Updation of centres: Compute new cluster centers of the K clusters by: ¢Z*" = iE[Eskx". Where, mn;, is

the number of data points belonging to the cluster £ and 55 is set of data points which have been assigned

to the cluster center cy.
2.3 Experimental Results and Comparative Study
E. Evaluation of Clustering Quality
The algorithms are implemented in JAVA and are tested on artificial and real data sets. The results of 2
dimensional data sets are displayed and easy to compare and analyze. The qualities of clustering results are
measured by adjusted Rand index [16]. i.e., to compare the performance of algorithms (K-Means, SBKM and
Proposed Algorithm) adjusted Rand index technique is used. Adjusted Rand index is limited to the interval [0,
1] with a value of 1 with a perfect clustering. The high value of adjusted Rand index indicates the good quality
of clustering result. The average and standard deviation of adjusted Rand index for data sets produced by K-
Means, SBKM and Proposed Algorithm are depicted in Tables 1(a) and 1(b), respectively.
From these results we can say that, the point symmetry based algorithm is supposed to be an improvement over
the traditional K-Means algorithm and similarly the line symmetry based algorithm is supposed to be an
improvement over the point symmetry based algorithm.
F. Results on Artificial Data Sets
Data set-1: This data set consists of two bands as shown in Figure 4(a), where each band consists of 200 data
points. The final clustering results achieved after application of K-means, SBKM and Proposed Algorithm are
shown in Figures 4(b), 4(c) and 4(d) respectively. Proposed algorithm is able to find out the proper clustering
for this data. As expected K-means and SBKM shows poor performance for this data since the clusters are not
hyper-spherical in nature. Our proposed algorithm is able to detect the proper partitioning from this data set as
the clusters possess the line symmetry property.
Data set-2: This data set contains 400 points distributed on two crossed ellipsoidal shells shown in Figure 5(a).

The final results corresponding to K-means, SBKM and Proposed Algorithm are shown in Figures 5(b), 5(c) and
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5(d) respectively.. As expected K-means and SBKM are not able to detect the proper partitioning but Proposed
Algorithm is able to do so.

Data Set-3: This data set is a combination of ring shaped, compact and linear clusters, as shown in Figure 6(a).

The clustering result achieved by the K-means algorithm is shown in Figure 6(b). The final clustering result of

the SBKM algorithm is shown in Figure 6(c). Figure 6(d) shows that the proposed algorithm works well for a

set of clusters of different geometrical structures. Both K-means and SBKM clustering algorithms provide K = 3

number of clusters in different runs but both are unable to perform the proper partitioning from this data set.

Proposed clustering algorithm detects K = 3 the optimal number of clusters and the proper partitioning in all

consecutive runs.

G. Results on Real Data Sets

The real data sets are taken from UCI repository (http://archive.ics.uci.edu/ml/index.php). For experimental

results two real data sets are considered.

(1) Iris: As seen from Table 1(a), the adjusted Rand index of Proposed Algorithm is the best for Iris, while the
performance of SBKM is second. However, it can be seen from Tables 1(a) and 1(b) that the performance
of K-Means algorithm is found poor. K-Means, SBKM and Proposed Algorithm provide K = 3 as the
appropriate number of clusters form this data set in all successive runs.

(2) Wine: From Tables 1(a) and 1(b), it is obvious that Proposed Algorithm performs the best for this data set.

The adjusted Rand index value achieved by Proposed Algorithm is also the maximum (mention Table 1(a)).

IHLLAPPLICATION: EDGE PIXELS CLUSTERING OF DIGITAL IMAGE

Most of the natural scenes, such as leaves of plants, have the line symmetry property. Figure 7(b-d) shows the
two real leaves. First the sobel edge detector [15] is used to find the edge pixels (edge maps) in the input data
points which are shown in Figure 8(a-d). The clustering result achieved after execution of the K-means, SBKM
and Proposed Algorithm are shown in Figure 9. The proposed algorithm shows a satisfactory clustering
result.So, the color image is first converted to black and white and then the edge maps (edge pixels) are obtained
using the sobel edge detection [15] technique. Following that, the clustering algorithms namely, traditional K-
Means, SBKM and Proposed Algorithm are used to estimate the clusters.

After running the K-means algorithm, the obtained clustering is shown in Figure 9(a, d, g, j). After running the
SBKM algorithm, the obtained clustering is shown in Figure 9(b, e, h, k). After running the proposed algorithm,
the obtained clustering is shown in Figure 9(c, f, i, m).

H. Evaluation Of Clustering Quality

To compare the performance of all three algorithms (K-Means, SBKM and Line-symmetry based proposed
algorithm), Davies-Bouldin (DB) index [17] is used. The Davies-Bouldin index is an internal evaluation scheme
and is defined as the ratio of inter scatter to intra-scatter distances. Smaller values for DB index correspond to

good clusters. That is better the separation of the clusters and “tightness” inside the clusters.Once again from
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Figure 10 we found that the proposed algorithm outperformed the Ordinary k-Means algorithm and the SBKM

algorithm.

Performance Evaluation
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V1. DISCUSSION AND CONCLUSION

Future work includes defining some other form of symmetry such as plane symmetry etc. Developing some
clustering techniques based on the proposed line symmetry distance is another direction of future work. The
randomized K-d trees based nearest neighbor search can be used to reduce the computation time of the nearest
neighbors search mechanism. Instead of using a single straight line in this algorithm, we can try to incorporate
curved line/lines to achieve better results. Other than the clustering experiments using leaf example, it is an
interesting future research topic to extend the results of this paper to the detection of symmetrical objects in

digital images. Current work is going on to improve the proposed clustering technique.
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Figure 4: (a)Data set-1 and clustering results achieved after application of (b)K-means, (¢)SBKM and

(d)Proposed Algorithm.
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Figure 5: (a)Data set-2 and clustering results achieved after application of (b)K-means, (c)SBKM and
(d)Proposed Algorithm.
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Figure 6: (a)Data set-3 and clustering results achieved after application of (b)K-means, (¢)SBKM and
(d)Proposed Algorithm.
Table 1: (a) Average of adjusted Rand index for K-means, SBKM and Proposed Algorithm (b) Standard
deviation of adjusted Rand index for K-means, SBKM and Proposed Algorithm.

Table 1: (a) | Number of | Number of | Number of Average value of adjusted Rand index

Data sets points (N) dimensions | clusters (K) | K-Means SBKM Proposed Algorithm
Data set-1 400 2 2 0.7467 0.9750 0.9786

Data set-2 400 2 2 0.7585 0.9830 0.9845

Data set-3 350 2 3 0.7491 0.9245 0.9424

Iris 150 4 3 0.7575 0.9240 0.9780

Wine 178 13 3 0.6471 0.9485 0.9567
Table 1: (b) | Number of | Number of | Number of Standard deviation of adjusted Rand index
Data sets points (N) dimensions | clusters (K) | K-Means SBKM Proposed Algorithm
Data set-1 400 2 2 0.12 0.096 0.045

Data set-2 400 2 2 0.078 0.041 0.034

Data set-3 350 2 3 0.083 0.054 0.046

Iris 150 4 3 0.088 0.041 0.029

Wine 178 13 3 0.082 0.051 0.035

) ) (c) (d)

Figure 8: After Edge Detection (Edge pixels as input data points)
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Figure 9:Clustered data: After running the K-means algorithm (a, d, g, j), after running the SBKM
algorithm (b, e, h, k) and after running the proposed algorithm (c, f, i, m).
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