Volume No 07, Issue No. 01, January 2018 www.ijarse.com

EVALUATION OF TOTAL ANTIOXIDANT POTENTIAL OF PERIPHYTIC CAROTENOIDS

H.Ganesh¹, K.C. Pushpalatha², B. Gangadhar², A. Shamina³

¹Department of Biochemistry, Mangalore University, P.G centre, Kushalnagar (India)

²Department of Biochemistry, Mangalore University, P.G centre, Kushalnagar (India)

²Central Institute of freshwater Aquaculture, ICAR-CIFA, RRC, Bangalore, (India)

³Indian Institute of Horticultural Research, IIHR-ICAR, Bangalore, (India)

ABSTRACT

Isolation of bioactive compounds relies greatly upon proper extraction strategy. Sustainable aquatic resource periphyton was exploited to extract carotenoids by means of acetone-petroleum ether and ethanol and identified through paper chromatographic approach. Carotenoid extracts were studied for their antioxidant potential. Result showed that ethanol extraction method performed well over acetone-petroleum ether extraction with respect to total carotenoid yield. Whereas acetone-petroleum ether extracted carotenoids showed the highest antioxidant activity compared to ethanolic carotenoid extract in a dose dependent manner. Periphytic carotenoid can be beneficial as a natural antioxidant for the periphyton grazing fish in aquaculture.

Keywords: Periphyton, carotenoid, chromatography, antioxidant.

I. INTRODUCTION

In a freshwater ecosystem, the complex association of microfloral communities found on the surfaces of submerged objects is called periphyton. It harbors variety of organisms from zooplankton to microbes, with phytoplankton contributing a major share [1]. These are quintessential to maintain and manage a healthy aquatic system. Microbes, algae and plants are some of the important sources of bioactive compounds. Antioxidants are the bioactive molecules that prevent oxidation of other molecules broadly divided as enzymatic (SODs, catalase, GSH-Px) and non enzymatic antioxidants (β -carotene, ascorbic acid, α -Tocopherol) [2] and are well known for their ability to scavenge free radicals produced in the living cell. In recent time, attention towards the antioxidants has increased a manifold due to their huge health benefits. Carotenoids are one of the major photochemical found in algae and higher plants. These are basically organic pigments broadly divided into xanthophylls and carotene. Their appearance of color varies from yellow to orange. Carotenoid is of great interest in food and nutrition due to the tremendous health benefits. It was supported by many studies that these exhibit novel properties like antioxidation [3][4][5], anti-inflammatory [6][7], immune-modulation [8] and anticancer [9][10][11]. Due to the carcinogenic effect of synthetic antioxidants [12] interest towards natural antioxidants is growing. In this perspective, carotenoids were extracted from periphyton by means of acetone-petroleum ether biphasic and ethanol solvent system and checked for their anti-oxidant potential.

Volume No 07, Issue No. 01, January 2018

www.ijarse.com

II. MATERIALS AND METHODS

2.1 MATERIALS

The following chemicals and equipment were used for the study. Ethanol (99.9%), petroleum ether (Sigma), calcium carbonate (Himedia), sodium chloride (SRL), sulphuric acid(Merck), ammonium molybdate (SRL), sodium phosphate(SRL) were procured locally. The absorbance was read using UV- Visible Spectrophotometer (Thermo).

2.2METHOD

Periphyton was grown on vertically hanged PVC pipes in a water filled cement tank with fortnightly application of urea, single super phosphate and cow dung [13]. After a month, the dense green mucilaginous periphyton coating on the pipes was scraped out and used for the study. In the first method, 2 gram of collected periphyton was nicely macerated with 50 ml of acetone along with a pinch of calcium carbonate and transferred to separating funnel. Then 10 ml of petroleum ether was added along with a pinch of sodium chloride and partitioned with distilled water. Later, lower layer of acetone was discarded and the upper layer of petroleum ether was filter collected in a volumetric flask of 25ml. The process was repeated twice to ensure maximum extraction and the volume made up to 25 ml with petroleum ether [14]. In the second method, two gram of periphyton was macerated with 10 ml of absolute ethanol and filter collected in a volumetric flask of 10ml and the volume made up with ethanol [15]. Finally, extracts were read at an absorbance of 450nm using UV-Visible spectrophotometer. Total carotenoid content was calculated using the following formula [16].

Carotenoids content (
$$\mu$$
g/g) =
$$\frac{A \times V \text{ (ml)} \times 10^4}{A_{1cm}^{1\%} \times P \text{ (g)}}$$
Formula (1)

Where A = Absorbance; V = Total extract volume; P = sample weight; $A_{1cm}^{1\%}$ = 2592 (β -carotene Extinction Coefficient in petroleum ether); $A_{1cm}^{1\%}$ =2620 (β -carotene Extinction Coefficient in ethanol).

2.2.1 PAPER CHROMATOGRAPHY

Separation of carotenoid was performed using paper chromatography [17] with a slight modification. Instead of TLC plate, Whatman no 2 paper was used as a stationary phase. Chromatogram was developed in petroleum ether mobile phase for the first extract and ethanol for the second extract. Retention factor was calculated using the following formula.

 $R_{\rm f} \, {\rm value} = \begin{array}{c} {\rm Distance \ from \ origin \ to \ solvent \ front} \\ {\rm Distance \ from \ origin \ to \ solvent \ front} \end{array}$

2.2.2 TOTAL ANTIOXIDANT ASSAY

The total antioxidant capacity was evaluated by phosphomolybdenum reduction assay [18] with little modofication. Phosphomolybdenum reagent was prepared by mixing 0.588ml of sulphuric acid, 0.049g of ammonium molybdate and 0.036g of sodium phosphate. 1ml of varying concentration (100, 200, 400, 600, 800 and 1000 μ g/ml)) of carotenoid extracts and standard antioxidant ascorbic acid were taken in a test tube and 1ml of phosphomolybdenum reagent was added to it and allowed to stand in a water bath at 95 °C for 90min. After

Volume No 07, Issue No. 01, January 2018 www.ijarse.com

incubation, the blue colored complex formed was measured at 695nm using UV-Visible spectrophotometer. Results were expressed in ascorbic acid equivalents.

III. STATISTICAL ANALYSIS

All the extractions were carried out in triplicates and analyzed using one-way analysis of variance (ANOVA). Total carotenoid content of periphyton recorded in the ethanol extraction method and acetone-petroleum ether method differed significantly (P<0.001).

IV. RESULT AND DISCUSSION

Result showed a mean total carotenoid content of 125.89µg/g in acetone-petroleum ether extraction method and 173.79 µg/g in ethanol extraction method which is given in the table 1.Mean carotenoid contents ranging from 19.2 to 33.8 in methanol, 18.8 to 28.7 in diethyl ether and 20.1 to 29.5 µg/g in acetone were recorded for some algal species [19]. Periphyton harbors variety of different species of phytoplankton [1], hence variation in carotenoid contents are expected. Fig. 1 shows the paper chromatographic separation of carotenoid obtained from two different extraction methods. Orange yellow color band obtained during paper chromatographic separation along with retention factor confirmed the presence of carotenoid [20]. Acetone-petroleum ether extracted carotenoids showed the highest antioxidant activity compared to ethanolic carotenoid extract in a dose dependent manner (table. 2, Fig.2 and Fig.3).

Antioxidant potential of carotenoid has long been studied and showed its efficacy in preventing inflammation, scavenging free radicals, and cardiovascular diseases [21] also in coloration of ornamental fish [22]. In case of phosphomolybdenum reduction assay Mo (VI) is reduced to Mo (V) by the antioxidants with production of a green phosphate/Mo (V) complex at acidic pH [23]. In our study acetone-petroleum ether extracted carotenoid exhibited highest antioxidant activity compared to ethanolic carotenoid extract in a dose dependant manner. Reduced oxidative stress was reported by dietary feeding of astaxanthin rich red yeast on rainbow trout [24] and carotenoid supplemented feed demonstrated good antioxidant potential in *Cyprinus carpio* [25]. Increased level of retinol and α-tocopherol level in the muscle and ascorbic acid in liver was observed on dietary astaxanthin fed Altantic salmon establishing a positive correlation between astaxanthin and antioxidant status in liver and muscle [26]. Enhanced antioxidant status by dietary astaxanthin was reported in penaeid postlarvae also increasing the dietary carotenoid concentration decreased the blood superoxide dismutase level in *Hyphessobrycon callistus* [27].

Aquatic animals undergo series of oxidative stress contributed by changes in temperature, salinity, oxygen level, and human born pollutants [28]. The antioxidant activity of carotenoid from sustainable sources like periphyton would be beneficial to the aquatic organisms grazing on periphyton and hence additionally could be used as a functional food in aquaculture and their by facilitating a unique solution to aquatic health management.

Volume No 07, Issue No. 01, January 2018 www.ijarse.com

V. FIGURES AND TABLES

Extraction method	Total carotenoid content	Mobile phase	Retention factor (R _f)
	(µg/ml)		
Acetone -petroleum ether	125.89±0.57	Petroleum ether	0.96
extraction			
Ethanol extraction	173.79±0.91	Ethanol	0.92

Table 1. Total carotenoid yield (\pm SD; n=3) and retention factor.

Acetone-petroleum ether extract

Ethanol extract

Figure.1 Paper chromatographic separation pattern of carotenoid.

Concentration of extract	Total antioxidant activity	Total antioxidant activity
(μg/ml)	in ascorbic acid equivalent	in ascorbic acid equivalent
	(Acetone-Petroleum ether	(Ethanol extract)
	extract)	
100	48.33±0.10	16.67±0.24
200	68.00±0.13	20±0.42
400	137.33±0.09	32.67±0.20
600	202.66±0.03	53.33±0.39
800	252.33±0.04	76.33±0.29
1000	340.00±0.28	153±0.49

Table 2. Comparison of total antioxidant activity expressed in ascorbic acid equivalent.

Volume No 07, Issue No. 01, January 2018 www.ijarse.com

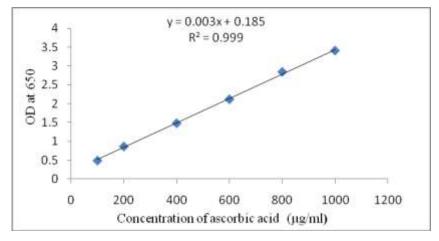


Figure 2.Ascorbic acid standard curve.

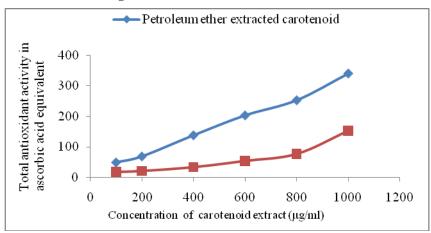


Figure 3. Comparison of antioxidant activity of carotenoid extracts.

VI. CONCLUSION

Result showed that ethanol extraction method performed well over acetone-petroleum ether extraction with respect to total carotenoid yield. Petroleum ether extracted carotenoids showed the highest antioxidant activity compared to ethanolic carotenoid extract in a dose dependent manner. Periphytic carotenoid can be beneficial as an antioxidant for the periphyton grazing fish in aquaculture.

VII. ACKNOWLEDGEMENTS

Authors thank The Director, CIFA-ICAR and officer in-charge, CIFA RRC Bangalore for their great support for providing laboratory facility to conduct experiment.

REFERENCES

[1] B. Gangadhar, N, Sridhar, H. Umalatha, , H. Ganesh, and P, Jayasankar, Taxonomic and biochemical composition and digestive enzyme activity of periphyton and plankton: a comparative study, Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2016, 1-6, doi.org/10.1007/s40011-016-0805-0.

Volume No 07, Issue No. 01, January 2018

www.ijarse.com

- [2] V. Lobo, A.Patil, A. Phatak, and N. Chandra, Free radicals, antioxidants and functional foods: Impact on human health, Pharmacognosy Reviews, 4(8), 2010, 118–126. doi.org/10.4103/0973-7847.70902.
- [3] Stahl, Wilhelm, and Helmut Sies, Antioxidant activity of carotenoids, Molecular aspects of medicine 24(6), 2003, 345-351.
- [4] J. Fiedor, and K, Burda, Potential Role of Carotenoids as Antioxidants in Human Health and Disease, Nutrients, 6(2), 2014, 466–488. doi.org/10.3390/nu6020466.
- [5] A.Kaulmann, and T. Bohn. Carotenoids, inflammation, and oxidative stress—implications of cellular signaling pathways and relation to chronic disease prevention, Nutrition research, 34(11), 2014, 907-929.
- [6] M. Hernández-Ortega, A.Ortiz-Moreno, M. D. Hernández-Navarro, G. Chamorro-Cevallos, L.Dorantes-Alvarez, and H, Necoechea-Mondragón, Antioxidant, antinociceptive, and anti-inflammatory effects of carotenoids extracted from dried pepper (*Capsicum annuum L.*), BioMed Research International, 2012.
- [7] W. T. Wu, and W. S. Liu, Anti-inflammatory property of biomaterial carotenoids production by Rhodobacter sphaeroides WL-APD911, In Advanced Materials Research, Trans Tech Publications, 287, 2011, 2028-2031.
- [8] K. H. Lin, K. C. Lin, W. J. Lu, P. A.Thomas, T. Jayakumar, and J. R Sheu, Astaxanthin, a carotenoid, stimulates immune responses by enhancing ifn-γ and il-2 secretion in primary cultured lymphocytes in vitro and ex vivo, International journal of molecular sciences, 17(1), 2015, 44.
- [9] N. C. Soares, A. J.Teodoro, P. F. Lotsch, J. M. Granjeiro, and R. Borojevic, Anticancer properties of carotenoids in prostate cancer, A review, Histology and histopathology, 30(10), 2015, 1143-1154.
- [10] K. Linnewiel-Hermoni, M. Khanin, M. Danilenko, G.Zango, Y. Amosi, J. Levy, and Y. Sharoni, The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity, Archives of biochemistry and biophysics, 572, 2015,28-35.
- [11] T.Tanaka, M. Shnimizu, and H. Moriwaki, Cancer chemoprevention by carotenoids, Molecules, 17(3), 2012, 3202-3242.
- [12] R. Kahl, Synthetic antioxidants: biochemical actions and interference with radiation, toxic compounds, chemical mutagens and chemical carcinogens, Toxicology, 33(3-4), 1984, 185-228.
- [13] B.Gangadhara, and P.Keshavanath, Planktonic and biochemical composition of periphyton grown on some biodegradable and non-degradable substrates, Journal of applied aquaculture, 20(3), 2008, 213-232.
- [14] W. C. Russell, M. W.Taylor, and D. F Chichester, Colorimetric determination of carotene in plant tissue, Plant physiology, 10(2), 1935, 325.
- [15] C. R. Sarkar, L. Das, B.Bhagawati, and B. C.A. Goswami, comparative study of carotenoid extraction from algae in different solvent systems, Asian J. Plant Sci., 2, 2012, 546-549.
- [16] L. M. J. de Carvalho, P. B. Gomes, R. L.de Oliveira Godoy, S. Pacheco, P. H. F. do Monte, J. L. V. de Carvalho, ... and S. R. R.Ramos, Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study, Food Research International, 47(2), 2012, 337-340.
- [17] Separation of Plant Pigments by TLC Peter Keusch (Univ. Regensburg, Alemanha).

Volume No 07, Issue No. 01, January 2018

www.ijarse.com

- [18] C. Wan, Y. Yu, S. Zhou, W. Liu, S. Tian, and S. Cao, Antioxidant activity and free radical-scavenging capacity of *Gynura divaricata* leaf extracts at different temperatures, Pharmacognosy Magazine, 7(25), 2011, 40–45. doi.org/10.4103/0973-1296.75900.
- [19] D. E. R. E. Şükran, T. GÜNEŞ, and R. Sivaci, Spectrophotometric determination of chlorophyll-A, B and total carotenoid contents of some algae species using different solvents, Turkish Journal of Botany, 22(1), 1998,13-18.
- [20] A. Y. Tong, S. T. Cutler, and B. M. Peake, Extraction and analysis of pigments from common New Zealand seaweeds using thin layer chromatography—an investigation for secondary school pupils, Chemistry Education in New Zealand, 2011, 1-7.
- [21] M. M.Ciccone, F. Cortese, M. Gesualdo, S. Carbonara, A. Zito, G. Ricci, ...and G. Riccioni, Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care, Mediators of inflammation, 2013.
- [22] B. Bjerkeng, Carotenoids in aquaculture: fish and crustaceans, Carotenoids, 4, 2008, 237-254.
- [23] A. M. Pisoschi, A. Pop, C. Cimpeanu, and G. Predoi, Antioxidant Capacity Determination in Plants and Plant-Derived Products: A Review, Oxidative medicine and cellular longevity, 2016. dx.doi.org/10.1155/2016/9130976.
- [24] T. Nakano, T. Kanmuri, M. Sato, and M. Takeuchi, Effect of astaxanthin rich red yeast (Phaffiarhodozyma) on oxidative stress in rainbow trout, BiochimicaetBiophysicaActa (BBA)-General Subjects, 1426(1), 1999,119-125.
- [25] S. A. Patil, and D. B. Thakare, Impact of fungal pigments (Carotenoids) in feed for *Cyprinus carpio* fish (KOI KARP), International Journal of Fisheries and Aquatic Studies, 5(3), 2017, 77-82.
- [26] R. Christiansen, J. Glette, O. J.Torrissen, and R. Waagbø, Antioxidant status and immunity in Atlantic salmon, Salmo salar L., and fed semi-purified diets with and without astaxanthin supplementation, Journal of Fish Diseases, 18(4),1995, 317-328.
- [27] Y. J. Wang, Y. H. Chien, and C. H. Pan, Effects of dietary supplementation of carotenoids on survival, growth, pigmentation, and antioxidant capacity of characins, *Hyphessobrycon callistus*, Aquaculture, 261(2), 2006, 641-648.
- [28] V. I Lushchak, Environmentally induced oxidative stress in aquatic animals, Aquatic toxicology, 101(1), 2011, 13-30.