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ABSTRACT

We consider the nonlinear parabolic problem with homogeneous Dirichlet boundary conditions in a plane
nonconvex polygonal domain. A special feature in a polygonal domain is the presence of singularities in the
solutions generated by the corners even if the forcing term is smooth. As a result, the rate of convergence which
is optimal order in a convex polygonal domain is reduced for the case of nonconvex polygonal domain.
However, it is possible to get a same rate of convergence as for the domain with smooth boundary, by
introducing a proper re_nement of the elements around the corners. The re_nement were introduced by

Babu_ska [Computing, 6 (1970), pp. 264-273]. We analyze the convergence properties in the L1(L2) norm for
the semidiscrete method.
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I. INTRODUCTION

In this paper, we focus our attention on nonlinear parabolic initial-boundary value problems
in domains with nonsmooth boundaries. Parabolic partial differential equations on nonconvex
domains appear in many applications such as heat conduction in chip design, environment

modeling, porous media flow and modeling of complex technical engines (cf. [1]).

=i

We consider the nonlinear parabolic problem, for u = u(x.t).

u — V- (a(u)Vu) = f(u) in 2,tel,
u = 0 on 92, t e J, (1.1)
with u(-,0) = v in 2,

where J = (0,T], T > 0, be a finite interval in time and {2 be a nonconvex polygonal domain
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in R2, with boundary 962. Also, define the smooth functions a and f on R such that
0<p<a(u) <M, Ia'(u.)| - |f’(u)| <B, for ueR. (1.2)

We assume that the above problem admits a unique solution.

For simplicity, we assume that w is exactly one interior angle which is reentrant such that
T < w < 2m. We set 3 = m/w, notice that % < B < 1. In particular, for the case of L-shaped
domain, w = 37/2 and 3 = 2/3. Assume that O is the associated vertex at the origin and (r, #)
denotes the polar coordinates describing the domain near O, with 0 < # < w. The singularity

in the solution will arise at the corner O with a leading term near O of the form
k(f)r’sin(56), (1.3)

where, x(f) # 0 in general, even when f is smooth. Further details on the singular function
and the singular solution, we refer to [2} [3]. Note that, elliptic error estimates play a crucial
role in the error analysis for the parabolic problems , and the regularity of the solution
of the elliptic problem for the nonsmooth domain (2 can be found in [4] [5]. We show that,
the order of convergence in L°°(L2) norm for the semidiscrete method is reduced from O(h?)
to O(h??), due to the presence of singularity in the solution of at the reentrant corner.
However, with a proper refinement of mesh near the corners of the domain one may restored
the optimal order convergence (cf. [6]). Finite element method (FEM) for nonlinear parabolic

problems in nonconvex polygonal domain are introducing for the first time in the literature.

The paper is organized as follows. In the next section we define some notations and pre-
liminaries which will use throughout this paper. The finite element space corresponding to the
triangulations of the domain (2 and the existence and uniqueness of the finite element solutions
are presented in this section. The elliptic projection which is used in the error estimates is
defined here. Section [3| devoted to the a priori error estimates for the spatially semidiscrete
scheme. In this section we introduce a systematical refinement near the nonconvex corner
in order to improve the order of convergence for the spatially semidiscrete error estimates.

Finally. some concluding remarks are presented in Section

II. NOTATIONS AND PRELIMINARIES

In this paper, we will use some standard notation. We denote the standard Lebesgue spaces
by LP(§2), 1 < p < oo, with the norm || - ||1»(). In particular, for p = 2, L?() is a Hilbert
space with the norm ||- || = || -|[2() induced by the inner product (u,v) = [, u(x)v(x)dr. For
an integer m > 0 and 1 < p < oo, W™P((2) denotes the standard Sobolev space of real valued
functions with their weak derivatives of order up to m in the Lebesgue space LP(£2) (cf. [7]).
The space W™P({2) is equipped with the norm || - |

wm.r(0)- For p=2, we denote the Hilbert
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space W™2(02) by H™(£2) with the norm || - |l m (). For an integer m > 0, set s = m + o,
0 < 0 <1, and then H* = H*({2) denote the sobolev spaces of fractional order with the norm
defined by

1/2
— | 12 |D%u(x) = D*u(y)|* ,
lull = = (”U”Hm - Z /Q /Q P dzdy :

|a|=m

For a given Banach space B and for 1 < p < 400, we define
T
LP(0,T;B) = {v :[0,T7] — B | »(t) € B for almost all ¢ € [0,T] and / lv(®)|IBdt < oo}
J0

equipped with the norm
T 1/p
lvllze0,7:8) = (/0 llv(t)lli’_:,) :

with the standard modification for p = co. We write ||v||z»(0,7;B) = ||v||Lr(B)-

2.1 Finite element solution

In order to introduce the finite element space, let 7, = {7} be the family of quasiuniform trian-
gulation of 2 with max.cT;, diam(7) < h (see, e.g. [8,[9]). The triangulations are quasiuniform
in the sense that there is some constant ¢ > 0 such that min;c7, diam(7) > ch. Let S be the

finite dimensional space corresponding to the triangulations 7 is defined by
Sp={x €C : x|, is linear, V7 € T, and x|sn = 0},

where C = C(£2) be the space of continuous functions on 2. Then the approximation with the

finite elements leads to the semidiscrete problem to find up, : J — Sy, such that

(unt,x) + (a(un)Vun, Vx) = (f(un),x) VYx € Sh, t € J,

with  up(0) = vp,

(2.1)

where vy, is an approximation of v in Sp,. Let {éJ}J'V__’_‘l be the standard nodal basis functions

for Sj. Then writing the solution as uy(x,t) = Z;'\':"I aj(t)¢i(x), we have from (2.1)),

-'Vh Nh Nh -'Vh
> 505,80+ 3500 (X eu() Vs Vo ) = (£ (i, m) )
i=1 j=1 =1 =1 (2.2)

with a;(0) =~;, for j,k=1,2,...,Np,
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Figur e 1: (a) Finite element discretizations for the L-shaped domain, # triangles= 5178 and # dof= 2702. (b) Further
refinement made towards the nonconvex corner for the L-shaped domain, # triangles= 8646 and # dof= 4468.

where v; the components of the given initial approximation of v, and N}, = dim(S). Now
setting a = a(t) = (a1(t), as(t), ...,an, N7, l) may be written in the matrix form

Ad' + B(a)a= f(a) for teJ, with a(0) =+, (2.3)

where A = (a;;) and B(a) = (bjr(a)) with elements

A
ajr = (¢j,¢r) and bjp(a) = (G(Z 01¢1)V¢j,v¢k) .

=1

respectively, f(a) = (fi(a)) be the vector with entries fi(a) = (f(z;\r:"1 algél),q‘)j) and v =
(7%). Using our assumption (1.2), it can be easily derive that the matrices A and B(a) are
positive definite and also B(a) and f () are globally Lipschitz continuous on RV:. Therefore

the system has a unique solution for t € J.

Before we start the semidiscrete error analysis for the semidiscrete problem (2.1)), introduce
the elliptic projection %, = 4 (t) in S, of the exact solution u is defined by

(a(u(t))V (an(t) —u(?)),Vx) =0, Vx€Sp, t2>0. (2.4)

In order to have some estimates for the error in this projection, we first derive the following

auxiliary result.

Lemma 2.1. Assume b = b(x) be a smooth function in 2 with 0 < p < b(x) < M for z € §2.
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Consider £ € H*$(2) N H}(R2), and let &, be defined by

(BV (& —€),Vx) =0 VYx € Sp. (2.5)
Then
IV(én — &Il < C1R®|| AL||g-14=  for B < s <1, (2.6)
and
1€ — €Il < C2h®||Ag||g-14s  for B<s <1, (2.7)

The constants C'y and Cy depends on p and M and on the family of triangulations Tp,. Also
Cy depends on an upper bound for Vb.

Proof. Consider any y € S},, we have

1 ||V(&n —&)|* < BV (& — €),V(r — )
= (Y (& — £),V(x — £))
<M|VE -V =,

which implies
V(& — &Il < (M/n) [V(x = Il (2.8)
Now, define the Ritz projection Ry, : H&(.Q) — S}, as the orthogonal projection (cf. [10]),
(VRyv,Vx) = (Vu,Vx) VYx €8, forve H}(R).
Following [3| Lemma 2.5] and choosing y = Rp€ in . we obtain
V(& = )l < C1h°| AL pg-1+e for B<s <1,

which proofs (2.6). In order to show (2.7) we use the duality argument. For this purpose, we

consider the problem
V. (bV¢Y)=-bAY—Vb-Vy=¢ in 2, =0 on 912, (2.9)
and since, |[¢|| < C'||V¥|| for ¢» € H}, we have

1 |[V|% < 0V, Vi) = (p,%) < llell 2]l < Cllell IV,
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which gives ||[V¢| < C|g|. Therefore, using the elliptic regularity estimate (see, e.g. [3|

Lemma 2.5], or Bacuta, Brahmble and Xu [4]) and for boundedness of Vb together with
equation (2.9),

1A% || g1+ < C llo+Vb- V|| < C ol - (2.10)
Hence, with x = Ry,
(€ — & 9) = (BV(& — ), VY)
= (bV(ér —£), V(¥ —x))
SM|V(E =NV =X

< (CHP|| AE|| fr-1+: ) (CRP | A || gr-1+2)
< Coh®|| A€ g-1+- 1o,

and this completes the proof of the lemma. O

I11. SPATIALLY SEMIDISCRETE ERROR ANALYSIS

In this section we have concerned on some error estimates for the spatially semidiscrete finite
element approximation of the parabolic problem (1.1). For this purpose, we split the

error term using the so called elliptic projection @ defined in (2.4)) as a sum of two terms,

up —u = (up —ap) + (ap —u) =6+ p. (3.1)

Hence, for estimates the error we need to first estimate the term p and p;, which is given
in the following lemma.

Lemma 3.1. Let p is defined by and C(u) independent of t € J. Then under consider-

ation the appropriate reqularity assumptions on u, we have fort € J, 3 < s <1,
2
lo@®ll +* [Ve@)]| < Cw)h?,

and

lpe(B) ]| +BZ [V pe(8)]| < C(u)h?.

Proof. Note that Va(u) = a’(u)Vu, the first proof easily follows from Lemma with b(z) =
a(u(x,t)).
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For the second estimate, differentiating (2.4) we have
(a(w)Vpr, V) + (a(u)Vp,Vx) =0 ¥x € S.
So, for uniformly boundedness of a(u) and a(u);.

1 IVpel|® < (a(w)Vpr, Vir)

= (a(w)V e, V(x — ur)) + (a(u)Vpy, V (itne — X))

= (a(u)Vpe, V(x — u)) + (a(u)Vp, V(x — itny))
IV pell IV (x = ue) | + IV oIl IV (x — ine) )

<C(
S C(IVeell IV Ox = u)l + Vel IV — )l + IV eelD),

(
(

following [10], with y = Rpu; and using Lermna this yields
Vel < S 1Vl + C [Vl + Cu)h®,

together with the previous estimate of Vp already shown and letting < s < 1., we have
IVpdl < Cu)h?.

Now for the estimate of p;, we use the duality argument as in the proof of Lemma
With b = a(u) and ¥ is defined as in (2.9),

(pts p) = (a(w)Vp, Vip) = (a(w)Vpe, V(¥ — x)) — (a(u)Vp, V). (3.2)

Since a(u) is bounded in view of (|1.2]), hence using (2.4) the second term of the right hand

side of gives

_a(u)

(a(u)Vp,Vx) = a(a)

(a(u)Vp,Vx) =0,
and therefore, we have
(pt,0) = (a(u)Vpr, V(¢ — X)),
choosing x = Rp1), together with and with the estimates for Vp;, we obtain
(o 2)| < CIV ol BP1| A% |11+ < C)B7 o]
which gives, ||p¢| < C(u)h?®. This completes the proof. -

The main result for the error estimate between the solution of semidiscrete problem ([2.1))
and the continuous problem (1.1 given in the following theorem.
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Theorem 3.2. Let u;, and u be the solution of and , respectively. Then with C = Crp,

we have
lun(t) —u(t)|| < C|lvn —v|| + C)h*  for B<s<1, tel. (3.3)

Proof. We first write the error term as in (3.1), and since p is bounded in view of Lemma
so it remains to estimate f. For x € Sj, and using (2.4) yields

(61, x) + (a(up)VO, Vx)

= (unt, x) + (a(ur)Vun, Vx) = (dne, x) — (a(un)Vin, Vx)

= (f(un),x) — (@the — ut, x) — (ut,x) — (a(w)Vin, Vx) + ((a(u) — a(ur))Vin, Vx)
= (f(un),x) — (pt; x) — (ut, x) — (a(uw)Vu, Vx) + ((a(w) — a(un))Van, Vx),

and thus
(61, x) + (a(un)VO, Vx) = (f(un) — f(u),x) + ((a(u) — a(up))Var, Vx) — (o, x).  (3.4)

Now, using and ,
w(Van, Vx) < (a(w)Vap, Vx) = (a(u)Vu, V) < M (Vu,Vy),

which leads to
(Vap, Vx) < (M/p)(Vu, V),
by putting x = 4y, both side
V| < C|[|Vul|,
and this yields
V()| < C(uw). (3.5)
Therefore with y =6 in and using , , we have

1d
S== 1617 + 1 IIV6I|> < C llun —ull (161l + V1) + llee ]l 6]

2 dt
< w|IVOI2+ o + lol? + lleel®),

after integration this leads to

; t
162 < 16(0)]% +C /0 (812 + 12112 + lleel)ds.
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Now, using Gronwall’s lemma we obtain

lo@)* < C16(0)[* + C./o ol + ey, (3.6)
where C' now depends on T'. We have
16(0)|| < llon — v]| + [|@(0) — v|| < [lon — v|| + CR*, (3.7)
where, C' = C(v). With this and together with Lemma we obtain from (3.6])
I6(t)]| < C |lon — vl + C(u)h??,

and this completes the proof of the theorem. -

Remark 3.3. Note that, the singularity occur in the finite element solution due to the re-entrant
corner in §2 for the case of globally quasiuniform mesh. Hence, O(h*?) is the best possible
convergence we obtain away from the nonconver corner. However, to obtain an optimal order

convergence O(h?), we refine the triangulations systematically towards the nonconvex corner.
The refinement was first introduced by Babuska [6].

In order to introduce the refinement of triangulations systemically (cf. [3]), let d(zx) be

the distance to the nonconvex corner and d; = 2-7, for j = 0,1, ,j . Assume that, for

A

i=0,1,..,J,

Gi={z e dif2 <d2) < &},
.Q_; = .Qj_l U .Qj U Qj+1, and
Qr={xeN: dx) <dj/2}.

With h be the meshsize in the interior of the domain, choose J such that d R RY/B . and
v > 1/ such that

hj < Chd; ?* and ch? < hy < CRYP,

with ¢ > 0, € be a small positive number, and h; denotes the maximal meshsize on (2;. Also
let the mesh is locally quasiuniform on each .Q;- so that hpyin > hY and dim(Sy) < C h=2. The
finite element triangulations for an L-shaped domain are shown in Figure [1fa). Also, further
refinement on the triangulations are made towards the nonconvex corner to improve the order
of convergence, and this is shown in Figure b). With the above refinements we therefore

have the following auxiliary result.

Lemma 3.4. Let p is defined by and C(u) independent of t € J. Then with the triangu-
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lations above, we have

el + R [IVp(t)]| < C(uw)h?  for t € J,
lpe(@®) || + R |[V pe(t)]| < Cu)h®  for t € J.

Proof. Following Chatzipantelidis et al. [3| Lemma 2.9] with s = 1, and using the similar
arguments as in the proof of Lemma [3.1] the proof is easily follows. O

Next, we shall show that Theorem|3.2]now gives the optimal order convergence by a proper

refinements towards the nonconvex corner introduced above.

Theorem 3.5. Let up and u be the solution of and . respectively. Assume that the
triangulations underlying the Sy, are refined as in Lemmal[3.4} Then with C = Cp, we have

lun(t) — u()]| < C lon — o]l + Cwh? for teJ. (3.8)

Proof. Following the similar argument as in the proof of Theorem and in view of Lemma

the rest of the proof is standard. |

IV. CONCLUSIONS

In this paper, we have presented the finite element method for nonlinear parabolic problems
in nonconvex polygonal domains. A priori error bounds in the L>(L?) norm are derived for

the spatially semidiscrete method. The derivation gives the convergence rate @(h?®). The

reduction of the convergence rate from optimal order to O(h??) caused by the presence of the
singularity in the solution due to the reentrant corner in the domain. However, with a proper

mesh refinement near the corners the order of convergence is improved to the optimal order.
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