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ABSTRACT 

With the universal figuring of giving administrations and applications at anyplace and whenever, distributed 

computing is the best choice as it offers adaptable and pay-per-utilize based administrations to its clients. By 

and by, security and protection are the principle difficulties to its prosperity because of its dynamic and 

disseminated engineering, bringing about creating huge information that ought to be painstakingly broke down 

for distinguishing system's vulnerabilities. In this paper, we propose a Collaborative Anomaly Detection 

Framework (CADF) for distinguishing digital assaults from distributed computing conditions. We give the 

specialized capacities and organization of the system to show its procedure of usage and establishment. The 

system is assessed on the UNSW-NB15 dataset to check its believability while sending it in distributed 

computing situations. The trial comes about demonstrated that this structure can undoubtedly deal with 

substantial scale frameworks as its execution requires just evaluating factual measures from arrange 

perceptions. Besides, the assessment execution of the system beats three cutting edge strategies as far as false 

positive rate and discovery rate. 

Keywords-component: Collaborative Anomaly Detection Framework; Cloud Computing, Gaussian Mixture Model 

(GMM); Interquartile Range (IQR); UNSW-NB15 dataset 

 

I. INTRODUCTION 

The term „cloud computing‟ denotes a network of networks interconnected using internet services in which 

virtual shared servers offer the software, infrastructure, platform, services and other resources to customers 

anywhere and anytime [1]. Cloud computing produces a flexible computing model which permits firms and 

organisations to use and adapt their IT needs over the internet at a low cost of use and without any liability 

towards IT infrastructure and maintenance [2].  

In the cloud computing environment, network-accessible resources are used as services. These services are 

categorised into three types of Platform as a Service (PaaS), Infrastructure as a Service (IaaS) and Software as a 

Service (SaaS) models [2] [3] [4]. Firstly, a PaaS delivers to a user or organisation client applications using 

programming languages, libraries, services and tools which are supported by a PaaS provider‟s infrastructure. 

Then, an IaaS offers processing units, network capabilities and other fundamental computing resources via 

Virtual Machines (VMs) to service subscribers. Finally, a SaaS offers to a user or organisation on-demand 



 

73 | P a g e  

applications and software services via a cloud infrastructure, avoiding the cost of buying and maintaining those 

applications.  

Cloud executions often contain security mechanisms, typically available because of the data centralisation and 

global architecture. Cloud providers endeavour to secure the homogeneous resources of cloud architecture as 

much as possible [3]. However, several vulnerabilities are a result of the underlying technologies, for example, 

network systems, APIs, datacentres and virtual machines that considerably threaten the cloud architecture [2].  

The architecture of cloud computing includes three layers: infrastructure, application and platform which 

execute its functionalities. Each layer faces particular vulnerabilities, developed by diverse malicious scripts or 

configuration errors of user/service providers. Cloud‟s vulnerabilities expose the confidentiality, integrity or/and 

availability of its resources. This is because that data and virtualised infrastructure of cloud systems can be 

breached by existing and new attacks [5]. The security challenge of a cloud computing system occurs when a 

cloud runs a high storage capacity and computing power that is abused by an insider or outsider hacker [6].  

There are some existing security techniques and tools, including authentication, access control, encryption, 

access control, firewall and intrusion detection systems (IDSs), to tackle the cloud‟s security issues. However, in 

current cloud computing systems, no single mechanism fits all cases of exploitation. These mechanisms should 

be incorporated to produce a comprehensive layer of defence. In this study, we mainly focus on the IDS 

technology and what is the suitable framework for detecting intrusive events that threaten cloud environments.  

We propose a Collaborative Anomaly Detection Framework (CADF) for processing big data of cloud 

computing systems. More specifically, we provide the technical functions and the  

way of deployment of this proposed framework for these environments. The technical framework comprises 

three modules: capturing and logging network data, pre-processing these data and a new Decision Engine (DE) 

using a Gaussian Mixture Model (GMM) [15] and lower-upper Interquartile Range (IQR) threshold [16] for 

detecting attacks. The UNSW-NB15 dataset1 is used for evaluating the new DE to assess its reliability while 

deploying the framework in real cloud computing systems. 

 

II. BACKGROUND AND RELATED WORK 

Because of the dynamic configurations of cloud computing, numerous vulnerabilities attempt to penetrate its 

architecture, leaving loopholes in which attackers exploit cloud‟s services and its big data [2]. The analysis of 

cloud data should consider the inspection of big data properties, i.e., volume, velocity, variety, veracity and 

value, for efficiently detecting malicious activities [7]. Inspecting these properties in cloud data helps in making 

the decision of designing a scalable security mechanism that can precisely model network data for defining 

malicious patterns, and these properties are declared as follows. 

 Volume is a large amount of processed data.  

 Velocity is the high speed of processed data.  

 Variety is the dimensionality of processed data.  

 Veracity is the correctness of processed data.  
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 Value is the significance of processed data.  

An IDS is widely used to detect intrusive activities from cloud‟s big data, but it still faces the challenge of 

successfully recognising invariants of known attacks and zero-day/new malicious activities. The purpose of IDS 

is to provide a layer of defence against malicious events that try to breach computing systems. It monitors and 

analyses activities which happen in computer or network systems to detect possible threats [1].  

The IDS detection approaches are classified into three categories: misuse- (MDS), anomaly- (ADS) and hybrid-

based IDS, merging the first two types [1][5][7]. A MDS monitors network data to match observed activities 

against an existing blacklist. Nevertheless, although it produces high detection rates and low false positive rates, 

it cannot identify any zero-day attacks or even variants of known ones [5]. Conversely, an ADS establishes a 

normal profile and discovers any variation from it as an attack. Because it can identify both known and 

unknown attacks, it is a better approach than a MDS if its detection method is properly developed [1] [5] [3]. 

The majority of recent cloud computing IDS research focuses on its design at the application, platform, and 

infrastructure layers separately [6]. For instance, Gustavo and Miguel [8] executed many ADS techniques and 

suggested an IDS for protecting complex web applications as SaaS. Their results showed that the deployment of 

ADS at the application layer is very effective, as it is easy to detect application attacks. Nevertheless, they did 

not provide an effective way of deploying their system in a real cloud computing environment.  

Establishing the IDS in the infrastructure layer is important to some extent. As in [9], the authors suggested a 

hypervisor model based on a VM monitor to secure the infrastructure layer (IaaS) from different types of 

attacks. This model enhances the reliability and availability of the system because the running services can be 

protected. However, this model cannot protect the system if the infrastructure collapses due to the norm of 

contemporary flooding traffic of attacks such as DDoS.  

Designing a collective IDS structure for cloud computing systems is always an arduous task because of their 

heterogeneous model and virtualisation technology. Zayed et al. [10] developed a collaborative IDS using a 

support vector machine technique for detecting abnormal activities. However, this system is not scalable as the 

performance drops with the increase of data capacity into the central node in which a single point of failure is 

unsuitable in the cloud.  

Gai et al. [11] suggested a grid and cloud computing IDS for discovering malicious events. However, this 

system can only detect particular attacks. Tan et al. [2] proposed a collective IDS which associates malicious 

events between different IDSs to enhance the IDS efficiency. Although these collaborative systems are scalable 

to some extent, they cannot efficiently detect large-scale distributed anomalies, and there is no central 

correlation handler to merge activities, as we propose in this study. 

 

III. PROPOSED COLLABORATIVE ANOMALY DETECTION FRAMEWORK (CADF) 

Existing misuse IDSs are not able to identify zero-day attacks or even variants of existing types. The design of a 

collaborative IDS for each node in cloud computing environments is extremely significant for detecting these 

types of intrusions. A Collaborative Anomaly Detection Framework (CADF) is proposed to detect malicious 

observations from each network node in order to considerably improve the detection accuracy.  
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The target of the framework is to develop an effective ADS installed in each node in cloud computing systems 

which identifies malicious activities with a central data capturing and logging module. We describe the technical 

functions and deployment of this framework to understand the way of implementing it in real environments. The 

technical framework involves three modules, capturing and logging, data pre-processing and decision engine for 

identifying suspicious activities of cloud, as depicted in Figure 1. 

 

Figure 1. Proposed Collaborative Anomaly Detection Framework (CADF) 

3.1. Capturing and logging module 

This module includes the steps of sniffing network data and storing them to be processed by the DE technique, 

like the steps of designing the UNSW-NB15 dataset [12] [13]. The configuration of the UNSW-NB15 testbed 

was used to simulate a large-scale network. A tcpdump tool was applied to sniff packets from the network‟s 

interface while Bro, Argus tools and other scripts were used to extract a set of features from network flows 12] 

[13]. These features were recorded using the MySQL Cluster CGE technology2 that has a highly scalable and 

real-time database and enables a distributed architecture to read and write intensive workloads, and is accessed 

via SQL APIs for processing big data.  

3.2  Pre-processing module  

This module determines and filters network data in three steps. Firstly, its feature conversion replaces non-

numeric features with numeric ones because our GMM-based ADS technique deals with only numeric features, 

for example mapping TCP, UDP and ICMP into 1, 2 and 3, respectively. Secondly, its feature reduction uses the 

PCA technique to select a small number of uncorrelated features. Because this is one of the best-known linear 

feature reduction algorithms, with the advantages of demanding less memory storage, having lower data transfer 

and processing times, and better accuracy than others [14], we used it for this study.  

Finally, feature normalisation arranges the value of each feature in a certain range to remove any bias from raw 

data and easily process it. We apply the z-score function, as it can scale the network data with no change in the 

norm of the original data. It scales each feature () with a 0 mean () and 1 standard deviation (), to normalise the 

data using (1). 
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IV. DECISION ENGINE MODULE 

This section elaborates the new DE technique based on the Gaussian mixture model and lower-upper 

interquartile range baseline. 

4.1  Finite Mixture Model using Gaussian distribution  

As a finite mixture model is defined as a convex combination of two or more Probability Density Functions 

(PDFs), the joint properties of these functions can approximate any arbitrary distribution. It is a powerful and 

flexible probabilistic modeling technique for multivariate data [15]. Network data are typically considered 

multivariate as they have d dimensions for differentiating between attack and normal instances; for example, let 

X= [X1,…,Xd] be a d-dimensional random variable and x=[x1,…,xd] an observation of X. The probability 

density Function (PDF) of a Gaussian distribution is computed by 

 

where x is feature values,µ is mean of the distribution and δ is variance. The PDF of a mixture model is declared 

by a convex combination of K-component PDFs and is given as 

 

where (a1,…,ak) are the mixing proportions, each θK is a set of parameters defining the components which are 

based on the number of the feature selected using the PCA technique and θ=(θ1,… θk , α1,…, αk ) is the 

complete set of parameters required to identify the mixture. Applying the probability conditions, has to satisfy 

 

The mixture model is computed by the Maximum Likelihood Estimation (MLE) [15]. Assuming X data with N 

observations, the probability of data in which Xi are identically and independently distributed is given by 

 

The MLE is derived from the set of parameters (θ) by 

 

The GMM is the mixture model most often applied for NADSs. It estimates the PDFs (from equations (2) to 

(6)) of the normal data given by a training set. The parameters θ=(α,µ,δ) of the GMM are estimated using the 

EM algorithm to model network data. 
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4.2 Training Phase 

It is vital to obtain a purely normal training set to assert correct detection. Given a set of normal vectors        

 in which each record comprises a set of features, where,  the normal 

profile contains only statistical measures from  . They involve the estimated parameters θ=(α,µ,δ)  of 

the GMM to compute the PDFs of the Gaussian distribution  for each vector in the training 

set, as shown in Figure 2. 

 

Figure 2. Sample of density curves for normal network data 

Algorithm 1 presents the proposed steps for establishing a normal profile (pro), with the parameters (α,µ,δ ) of 

the GMM estimated for all the normal vectors  using the equations published in [15], and then the 

PDFs of the features (X1:D) are calculated using equations (2) to (6). Following this, the IQR is calculated by 

subtracting the first quartile subtracted from the third quartile of the PDFs [16] to generate a threshold for 

identifying abnormal instances in the testing phase. It is known that quartiles divide data into contiguous 

intervals with equal probabilities [16]. 

Algorithm1: generation of normal profile in training phase  

Input: normal vectors  

Output: normal profile (pro)  

1. for each record i in  do  

2. estimate the parameters θ=(α,µ,δ)  of the GMM  

3. compute the PDFs using equations (2) to (6) based on the parameters estimated in Step 2  

4. end for  

5. calculate lower = quartile (PDFs,1)  

6. calculate upper = quartile (PDFs,3)  

7. calculate IQR = upper - lower  

8. pro← {( θ=(α,µ,δ)), (lower-upper IQR)}  
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9. return pro  

4.3 Testing Phase 

In the testing phase, the Gaussian PDF (PDF
testing 

) of each vector (r
testing 

)  is calculated using the same 

parameters computed for the normal profile (Pro). Algorithm 2 describes the steps in the testing phase and 

decision-making method for specifying the Gaussian PDFs of attack records, with step 1 building the PDF of 

each vector using the stored normal parameters (θ=(α,µ,δ)). 

Algorithm 2: testing phase and decision-making method  

Input: observed record (r
testing

)  

, normal profile (pro) {( θ=(α,µ,δ)), (lower-upper IQR)}  

Output: normal or abnormal record  

1. compute the PDF
testing

 using equations 2 to 6 with parameters (θ=(α,µ,δ) )  

2. if (PDF
testing

 < (lower –w.(IQR))) || (PDF
testing

 > (upper + w. (IQR)) then  

3. return attack  

4. else  

5. return normal  

6. end if  

 

Steps 2 to 6 are the steps of the decision-making method. The IQR of the normal vectors is calculated to find the 

anomalies of any testing record (r
testing

) which are considered to be any vector falling below (lower – w.(IQR)) 

or above (upper + w.(IQR)), where w is interval values between 1.5 and 3 that precisely represents the lower 

and upper bounds of normal data, as proven in [16]. The detection decision is based on considering any 

PDF
testing

 falling outside of this interval as anomalies, otherwise they are normal records. 

 

V. DEPLOYMENT OF PROPOSED FRAMEWORK FOR CLOUD COMPUTING 

ENVIRONMENTS 

The deployment of this framework is described for three nodes (A, B and C) depicted in Figure 3 in order to be 

executed for cloud computing systems. Unlike traditional IDSs, the CADF is deployed on each network node 

and each CADF connected simultaneously with the shared module of capturing and logging. This is for 

collecting attribute values of  network traffic in a particular time interval to make it much easier while passing 

the processed data to the DE module for each network node.  

We suggest the deployment in two stages: a shared module as SaaS and ADS as SaaS. The first includes a 

sensor for capturing network attributes and logging them in a data source, as presented in Figure 3. It is 

designed to be a sharable service for the entire connected ADSs at different cloud nodes. The second contains 

the main functionality of the proposed ADS to be installed at each node for handling large-scale networks by 

distributing it as service at each node. 
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Figure 3. Deployment architecture of CADF 

5.1. Dataset and pre-prosessing module used for evaluation  

The evaluation of the proposed framework is conducted using the UNSW-NB15 dataset which has a hybrid of 

authentic contemporary normal and attack vectors. The volume of its network packets is nearly 100 Gigabytes, 

generating 2,540,044 observations which are recorded in four CSV files. Each record includes 47 features and 

the class label. The dataset comprises ten different classes, one normal and nine types of security events and 

malware (i.e., Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Fuzzers for anomalous activity, 

Shellcode and Worms). The GMM-ADS technique is evaluated using 10 features selected from the UNSW-

NB15 dataset selected using the PCA, as presented in Table I.  

Table I. FEATURES SELECTED FROM UNSW-NB15 DATASET 

ct_dst_sport_ltm, tcprtt, dwin, ct_src_dport_ltm,  

ct_dst_src_ltm, ct_dst_ltm, smean, dmean, service, proto 

The proposed technique was developed using the „R language‟ on Linux Ubuntu 14.04 with 16 GB RAM and an 

i7 CPU processor. To conduct the experiments on the dataset, we selected random samples from the CSV files 

of the UNSW-NB15 dataset with various sample sizes between 70,000 and 150,000. In each sample, normal 

records were about 60-70% of the total size, with some used for establishing the normal profile and the testing 

set. 

5.2 Performance Evaluation  

The accuracy, Detection Rate (DR) and False Positive Rate (FPR) explained below are used to evaluate the 

framework performance.  

The accuracy is the percentage of all normal and attack records correctly classified, that is,  

 The accuracy is the percentage of all normal and attack records correctly classified, that is,  
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 The DR is the percentage of correctly detected attack records, that is,  

 

 The FPR is the percentage of incorrectly detected attack records, that is,  

 

where TP (true positive) is the number of actual attack records classified as attacks, TN (true negative) is the 

number of actual normal records classified as normal, FN (false negative) is the number of actual attack records 

classified as normal and FP (false positive) is the number of actual normal records classified as attacks. 

5.3. Result discussion 

The performance evaluation of the CADF was conducted on the features selected from the UNSW-NB15 

dataset, with the overall DR, accuracy and FPR values demonstrated in Table II. Figure 4 presents the Receiver 

Operating Characteristics (ROC) curves which display the relationship between the DRs and FPRs using the w 

values. 

Table II. Evaluation of features from unsw-NB15 dataset 

w value DR  Accuracy  FPR  

1.5  86.3%  88.2%  8.4%  

2  89.1%  90.1%  5.5%  

2.5  93.4%  94.8%  4.4%  

3  95.6%  96.7%  3.5%  

It can be seen that the stable increase in the w value between 1.5 and 3 increased the overall DR and accuracy 

while decreasing the overall FPR. The overall DR and accuracy increased from 86.3% to 95.6 % and 88.2% and 

96.7%, respectively, however the overall FPR decreased from 8.4 % to 3.5% when the w value increased from 

1.5 to 3.  

The key reasons for the CADF performing better than the other peer techniques discussed below are that the 

GMM can perfectly fit the boundaries of each feature as it accurately estimates the mixing weights of network 

features in order to model normal data. Moreover, the lower-upper IQR method can successfully specify the 

boundaries between normal and outlier observations. 
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Figure 4. ROC curves with w values 

The performance evaluation results for the CADF were compared with three existing techniques, namely the 

Triangle Area Nearest Neighbours (TANN) [17], Euclidean Distance Map (EDM) [18] and Multivariate 

Correlation Analysis (MCA) [19], with their overall DRs and FPRs listed in Table III, revealing the superiority 

of our framework . 

Table III. Comparison of performances of four techniques 

Technique  DR  FPR  

TANN [17]  88.2%  12.3%  

EDM [18]  89.4%  10.6%  

MCA [19]  91.4%  8.9%  

Proposed CADF  95.6%  3.5 %  

According to the above discussions, the proposed framework can be easily deployed in cloud computing 

systems. Since the shared module as SaaS collects important network observations from different network 

nodes, the DE as SaaS does not consume high processing time to inspect the observations, either normal or 

attacks, for these nodes. This is because the DE was built based on only estimating statistical measures of 

Gaussian mixture model and lower-upper interquartile range from network instances that can be simply 

computed in real cloud computing systems with less computational resources. 

 

VII. CONCLUDING REMARKS 

This study discusses a new collaborative anomaly detection framework for detecting known and unknown 

intrusive activities in cloud computing environments. This framework comprises capturing and logging network 

data, pre-processing these data to be handled at the decision engine sensor and a new decision engine using the 

Gaussian Mixture model and inter quartile range for identifying abnormal patterns. Moreover, the architecture 

for deploying this framework as Software as a Service (SaaS) is produced in order to be easily installed in cloud 

computing systems. The experimental results of the framework show its superiority for detecting abnormal 

events using the UNSW-NB15 dataset compared with three ADS techniques. In future, we plan to extend this 
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study for deploying the framework in a real cloud computing environment with further findings and 

explanations. 
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