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ABSTRACT

In this paper we discuss the number of zeros of a complex algebraic polynomial of degree n with restricted
coefficients in a disk centered at origin.
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I. INTRODUCTION AND STATEMENT OF RESULTS

One of the basic theorems of mathematics is the Fundamental Theorem of Algebra,
according to which, “every polynomial of degree n = 1 has exactly n zeros in the complex

plane”. This theorem does not however say anything regarding the location of zeros of a
polynomial. The problem of locating some or all the zeros of a given polynomial as a
function of its coefficients is of long standing interest in mathematics. This fact can be
deduced by glancing at the references in the comprehensive books of Marden [8] and
Milovanovic, Mitrinovic and Rassias [9] and by noting the abundance of recent publications
on the subject.

Historically speaking, the subject dates from about the time when the geometric
representation of the complex numbers was introduced into mathematics, and the first
contributors to the subject were Gauss and Cauchy. Cauchy [3] improved the result of Gauss
and proved:

Theorem A: If p(z) =X7-pa;z7,a, #0, is a polynomial of degree = with complex

coefficients, then all the zeros of p(z) lie in the circle,

ﬂ-}-

2y

lz] =14+ max
0=jsEn—-1

Other results of similar type were obtained among others by Aziz [1], Q.G. Mohammad [10]
etc. Now we mention the following elegant result which is commonly known as Enestrom-

Kakeya Theorem in the theory of distribution of zeros of polynomials.
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Theorem B: If p(z) = X7, a}.z}', a,, # 0, is a polynomial of degree n with real coefficients

satisfying a,, = a,_, = a,_, = -~ = a, = 0, then all the zeros of p(z) lie in the circle
|z| = 1.

Theorem B was proved by Enestrém [4] and independently by Kakeya [7].

By using Schwartz lemma, Aziz and Mohammad [2] generalized Enestrém-Kakeya
theorem and proved the following:

Theorem C: Let f(z) = X7, a}.zi is a polynomial of degree = with positive and real

coefficients. If t; = t, = 0 can be found such that
a.tit, +a,_(t;—t,)—a,_,=0r=12,..,n+la,=a,,,=0
Then all the zeros of p(z) liein |z| < t;.

1

Regarding the number of zeros in |z| < = of the polynomial p(z) = fzﬂa}-zl', Mohammed

[10] proved the following:

Theorem D: Let p(z) = Z7-; a,z” is a polynomial of degree n such that
a, =a, =""=za =a, =0,

then the number of zeros of p(z) in |z] < 1,’2 does not exceed

In this paper, we relax the restriction on the coefficients of polynomial and prove the more
general result from which the other results follows by fairly uniform procedure.

As a generalization of Theorem D, we prove the following result.

Theorem 1: Let p(z) = E}’:ch}-zj be a polynomial of degree n with real coefficients . If for

somet = 0,
-1
t"a, =t" ta, = =t a;, =a, >0,

then the number of zeros of p(z) in |z| < t/2 does not exceed
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Remark 1. For t = 1, Theorem 1 reduces to Theorem D.

Theorem 2: Let p(z) = f:ﬁajzi be a polynomial of degree n with real coefficients. If

a; >0,j=012, ..,n and for somet; =t, =0
agtit, +a;y(t —t))—a,_, 20,j=12,..,n
with @_; = 0, then the number of zeros of p(z) in |z| < t;/2 does not exceed

1 2a,t?*?

o .
log2 g agtyt,

Remark 2: For t; = 1 and t, = 0, Theorem 2 reduces to Theorem D.

Finally, we prove the following:
Theorem 3: Let p(z) = X7, a,}.zj be a polynomial of degree n, Ifa;, =0, j =0,1,2,..,n

and for some t; = t, = 0

atity +a;y(t —t,)—a,_, =20,  j=12,...k

and

agtit, +a;4(t —t;)—a,_, =0, j=k+1K+2 ..n

With a_; = 0, then the number of zeros of p(z) in |Iz| < t,/2 does not exceed

1+

la .
log2 g agt;

Where
M, = a,tit, + ap_qtf +a,t7" —a,tt, —a,_,t7.

Lemma

For the proof of some of these results we need the following lemma (see page 171 of second
edition) [11].
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Lemma 1: Let f(z) be regular and |f(z)}| = M, in the circle |z| = R and suppose that

F(0) #+ 0, then the number of zeros of f(z) in the circle |z| = %R does not exceed

1 1 M
(n] .
log2 CIf(0)]

Proof of the Theorems:

Proof of Theorem 1. Consider the polynomial

F(z) = (t—2)p(z)

=(t—z)(ayg+taz+-+a,_z" 4+ a,z")

= —a,z"" +tay, + ¢(2)
(3.1)

where
#(2) =) (ta,— a1)7
=1

Therefore for |z| < t, we have

3
|(;J(Z:]| = Z|tﬂ'j - ﬂ’_:l'—1|ti
=1

= |ta; — aylt + lta, — a4lt* + -+ |ta, —a,_,|t"
=t"*lg, —ta,
Since @(0) = 0, therefore by Schwartz Lemma,
lo(z)| = (t"a, — ap)|z| for|z] <t.
Now from (3.1), we have for |z| < t,
IF(2)| < la,[t" + tlagl + |@(2)]

<a,t" 1+ tay +t"a, —ta,
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= 2a,t"*!

Since |F(z)| < 2a,t™? for |z| <t and F(0) = a,t # 0, therefore by Lemma 1 it follows
that the number of zeros of F(z) (hence of p) in |z| = t/2 does not exceed

1 2a t"?

lo
log2 & agt

Proof of Theorem 2: Consider the polynomial
F(z) = (t; + 2)(t; — 2)p(2)
={ts1t; + (t; —t)z —z%}(ap + a;z + @z" + -+ a,2")

=—a,z"? +{a,(t; —t,) —a, 432" + apt t, + @(z)
(3.2)

where

n

@(z) = Z(tlrzﬂj +(t — tz]ﬂj—l - aj_z)zj.

j=1

Since a;t,t, + a;_,(t; — t,) — a;_, = 0,j = 1,2, ...,n, therefore for |z| < t,, we have
n
le(z)] = Z |t2ﬂ_;' +(ty — tzjﬂj—i - ﬂj—z“i'
=1

= laytyt, + (8, — ty)aglty + laytsty, + (8 — ty)ay — aplt +--
+la,tit, + (¢ —t)a,_y —a, ,|t]
=(aytyt, + (8 — t)ag) ty + (astyty + (8 — ty)ay —ap) tf +--
+(a,tyt, +(t; —t,)a, y —a,_,) th
=t a,t, +a,_,) — aytyt,

Since @(0) = 0, therefore by Schwartz Lemma
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le(z)| = (tTa,t, +tla, ; —agty)lzl for |zl <t
Now from (3.2), we have for |z| < t,,

IF(z)| = |ﬂnzﬂ+2| + |{a~n{t1 - tz] - an—l}zﬂﬂl + |aut1t2.| + | @(z)|

_ +2 +1 +1
=a,t; ~+ {ﬂn(tl - tz] - an—1}tr' +agtyt, +t7 (ﬂntz + a’n—l] — Qglyts
= 2a,t7*?,

Since |F(z)| < 2a,t7*? for |z| < t; and F(0) = a,t,t,, therefore by Lemma 1 it follows

that the number of zeros of F(z) (hence of p) in |z| = ;—1 does not exceed

1 2a,t7*?

o .
log2 g agtyt,

Which proves Theorem 2.

Proof of Theorem 3: Consider the polynomial
F(z)= (t, + z)(t; — z)p(2)
={t,t, +(t; —t;)z—z*Hay + ayz+ a,z" + -+ a,z"}

=—az" +{a (t,—t,) —a,_, 12" +a,t,t, + o(z)
(3.3)

where
n
¢(z) = Z(tlrza’j +(t —t)a;y —a; )z,
i=1
Since aityt, +a;_4(t; —t;) —a;,_, =20,j=12,..,k and

ajtit, +a;,_4(t; —t,) —a;,_, =0 for j=k+1Lk+2,..,n therefore for [z] <t;, we

have
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le(z)]| = Z|t1t:ﬂj +(ty —t)a;y —a;_, t; + Z |1.‘11_“2 a; + (t; —t)a;_y —a;_, t.

j=1 T+l
= la,t ty + (t; —t)aglt, +laytyt, + (¢, —t;)a; —aylt] + -
Hlaytyty, + (8 — ty)ap_y — Qs |tF + lag, tit, + (8 — t)a, — ap_ [tFF 14 -
+Haptit, + (8 —ty)a, 3 —a,_,|t]

=(a,tyt, + (t; — t)a,) t, + (astyt, + (ty — t)a, —ay) t2 + -

Hagt ity + (8 — t)a g — ;) t] — (Qpagtsty + (8 — ty)a, —ap It —
w—(aptyty + (8 —t)a, ; —a, 5) tf
= —ayt,t, + 2a,tF 1, + 2a,  tFT1—a tPF, —a 7L
Since @(0) = 0, therefore by Schwartz Lemma
| p(2)] < |—agt, + 2a,tht, + 2a,_ t¥ —a,tPt, —a,_,t7|lz] for |z|l <t,.
Hence from (3.3), we have for |z| < t,,
|F(z)| = |ﬂ’n|tf+2 + |ﬂ':—:[:t1 - t::] - r:"';~:—1|‘-L:?LH:L + |aut1t2| + le(2)|
= 2a, t§ 1, + 2a,_ t5 4 2a,t77? — 2a,t71 M, — 2a,_4t7F = M(say).

Since |F(z)| < M for |z| < t; and F(0) = a,t,t, = 0, therefore by Lemma 1, it follows

E,

that the number of zeros of F(z)(hence of p) in |z] < - does not exceed

1 ] M
o »
log2 g agtyts

This completes proof of Theorem 3.
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