
 

479 | P a g e  

 

         IMPLEMENTATION OF COMPUTATION-IN-

MEMORY PARALLEL ADDER 

 
1
Ms. K.Jeyabala, 

2
Dr. P.Ramesh Kumar, 

 
1
 PG Scholar, ME VLSI design,  

Sengunthar Engineering College, Tiruchengode, Tamilnadu.(India) 

2
 Professor, Department of ECE,  

Sengunthar Engineering College, Tiruchengode,Tamilnadu(India) 

 

ABSTRACT 
 

Computation-In-Memory (CIM) architecture, based on the integration of storage and computation in the same 

physical location using non-volatile memristor technology offers a potential solution for the memory bottleneck. 

A Computation-In-Memory (CIM) based parallel adder and showed its potentials and superiority for intensive 

computing and massive parallelism by comparing it with state-of-the-art computing systems including 

multicore, GPU and FPGA architecture. The results show that Computation-In-Memory (CIM) based parallel 

adder can achieve at least two orders of magnitude improvement in computational efficiency, energy efficiency, 

and area efficiency. Computation-in-memory (CIM) is a novel architecture that tries to solve/alleviate the 

impact of these challenges using the same device (i.e., the memristor) to implement the processor and memory 

in the same physical crossbar. To analyze its feasibility in depth, this paper proposes two memristor 

implementations of a data-intensive arithmetic application (i.e., parallel addition). To the best of our 

knowledge, this is the first paper that considers the cost of the entire architecture including both crossbar and 

its CMOS controller. The results show that CIM architecture in general and the CIM parallel adder, in 

particular, have a high scalability. CIM parallel adder achieves at least two orders of magnitude improvement 

in energy and area in comparison with a multicore-based parallel adder. Moreover, due to a full Variety of 

memristor design methods tradeoffs can be made between the city, delay, and energy consumption.      

Key Words: Computation-In-Memory (CIM), Implication Logic, Memristor, The Parallel Adder. 
 

I.INTRODUCTION 
 

Computation-In-Memory (CIM) to design a parallel adder and illustrate the massive potential of such an 

architecture for a simple case study intensive arithmetic operations (additions). The structure uses a 

revolutionary approach based on the integration of storage and computation in the same physical location, and 

non-volatile memristor technology. It is worth noting that combining multiple numbers is a basic yet very 

representative operation in essential data applications. In architectures (e.g., multicore, GPU, and FPGA), 

simple actions such as adding multiple numbers already face the memory bottleneck. As the processors have to 

fetch vast amounts of data from memory, the intrinsic parallelism cannot be exploited fully in such 

architectures.  The CMOS technology is reaching its physical –if not economical- limits. Down-scaling devices 



 

480 | P a g e  

 

have led to many challenges such as leakage power, reliability, fabrication process and turnaround time, test 

complexity, cost for mask and design, and yield. Furthermore, the performance gain by increasing clock speed 

has saturated since early today, speed-up is no longer the result of a faster clock, but rather an effect of 

parallelization on multi-core and many-core systems. 

 

The number of parallel cores that can be programmed  
 

And the computation efficiency that can be extracted is tending to saturate as well. Apparently, all today's 

computing systems are mainly built on John von Neumann stored-program computer concept. All of these 

motivate the need for a new architecture being able to eliminate the communication bottleneck and support 

massive parallelism to increase the overall performance, reduce the energy inefficiency to improve the 

computation efficiency.  Logic-In-Memory (LIM) was initially introduced as a memory accelerator, i.e., add 

some processing units   To alleviate the memory bottleneck and provide practical and efficient solutions for 

data-intensive applications, many architectural solutions have been proposed. 

 

The processor-in-memory (PIM) was introduced as an architecture that consists of a host CPU, main memory, 

and a number of accelerators close to the main memory to prevent intensive communication with the However, 

the effectiveness of this architecture strongly depends on the technology to fabricate the accelerators and 

foremost minds, which is called merged-logic Unfortunately, this merged technique still suffers from a high cost 

and low density. Second, near data architectures, the emerging non-volatile memory technology, either using 

traditional processor approach or using novel neural computing approach. Note that all efforts above both at 

architectural and technology level tried to close the gap between processor and memory speed. Stored-

program/von Neumann concept, the computation is still carried out in a separate physical unit. Therefore, the 

memory bottleneck is still affecting the computer performance and energy.Third, as a result of this resistive 

computing architectures were introduced to alleviate the memory bottleneck using memristor technology. 

Although the memristor technology is not mature yet, several publications focused on the design of circuits and 

architectures such as programmable logic-in-memory architecture; resistive GP-SIMD is processing-in memory 

architecture and computation-in-memory (CIM) computing paradigm. However, these works mostly focus on 

the memristor part. They ignore the controlling and peripheral circuit overheads. Du Nguyen et al. have 

analyzed the performance of a parallel memristor adder based on the crossbar (i.e., a snake that takes the sum of 

multiple inputs and produces a single output) using the CIM computing paradigm. 

The adder outperforms state-of-the-art multicore, GPUs, and memristor implementations with two orders of 

magnitude. All the adder implementations were based on high-level assumptions. The feasibility of 

implementing two different parallel adders in the memristor crossbar, i.e., one based on implication logic and 

one on Boolean logic. To the best of our knowledge, this is the first publication that considers the cost of the 

entire system (i.e., the crossbar and CMOS controller). The delay, area and energy costs of the CMOS 

controller, peripheral circuits (required to read and write to the crossbar), and the crossbar itself are analyzed. 

Also, we evaluate the scalability of the parallel adder for both implementations the rest of this paper is 

structured as follows. The crossbar is specialized to perform computation and storage operations in cells 



 

481 | P a g e  

 

organized in rows and columns. Each cell can be a computational unit (such as an adder or multiplier) or storage 

location (such as a memory cell). The cells in a row or column can be configured with the same or different 

functionality. The communication in CIM architecture has maximum flexibility. The structure allows bi-

directional communication in both horizontal and vertical direction. The controller contains a router and a finite 

state machine (FSM). The router provides the FSM with a communication scheme for data distribution and 

movements. The FSM fetches instructions from an instruction memory (e.g., hard disk), converts brought 

instructions to control signals for the row/column voltage controller.   

II  LITERATURE REVIEW 

 

The low complexity design of weighted modulo Parallel adder, derived by decomposition of parallel-prefix 

computation into several blocks of smaller input bit-widths. Besides, we have proposed a novel enhanced 

circular carry generation unit to process the carry-bits produced by all the parallel prefix computation units (of 

small input bit-widths) to obtain the final modulo sum efficiently regarding area-delay product. We have 

implemented the CMOS technology, and from the synthesis results, we find that our proposed adder 

outperforms the previously reported weighted modulo parallel adder. A low-complexity design of weighted 

modulo parallels adder decomposition of the n-bit parallel prefix computation of the summation stage into 

several blocks of parallel-prefix calculation with fewer input bit-widths. Moreover, using a novel circular carry 

generation scheme, we have derived the final modulo sum efficiently by a shorter combinational path. The 

saving of area-delay product by the proposed method is due to the significant reduction of the number of 

carrying nodes resulting from the decomposition of parallel-prefix computation, and modification of a 

combinational path by the proposed circular carry generation scheme. Conventional radix-based number 

systems mainly for the implementation of arithmetic operations on large integers. The that various arithmetic 

operations, e.g., the addition, subtraction, and multiplication can be performed without carrying propagation in 

residue representation. 

    

 

III. PROPOSED  SYSTEM 
 

Computation-In-Memory (CIM) developed to design a parallel adder and illustrate the massive potential of such 

architecture for a simple case study: intensive arithmetic operations (additions). The structure uses a 

revolutionary approach based on the integration of storage and computation in the same physical location, and 

non-volatile memristor technology. It is worth noting that adding multiple numbers is a basic yet very 

representative operation it has essential data applications. In architectures (e.g., multicore, GPU, and FPGA), 

simple actions such as adding multiple numbers already face the memory bottleneck. As the processors have to 

fetch vast amounts of data from memory, the intrinsic parallelism cannot be exploited fully in such 

architectures. The challenges using the same device (i.e., the memristor) to implement the processor and 

memory in the same physical crossbar. The memristor implementations of a data-intensive arithmetic 

application (i.e., parallel addition). That considers the cost of the entire architecture including both crossbar and 

its CMOS controller. The results show that CIM architecture in general and the CIM parallel adder, in 



 

482 | P a g e  

 

particular, have a high scalability. CIM parallel adder achieves at least two orders of magnitude improvement in 

energy and area in comparison with a multicore-based parallel adder. Moreover, due to a wide variety of 

memristor design methods (such as Boolean logic), tradeoffs can be made between.                                                      

 

 

          

 

 

 

 

 

 

 

 

Figure.1 Proposed Circuit diagram 

 

3.1 Computation In Memory 
 

One of the most critical challenges for today's and future data-intensive and significant data problems (ranging 

from economics and business activities to public administration, from national security to many scientific 

research areas) is data storage and analysis. The primary goal is to increase the understanding of processes by 

extracting highly useful values hidden in the vast volumes of data. The increase of the data size has already 

surpassed the capabilities of today's computation architectures which suffer from the limited bandwidth (due to 

communication and memory-access bottlenecks), energy inefficiency and limited scalability (due to CMOS 

technology). The basic computational unit is an n-bit adder, which is surrounded by some memory cells 

(latches). An n-bit adder contains three n-bit latches two for the inputs and one for the sum, a 1-bit carry-in and 

a 1-bit carry-out latch. The computation in-parallel memory adder arranges multiple computations in memory 

adders in a binary tree network. The carry-in and carry-out registers of an adder are correctly connected to 

generate correct addition results. 

 

3.2 Controller 
 

The crossbar is specialized to perform computation and storage operations in cells organized in rows and 

columns. Each cell can be a computational unit (such as an adder or multiplier) or storage location (such as a 

memory cell).  The communication in CIM architecture has maximum flexibility. The structure allows bi-

directional communication in both horizontal and vertical direction. The controller contains a router and a finite 

state machine (FSM). The router provides the FSM with a communication scheme for data distribution and 

movements. The FSM fetches instructions from an instruction memory (e.g., hard disk), converts brought 

instructions to control signals for the row/column voltage controller. 

 

 3.3 Memristor 
 

A fourth device existed to provide conceptual symmetry with the resistor, inductor, and capacitor. This equality 

follows from the description of essential passive circuit elements as defined by a relation between two of the 



 

483 | P a g e  

 

four fundamental circuit variables. A device was linking charge and flux (themselves defined as time integrals 

of current and voltage), which would be the memristor, was still hypothetical at the time.The discovery of a 

switching memristor. Based on a thin film of titanium dioxide, it has been presented as an approximately ideal 

device. The reason that the memristor is radically different from the other fundamental circuit elements is that, 

unlike them, it carries a memory of its past. When you turn off the voltage to the circuit, the memristor still 

remembers how much was applied before and for how long. That's an effect that can't be duplicated by any 

circuit combination of resistors, capacitors, and inductors, which is why the memristor qualifies as a 

fundamental circuit element. 

 

3.4  Need for Memristor 
 

A memristor is one of four essential electrical circuit components, joining the resistor, capacitor, and inductor. 

The memristor, short for "memory resistor" was first theorized by student Leon Chua in the early 1970s. He 

developed mathematical equations to represent the memristor, which Chua believed would balance the functions 

of the other three types of circuit elements.The known three fundamental circuit elements as the resistor, 

capacitor, and inductor relate four underlying circuit variables as electric current, voltage, charge and magnetic 

flux. In that, we were missing one to compare the cost of magnetic flux. That is where the need for the fourth 

fundamental element comes in. This feature has been named as the memristor.  

 

The Memristance (Memory + Resistance) is a property of an Electrical Component that describes the variation 

in Resistance of a component with the flow of charge. Any two-terminal electrical element that exhibits 

Memristance is known as a Memristor. Memristance is becoming more relevant and necessary as we approach 

smaller circuits, and at some point when we scale into nanoelectronics, we would have to take memristance into 

account in our circuit models to simulate and design electronic circuits properly.  An ideal memristor is 

a passive two-terminal electronic device that is built to express only the property of memristance (just as a 

resistor expresses resistance and an inductor expresses inductance). The water itself is analogous to electrical 

charge, the pressure at the input of the pipe is similar to voltage, and the rate of flow of the water through the 

tube is like an electrical current.   

 

3.5 Single Computation In Memory Parallel Adder 
 

The parallel processing is continually concerned about how to supply all the processing nodes with data. Many 

of the applications favor particular data patterns that could be accessed in parallel. This is utilized in parallel 

memories, where the idea is to increase memory bandwidth with several memory modules working in parallel 

and feed the processor with only necessary data. Traditional identical memories are application specific and 

support just fixed data access requirements. In this Thesis, memory flexibility is increased to give support for 

several algorithms by adding run-time configurability to parallel memories. The multitude of data access 

templates and module assignment functions can be used within a single hardware implementation, which has not 

been possible in prior embedded parallel memory systems. The design reusability of the memories is also 



 

484 | P a g e  

 

improved since the same memory system is applicable in several separate implementations. 

Three novel parallel memory architectures are presented in this Thesis: one traditional application specific type 

and two with run-time configurability. The results show that runtime configurability can be included in parallel 

memories with a reasonable cost. As a case study with four memory modules, the normalized complexity of the 

proposed configurable identical memories is 63–80% less than the conventional type of parallel memory. 

Moreover, in configurable parallel minds, the complexity increase in permutation networks is expressed to 

become the most critical when increasing the memory module count. According to evaluations, up to 79% of the 

total parallel memory gate count is consumed by the permutation networks excluding memory cells. 

 

3.6 Parallel Memory Principles 
 

A generalized block diagram of parallel memory architecture is depicted in the function is an Address 

Computation unit, N memory modules S0, S1… SN-1 and a Data Permutation unit. Depending on the access 

format F and the location of the first element (scanning point) r, the Address Computation unit computes the 

addresses and directs them to the appropriate memory modules. The Data Permutation unit organizes the data 

into correct order specified by the access format and Scanning point. 

 

3.7 Memory system classification 
 

The memory system classification on interleaved and parallel memory architecture used in this Thesis. Both 

memory configurations utilize N memory modules S0, S1… SN-1 was working in parallel. Moreover, M 

processing elements PE0, PE1… PEM-1 are being used with parallel memories (M ≤ N). Interleaved memories 

use time-multiplexed identical memory modules that receive access requests serially one by one. Traditionally, 

vector computers utilize interleaved memories. Respectively, parallel memories are defined as space-

multiplexed memories that are used, for example, in SIMD processing. Identical memories have the full address 

and data buses, and the memory modules receive access requests in parallel. In some multifactor 

supercomputers, a memory system with plenty of memory modules may be arranged in both space- and time- 

multiplexed manner. This Thesis concentrates on parallel memories. 

 

 

 

 

 

 

 

 

 

 

Figure.2 A generalized block diagram of a parallel memory architecture 

Address Computation 
 

S0 S1 Sn-

1 

Data Permutation 
 



 

485 | P a g e  

 

 

 

 

3.8  Simulation Results 
 

ModelSim PE, our entry-level simulator, offers VHDL, Verilog, or mixed-language simulation. Coupled with 

the most popular HDL debugging capabilities in the industry, ModelSim PE is known for delivering high 

performance, ease of use, and outstanding product support. Model Technology’s award-winning Single Kernel 

Simulation (SKS) technology enables transparent mixing of VHDL and Verilog in one design.   ModelSim's 

architecture allows platform independent compile with the outstanding performance of the native compiled 

code. An easy-to-use graphical user interface enables you to quickly identify and debug problems, aided by 

dynamically updated windows. For example, selecting a design region in the Structure window automatically 

updates the Source, Signals, Process, and Variables windows. These cross-linked ModelSim windows create a 

powerful easy-to-use debug environment. Once a problem is found, you can edit, recompile, and re-simulate 

without leaving the simulator. ModelSim PE fully supports the VHDL and Verilog language standards. 

ModelSim PE also endorses all ASIC and FPGA libraries, ensuring accurate timing simulations.  

 

 
 

Figure.3  output waveform for 25% duty cycle 
 

 
 

Figure.4  output waveform for duty cycle 

 



 

486 | P a g e  

 

IV . CONCLUSION 
 

The Computation-In-Memory (CIM)-based parallel adder and estimated its performance. Despite the simplicity 

of the case study, the results show that CIM architecture has an enormous potential and orders of magnitude 

improvements. This is mainly due to reducing/eliminating memory accesses, using the non-volatile technology, 

and exploiting the high level of parallelism. CIM architecture seems to be very promising and could enable 

computation of current infeasible finally, it has significant data applications, fuelling critical societal changes. 

 

REFERENCES  
 

[1] H. Esmaeilzadeh et al., “Dark silicon and the end of multicore scaling,” SIGARCH Comput. Archit. News, 

vol. 39, pp. 365–376, 2011. 

[2] S. Borkar, “Design challenges of technology scaling,” IEEE MICRO, vol. 19, pp. 23–29, Jul 1999.  

[3] J. W. McPherson, “Reliability trends with advanced CMOS scaling and the implications for design,” in 

IEEE CICC, 2007, pp. 405–412. 

[4] S. Borkar, “Design perspectives on 22nm CMOS and beyond,” in DAC. ACM, 2009, p. 9394. 

[5] G. Declerck, “A look into the future of nanoelectronics,” in Symposium on VLSI Technology, Digest of 

Technical Papers, 2005, pp. 6–10.  

[6] G. Gielen et al., "Emerging yield and reliability challenges in nanometer CMOS technologies," to DATE. 

ACM, 2008, p. 13221327.   

[7] S. Kaxiras, Architecture at the End of Moore, ser. Advances in Atom and Single Molecule Machines. 

Springer Berlin Heidelberg, 2013, pp. 1–10. 

[8] J. W. Janneck, “Computing in the age of parallelism: Challenges and opportunities,” Keynote talk, 2013. 

[9] A. W. Burks et al., Preliminary discussion of the logical design of an electronic computing instrument 

(1946). Ablex Publishing Corp., 1989, pp. 39–48.  

[10] S. A. McKee, “Reflections on the memory wall,” in CF. ACM, 2004.  

[11] W. H. Kautz, “Cellular logic-in-memory arrays,” IEEE Transactions on Computers, vol. C-18, pp. 719–

727, 1969.  

[12] D. G. Elliott et al., “Computational RAM: implementing processors in memory,” IEEE Design Test of 

Computers, vol. 16, pp. 32–41, 1999. 

[13] P. M. Kogge et al., “Pursuing a petaflop: point designs for 100 TF computers using PIM technologies,” in 

Symposium on the Frontiers of Massively Parallel Computing, 1996, pp. 88–97.  

[14] D. Keitel-Schulz and N. Wehn, “Embedded DRAM development: Technology, physical design, and 

application issues,” IEEE Des. Test, vol. 18, pp. 7–15, 2001. 

[15] P. M. Kogge, “EXECUBE-a new architecture for scaleable mpps,” in ICPP, vol. 1, 1994, pp. 77–84.  

[16] D. Patterson et al., “A case for intelligent RAM,” IEEE Micro, vol. 17, pp. 34–44, 1997. 

[17] Y. Kang et al., “FlexRAM: Toward an advanced intelligent memory system,” in ICCD, pp. 5–14.  

[18] J. Draper et al., “The architecture of the diva processing-in-memory chip,” in ICS. ACM, pp. 14–25.  

[19] T. L. Sterling and H. P. Zima, “Gilgamesh: A multithreaded processor in-memory architecture for petaflops 



 

487 | P a g e  

 

computing,” in Supercomputing Conference, pp. 48–48.  

[20] N. Venkateswaran et al., "Memory Processor: A novel design paradigm for supercomputing architectures," 

ser. MEDEA '03. New York, NY, USA: ACM, pp. 19–26.   

[21] E. Upchurch et al., “Analysis and modeling of advanced PIM architecture design tradeoffs,” in Innovative 

Architecture for Future Generation High-Performance Processors and Systems, 2003, pp. 66–75.  

[22] S. Hamdioui et al., "Memristor-based Computation-in-Memory architecture for data-intensive 

applications," to DATE, 2015.  

[23] L. O. Chua, “The fourth element,” JPROC, vol. 100, pp. 1920–1927, 2012.  

[24] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs. Oxford University Press, 2000.  

[25] A. Siemon et al., “A complementary resistive switch-based crossbar array adder,” IEEE JETCAS, 2014.  

[26] A. A. El-Slehdar et al., "Memristor-based N-bits redundant binary adder," Microelectronics Journal, vol. 

46, pp. 207–213, 2015.  

[27] “The international technology roadmap for semiconductors ITRS,” 2011.  

[28] C. Meinhardt and R. Reis, “FinFET basic cells evaluation for regular layouts,” in IEEE LASCAS, 2013, pp. 

1–4.  

[29] A. Muttreja et al., “CMOS logic design with independent-gate FinFETs,” in ICCD, 2007, pp. 560–567. 

 

 

 

 

 

 

 


