

53 | P a g e

SOFTWARE DEFINED NETWORKS - A SURVEY

Dr.B.Sujatha, Mr.K.Ashokkumar
2

1
Professor/CSE, Sengunthar Engineering College

2
Associate Professor/CSE, Sengunthar Engineering College

ABSTRACT

The plan of “Programmable Network” has been projected as a way to facilitate network evolution. The

emergence of Software-Defined Networking (SDN) has played a significant role in designing and managing

networks. Software-Defined Networking is an architecture that allows network administrator can

programmatically initialize, change, control and manage the network’s behavior dynamically using open

protocols such as OpenFlow. There is a physical separation between network control planes from the

forwarding functions in SDN architecture. This paper presents the concept of SDN, comparison of SDN with

traditional networks, its architecture and its applications.

Keywords: Programmable Network, SDN, OpenFlow

I.INTRODUCTION

The imminent condition of rich multimedia contents and promising trends in ICT area [1], in particular, mobile,

social, cloud [2] and big data [3], [4], [5] are influencing computer networks for higher bandwidth, accessibility,

security and dynamic management. The increasing demand for big data analytics of a different kinds of data

sources, are demanding higher network connection speed than ever. Next, a wider usage of mobile devices and

social networks is demanding ubiquitous communications to fulfill the social needs of people. Social networks

have also experienced a dramatic growth in recent years like Facebook, twitter etc. Finally, Cloud computing

has more demands on the flexibility and agility of computer networks At the same time, with more computing

and storage resources placed remotely in the cloud, efficient access to these resources via a network is becoming

critical to fulfill today’s computing needs. IT industry has enjoyed innovation such as virtualization in

computing and storage. The end is nowhere; technology will continue to evolve in years to come. On the

contrary, networking has experienced limited innovation over the past 20 years. This stagnation has led to

overly complex and inflexible networks no longer meeting current business requirements. Today, business and

technical network requirements include enhancing performance and realizing broader connectivity. Companies

have to meet more and more industry-specific security regulations and there is a growing demand for mobility.

In order to comply with all of these criteria, networking protocols have evolved significantly over the last few

decades. However, the way traditional networks are set up; deploying one protocol to realize these needs

organization-wide is quite the challenge.

Traditional network configuration: (figure.1)

The traditional networking is characterized by two main factors:

1) Network functionality is mainly implemented in dedicated appliances, i.e. Switches and

54 | P a g e

 Routers.

2) Most functionality within this appliance is implemented in dedicated hardware.

Nowadays organizations are increasingly confronted with the following limitations while running their systems

in conventional networking:

1. Traditional networking is time-consuming and error-prone.

2. A high-level of expertise required for multi-vendor environments.

3. Traditional architectures complicate network segmentation.

To overcome this limitation, we can go for a new perspective on network management. The idea of

“programmable networks” [6] has been introduced to facilitate network evolution. Software Defined

Networking (SDN) is a new networking paradigm in which the forwarding functions are decoupled from

control decisions. It simplifies network management and enables innovation and evolution. The main idea is

to allow software developers to rely on network resources in the same easy manner as they do on

storage and computing resources. In SDN, the network intelligence is logically centralized in software-based

controllers (the control plane), and network devices become simple packet forwarding devices (the data plane)

that can be programmed via an open interface (e.g. OpenFlow).

55 | P a g e

II. SOFTWARE DEFINING NETWORK

Data communication networks typically consist of end-user devices, or hosts interconnected by the

network infrastructure. This infrastructure is shared by hosts and employs switching elements such as

routers and switches as well as communication links to carry data between hosts. Routers and switches are

usually “closed” systems, often with limited-and vendor-specific control interfaces. Therefore, once

deployed and in production, it is quite difficult for current network infrastructure to evolve.

Software-Defined Networking was developed to facilitate innovation and enable simple programmatic

control of the network data-path. The separation of the forwarding hardware from the control logic allows

easier deployment of new protocols and applications, straightforward network visualization and management,

and consolidation of various middleboxes into software control.

Definition of SDN:

Software-Defined Networking (SDN) is an emerging architecture that is dynamic, manageable, cost-effective,

and adaptable, making it ideal for the high-bandwidth, dynamic nature of today’s applications. This architecture

decouples the network control and forwarding functions, enabling network control to become directly

programmable and the underlying infrastructure to be abstracted from applications and network services. [7]

SDN is defined by two characteristics, namely decoupling of control and data planes, and programmability on

the control plane. Decoupling these two planes involves leaving the data plane with network hardware and

moving the control plane into a software layer. By abstracting the network from the hardware, policies no longer

have to be executed on the hardware itself. Instead, the use of a centralized software application functioning as

the control plane makes network virtualization possible.

The OpenFlow protocol can be used in SDN technologies. The SDN architecture is:

Directly programmable: Network control is directly programmable because it is decoupled from forwarding

functions.

Agile: Abstracting control from forwarding lets administrators dynamically adjust network-wide traffic flow to

meet changing needs.

Centrally managed: Network intelligence is (logically) centralized in software-based SDN controllers that

maintain a global view of the network, which appears to applications and policy engines as a single, logical

switch.

Programmatically configured: SDN lets network managers configure, manage, secure, and optimize network

resources very quickly via dynamic, automated SDN programs, which they can write themselves because the

programs do not depend on proprietary software.

Open standards-based and vendor-neutral: When implemented through open standards, SDN simplifies

network design and operation because instructions are provided by SDN controllers instead of multiple, vendor-

specific devices and protocols.

56 | P a g e

III. THE NEED FOR A NEW NETWORK PARADIGM

Changing traffic patterns:

Within the enterprise data center, traffic patterns have changed significantly. In contrast to client-server

applications where the bulk of the communication occurs between one client and one server, today's applications

access different databases and servers, creating a flurry of "east-west" machine-to-machine traffic before

returning data to the end user device in the classic "north-south" traffic pattern. At the same time, users are

changing network traffic patterns as they push for access to corporate content and applications from any type of

device (including their own), connecting from anywhere, at any time. Finally, many enterprise data centers

managers are contemplating a utility computing model, which might include a private cloud, public cloud, or

some mix of both, resulting in additional traffic across the wide area network.

The "consumerization of IT":

Users are increasingly employing mobile personal devices such as smartphones, tablets, and notebooks to access

the corporate network. IT is under pressure to accommodate these personal devices in a fine-grained manner

while protecting corporate data and intellectual property and meeting compliance mandates.

The rise of cloud services:

Enterprises have enthusiastically embraced both public and private cloud services, resulting in unprecedented

growth of these services. Enterprise business units now want the agility to access applications, infrastructure,

and other IT resources on demand and à la carte. To add to the complexity, IT's planning for cloud services must

be done in an environment of increased security, compliance, and auditing requirements, along with business

reorganizations, consolidations, and mergers that can change assumptions overnight. Providing self-service

provisioning, whether in a private or public cloud, requires elastic scaling of computing, storage, and network

resources, ideally from a common viewpoint and with a common suite of tools.

"Big data" means more bandwidth:

Handling today's "big data" or mega datasets requires massive parallel processing on thousands of servers, all of

which need direct connections to each other. The rise of mega datasets is fueling a constant demand for

additional network capacity in the data center. Operators of hyperscale data center networks face the daunting

task of scaling the network to previously unimaginable size, maintaining any-to-any connectivity without going

broke.

57 | P a g e

IV. ARCHITECTURAL COMPONENTS

The following figure depicts the architectural components of SDN.

A high-level overview of the software-defined networking architecture

SDN Application:

SDN Applications are programs that explicitly, directly, and programmatically communicate their network

requirements and desired network behavior to the SDN Controller via a northbound interface (NBI). An SDN

Application consists of one SDN Application Logic and one or more NBI Drivers.

SDN Controller:

The SDN Controller is a logically centralized entity in charge of (i) translating the requirements from the SDN

Application layer down to the SDN Datapaths and (ii) providing the SDN Applications with an abstract view of

the network (which may include statistics and events). An SDN Controller consists of one or more NBI Agents,

the SDN Control Logic, and the Control to Data-Plane Interface (CDPI) driver.

SDN Datapath:

The SDN Datapath is a logical network device that exposes visibility and uncontested control over its advertised

forwarding and data processing capabilities. The logical representation may encompass all or a subset of the

physical substrate resources. An SDN Datapath comprises a CDPI agent and a set of one or more traffic

forwarding engines and zero or more traffic processing functions. These engines and functions may include

58 | P a g e

simple forwarding between the datapath's external interfaces or internal traffic processing or termination

functions.

SDN Control to Data-Plane Interface (CDPI):

The SDN CDPI is the interface defined between an SDN Controller and an SDN Datapath, which provides at

least (i) programmatic control of all forwarding operations, (ii) capabilities advertisement, (iii) statistics

reporting, and (iv) event notification. One value of SDN lies in the expectation that the CDPI is implemented in

an open, vendor-neutral and interoperable way.

SDN Northbound Interfaces (NBI):

SDN NBIs are interfaces between SDN Applications and SDN Controllers and typically provide abstract

network views and enable direct expression of network behavior and requirements. This may occur at any level

of abstraction (latitude) and across different sets of functionality (longitude).

SDN Control Plane:

Centralized - Hierarchical – Distributed:

The implementation of the SDN control plane can follow a centralized, hierarchical, or decentralized design.

Initial SDN control plane proposals focused on a centralized solution, where a single control entity has a global

view of the network. While this simplifies the implementation of the control logic, it has scalability limitations

as the size and dynamics of the network increase.

Controller Placement:

A key issue when designing a distributed SDN control plane is to decide on the number and placement of

control entities. An important parameter to consider while doing so is the propagation delay between the

controllers and the network devices, [9] especially in the context of large networks. Other objectives that have

been considered involve control path reliability [10] fault tolerance [11] and application requirements [12].

V. ADVANTAGES OF SDN:

Content Delivery:

Controlling data traffic is one of the primary advantages of software defined networking. The ability to direct

and automate data traffic makes implementing quality of services (QoS) for voice over IP (VOIP), video and

audio transmissions much easier. Software defined networking provides a seamless experience for end-users

streaming high quality audio and video.

Lessen Capital Expenditure:

By implementing software defined networking, enterprise businesses can easily optimize existing network

devices. Existing hardware can be repurposed to follow the instructions of a SDN controller, and more cost-

efficient hardware can be deployed with greater effect. For example, a “white box” switch can be made using

commoditized parts already owned by a business, preventing the purchase of proprietary switches.

http://www.fidelus.com/services-we-offer/professional-services/

59 | P a g e

Centralization:

Software defined networks offer a centralized view of an organizations entire network, making it easier to

streamline enterprise management and provisioning. As VLANs become a more prominent part of physical

LANs, the number of links and dependencies can easily create confusion. SDNs can speed service delivery and

provide more agility for both virtual and physical network provisioning, all from a central location.

Management:

In order to accommodate big data, enterprise businesses are constantly setting up new applications and virtual

machines to handle processing requests. By implementing SDN, IT teams are able to change network

configurations with no effect to the network. Additionally, SDN supports the management of physical and

virtual switches and network equipment from a single centralized controller, something that cannot be done

using simple network management protocol (SNMP).

VI. SDN DEVELOPMENT TOOLS

Here, we have listed commercial switches that are currently available, their manufacturer, and the version of

OpenFlow they implement

i. Switch Software and Stand-Alone OpenFlow Stacks:

Open vSwitch: Open vSwitch is an OpenFlow stack that is used both as a vswitch in virtualized environments

and has been ported to multiple hardware platforms. It is now part of the Linux kernel. It is implemented in

C/Python.

OpenFlow Reference: The OpenFlow reference implementation is a minimal OpenFlow stack that tracks the

spec. It is implemented in C.

Pica8: An open switch software platform for hardware switching chips that includes an L2/L3 stack and support

for OpenFlow. It is implemented in C.

Indigo: Indigo is a for-hardware-switching OpenFlow implementation based on the Stanford reference

implementation. It is implemented in C.

Pantou: (C) Pontou is an OpenFlow port to the OpenWRT wireless environment.

OpenFaucet: (Python) OpenFaucet is a pure Python implementation of the OpenFlow 1.0.0 protocol, based on

Twisted. OpenFaucet can be used to implement both switches and controllers in Python. It is implemented in

Python.

OpenFlowJ: OpenFlow stack written in Java.

Oflib-node: Oflib-node is an OpenFlow protocol library for Node. It converts between OpenFlow wire protocol

messages and Javascript objects.

ii. Controller Platforms:

POX: Pox as a general SDN controller that supports OpenFlow. It has a high-level SDN API including a

queriable topology graph and support for virtualization. It is implemented in Python.

http://www.fidelus.com/services-we-offer/professional-services/
http://www.fidelus.com/services-we-offer/professional-services/
http://vswitch.org/
http://www.openflow.org/wp/downloads/
http://www.pica8.org/solutions/new-software.php
http://www.openflowhub.org/display/Indigo/Indigo+-+OpenFlow+for+Hardware+Switches
http://www.openflow.org/wk/index.php/OpenFlow_1.0_for_OpenWRT
https://github.com/midokura/openfaucet
https://openflow.stanford.edu/fisheye/browse/OpenFlowJ
https://github.com/TrafficLab/oflib-node
http://www.noxrepo.org/support/about-pox/

60 | P a g e

IRIS: A Resursive SDN Openflow Controller created by IRIS Research Team of ETRI. Our vision was to create

an SDN controller platform with the following features: (a) Horizontal Scalability for carrier-grade network (b)

High Availability with transparent failover from failure (c) Multi-domain support with recursive network

abstraction based on Openflow. It is implemented in Java.

MUL: MūL, is an openflow (SDN) controller. It has a C based multi-threaded infrastructure at its core. It

supports a multi-level north bound interface for hooking up applications. It is designed for performance and

reliability which is the need of the hour for deployment in mission-critical networks. It is implemented in C.

NOX: NOX was the first OpenFlow controller. It is implemented in C++/Python.

Jaxon: Jaxon is a NOX-dependent Java-based OpenFlow Controller. It is implemented in Java.

Trema: Trema is a full-stack framework for developing OpenFlow controllers in Ruby and C.

Beacon: Beacon is a Java-based controller that supports both event-based and threaded operation.

Floodlight: The Floodlight controller is Java-based OpenFlow Controller. It was forked from the Beacon

controller, originally developed by David Erickson at Stanford.

Maestro: Maestro is an OpenFlow "operating system" for orchestrating network control applications.

NDDI: OESS: OESS is an application to configure and control OpenFlow Enabled switches through a very

simple and user friendly User Interface.

Ryu: Ryu is an open-sourced Network Operating System (NOS) that supports OpenFlow. It is implemented in

Python.

iii. Special Purpose Controllers:

RouteFlow: RouteFlow is an open source project to provide virtualized IP routing services over OpenFlow

enabled hardware. RouteFlow is composed by an OpenFlow Controller application, an independent RouteFlow

Server, and a virtual network environment that reproduces the connectivity of a physical infrastructure and runs

IP routing engines (e.g. Quagga).

Flowvisor: FlowVisor is a special purpose OpenFlow controller that acts as a transparent proxy between

OpenFlow switches and multiple OpenFlow controllers.

Resonance: Resonance is a Network Access Control application built using NOX and OpenFlow.

Oflops: OFlops (OpenFLow Operations per Second) is a standalone controller that benchmarks various aspects

of an OpenFlow switch.

VII. APPLICATIONS

Software-defined networking has applications in a wide variety of networked environments. By decoupling the

control and data planes, programmable networks enable customized control, an opportunity to eliminate

middleboxes, as well as simplified development and deployment of new network services and protocols.

i. Cellular Networks:

Applying the SDN principles to cellular networks solve some of the deficiencies. First of all, decoupling the

control from the data plane and introducing a centralized controller that has a complete view of the whole

http://openiris.etri.re.kr/
http://sourceforge.net/projects/mul/
http://www.noxrepo.org/support/about-nox/
http://jaxon.onuos.org/
http://trema.github.com/trema/
https://openflow.stanford.edu/display/Beacon/Home
http://floodlight.openflowhub.org/
http://code.google.com/p/maestro-platform/
http://code.google.com/p/nddi/wiki/README
http://www.osrg.net/ryu/
http://sites.google.com/site/routeflow/
https://openflow.stanford.edu/display/DOCS/Flowvisor
http://www.openflow.org/wk/index.php/Oflops

61 | P a g e

network allows network equipment to become simpler and therefore reduces the overall infrastructural cost.

Also, operations like routing, real-time monitoring, mobility management, access control and policy

enforcement can be assigned to different cooperating controllers making the network more flexible and easier to

manage. In addition, using a centralized controller acting as an abstract base station simplifies the operations of

load and interference management, no longer requiring the direct communication and coordination of base

stations. Instead, the controller makes the decisions for the whole network and simply instructs the data plane

(i.e. the base stations) on how to operate. One final advantage is that the use of SDN eases the introduction of

virtual operators to the telecommunications market, leading to increased competitiveness.

ii. Data Center Networks:

One of the most important requirements for data center networks is to find ways to scale in order to support

hundreds of thousands of servers and millions of virtual machines. However, achieving such scalability can be a

challenging task from a network perspective. Initially, the size of forwarding tables increases along with the

number of servers, leading to a requirement for more sophisticated and expensive forwarding devices.

Moreover, traffic management and policy enforcement can become very important and critical issues, since

datacenters are expected to continuously achieve high levels of performance. Additionally, it becomes

increasingly difficult to make the data center operate at its full capacity, since it cannot dynamically adapt to the

application requirements. The advantages that SDN offers to network management come to fill these gaps. By

decoupling the control from the data plane, forwarding devices become much simpler and therefore cheaper. At

the same time all control logic is delegated to one logically centralized entity. This allows the dynamic

management of flows, the load balancing of traffic and the allocation of resources in a manner that best adjusts

the operation of the data center to the needs of running applications, which in turn leads to increased

performance [13]. Finally, placing middleboxes in the network is no longer required, since policy enforcement

can now be achieved through the controller entity.

iii. Enterprise Networks:

Enterprises often run large networks, while also having strict security and performance requirements.

Furthermore, different enterprise environments can have very different requirements, characteristics, and user

population. Adequate management is critically important in Enterprise environments, and SDN can be used to

programmatically enforce and adjust network policies as well as help monitor network activity and tune network

performance.

Additionally, SDN can be used to simplify the network

VIII.CONCLUSION

Recent developments in ICT domain, such as mobile, multimedia, cloud, and big data, are demanding for more

convenient Internet access, more bandwidth from users, as well as more dynamic management from service

providers. SDN is considered as a promising solution to meet these demands. In this paper, we have presented

the concept of SDN and highlighted benefits of SDN and its applications.

62 | P a g e

REFERENCES

[1] IDC Predictions 2013: Competing on the 3rd Platform, IDC, Framingham, MA, USA, Nov.

2012,WhitePaper.[Online].

Available:http://www.idc.com/research/Predictions13/downloadable/238044.pdf

[2] P.Mell and T. Grance, “The NIST definition of cloud computing (draft),”NIST Special Publication, vol. 800-

145, p. 7, 2011.

[3] J. Gantz and D. Reinsel, “Extracting value from chaos,” IDC, Framingham, MA, USA, White Paper, Jun.

2011. [Online]. Available:http://www.emc.com/collateral/analyst-reports/idc-extracting-valuefrom-chaos-

ar.pdf

[4] J. Manyika et al., “Big data: The next frontier for innovation, competition, and productivity,” McKinsey

Global Inst., Mumbai, India,pp. 1–137, 2011.

[5] P. Cesar and D. Geerts, “Past, present, and future of social TV: A categorization, “in Proc. IEEE CCNC,

2011, pp. 347–351.

[6] Marc Mendonca and Xuan-Nam Nguyen et al., “A Survey of Software-Defined Networking: Past, Present,

and Future of Programmable Networks”, Communications Surveys and Tutorials, IEEE

Communications Society, Institute of Electrical and Electronics Engineers, 2014, 16 (3), pp.1617-1634.

[7] “Software-Defined Networking[SDN] Definition” Opennetworking.org, Retrieved 26 October 2014.

[8] R. Ahmed, R. Boutaba, "Design considerations for managing wide area software defined networks,"

Communications Magazine, IEEE, vol. 52, no. 7, pp. 116–123, July 2014.

[9] B. Heller, R. Sherwood, and N. McKeown, “The Controller Placement Problem”, proceedings of

HotSDN’12, 2012.

[10] Y.N. Hu, W.D. Wang, X.Y. Gong, X.R. Que, S.D. Cheng, “On the placement of controllers in software-

defined networks”, Journal of China Universities of Posts and Telecommunications, vol. 19, Supplement 2,

pp. 92 – 171, 2012.

[11] F.J. Ros, P.M. Ruiz, “Five nines of southbound reliability in software defined networks”, proceedings of

HotSDN’14, 2014.

[12] D. Tuncer, M. Charalambides, S. Clayman, G. Pavlou, “On the Placement of Management and Control

Functionality in Software Defined Networks”, proceedings of 2nd IEEE International Workshop on

Management of SDN and NFV Systems (ManSDN/NFV), Barcelona, Spain, November 2015.

[13] Al-Fares, Mohammad, et al., "Hedera: Dynamic Flow Scheduling for Data Center Networks," 7
th

 USENIX

Symposium on Networked Systems Design & Implementation, 10 (2010): 19-34.

