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ABSTRACT 

The job-shop problem (JSP) is an optimization technique, in which ideal jobs are assigned to resources at 

particular times. Practical view of deterministic scheduling process is not valid for every process in 

practice. In present study, stability analysis has been performed and to test the suitable techniques of 

optimization which will be applicable for job-shop problem also discussed how parametric relation are 

affected for two jobs. Comparative study of some existing techniques with present study is also discussed 

in this paper. 

Keyword -   Comparative study, Job-shop problem, Optimization, Parametric- relation, Stability 
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I INTRODUCTION 

The problem under consideration is to minimize the value of the given desired function of completion times of n 

jobs J = {1, 2, …,n} processed on m machines N = {1, 2, …, m}. First, we assume that processing time tj,k of job j ∈ 

J on machine k ∈ N (i.e., processing time of operation Oj,k) is known before scheduling.  

Operation preemptions are not allowed. This problem is denoted as J||  where   desired objective function. Let Ci,k 

denote the completion time of the job in position i on machine k ∈ N. We assume that desired function  (C1,m, C2,m, 

…¸ Cn,m) is non-decreasing function of job completion times. Such a criterion is called regular. 

For the job-shop problem J |n=1|Cmax with two jobs and make span desired function Cmax = max{C1,m, C2,m, 

…,Cn,m}, the geometric algorithm was proposed by Akers and Friedman [1] and developed by Brucker [2], Szwarc 

[7], Hardgrave and Nemhauser [4]. Sotskov [5] generalized the geometric algorithm for the problem J|n=1|  with 

any given regular criterion. Sotskov [6] proven that both problems: 

 

                                                     J |n=1|Cmax and J |n=2|ΣCi,m                                                                                   (1) 

are binary NP-hard. Hereafter, the criterion Σ Ci,m means minimization of total completion time 

 

                                                                                                                                                                       2. 2.  
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II METHODOLOGY 

Describing geometric model for the case of a flow-shop problem J|n=1| , i.e., when all n jobs have the same 

technological through m machines, namely, (1, 2, …,m). 

Let TMj,k denote the sum of the processing times of job j ∈ J = {1, 2} on a subset of k machines {1, 2, ..., k} ⊆N: 

          

                                                             TMj,k =                                              1≤ k ≤ m                                     (3)  

          

Assuming that TM1,0 = TM2,0 = 0. Introducing a coordinate system xy on the plane, and draw the rectangle with 

corners (0, 0), (TM1,m, 0), (0, TM2,m) and (TM1,m, TM2,m). In the rectangle , we draw m rectangles Hk, k ∈ {1, 2, 

…,m}, with corners (TM1,k-1, TM2,k-1), (TM1,k, TM2,k-1), (TM1,k-1, TM2,k), (TM1,k, TM2,k). 

South-west corner (TM1,k-1, TM2,k-1) of the rectangle Hk as SWk, north-west corner (TM1,k-1, TM2,k) as NWk, south 

east corner (TM1,k, TM2,k-1) as SEk, and north-east corner (TM1,k, TM2,k) as NEk. Obviously, point (0, 0) is SW1 and 

point (TM1,m, TM2,m) is NEm. 

Using Chebyshev’s metric, i.e., the length d [(x, y), (x’, y’)] of a segment [(x, y), (x’, y’)] connecting points (x,y) 

and (x’, y’) in the rectangle H is calculated as follows: 

 

                                             D [(x, y), (x’, y’)] = max {|x – x’|, |y – y’|}.                                                                   (4) 

The length D[(x1, y1), (x2, y2), …, (xr, yr)] of a continuous polygonal line [(x1, y1), (x2, y2), …, (xr,yr)] is equal to the 

sum of the lengths of its segments. Since  (C1,m, C2,m) is a increasing function, the search for the optimal schedule 

can be restricted to set S of schedules in which at any time of the interval [0, max{C1,m, C2,m}] at least one job is 

processed. A schedule from set S can be suitably represented within the rectangle H on the plane xy as a trajectory 

(Continuous polygonal line) τ = [SW1, (x1, y1), (x2, y2) , …, (xr, yr), NEm] where either xr = TM1,m or yr = TM2,m. Let 

a point (x, y) belong to the trajectory τ and let d be the length of the part of trajectory τ from the point SW1 to the 

point (x, y). The coordinate x (coordinate y) of point (x, y) defines the state of processing job 1 (job 2) as follows. 

If SWu ≤ x ≤ SEu and SWv ≤ y ≤ NWv, u ∈ M, v ∈ M, then job 1 (job 2) is completed on the machines 1, 2,…, u-1 

(on the machines 1, 2,…, v-1) at time d. Moreover at time d, job 1 (job 2) has been processed on machine u 

(machine v) during x - SWu (during y - SWv) time units. 

Since a machine cannot process more than one job at a time and operation preemptions are not allowed, each 

straight segment [(x, y), (x’, y’)] of a trajectory τ may be either 

 

 Horizontal (when only job 1 is processed) or 

 Vertical (when only job 2 is processed) or 

 Diagonal with slope of 450 (when both jobs are processed simultaneously). 
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It is clear that a horizontal segment (vertical segment) can only pass along south boundary (west boundary) of the 

rectangle Hk, k ∈ M, or along north (east) boundary of the rectangle H. The diagonal segment of trajectory τ can 

only pass either outside rectangle Hk or through point NWk or point SEk. Sotskov [5] proven that problem J|n=1|Φ 

of finding the optimal schedule or, in other words, of finding the optimal trajectory, can be reduced to the shortest 

path problem in the digraph (V, A) constructed by the following Algorithm 1. Again for simplicity, we describe this 

algorithm for the case of a flow-shop problem F |n=1| , when all n jobs have the same technological route through 

m machines. 

Vertex set V of the digraph (V, A) is a subset of set 

V0 = {SW1, NEm} ∪{NWk, SEk : k∈M}∪{(xk, TM2,m), (TM1,m, yk) : k∈M}. 

 

III ALGORITHM 

  

1. Set V = {SW1, SE1, NW1, NEm} and A = {(SW1, SE1), (SW1, NW1)}. 

2. Take vertex (x, y) ∈ V \ {NEm} with zero out degree. If (x, y) = SEk, go to step 3. If (x, y) = NWk, go to 

step 

3. If set V \ {NEm} has no vertex with zero out degree. 

               STOP 

       4.  Draw a diagonal line with slop 450 starting from vertex SEk until either east boundary [(TM1,m, 0), NEm] of  

            the rectangle H is reached in some vertex (TM1,m, yk) or open south boundary (SWh, SEh) of the rectangle 

             Hh, k+1 ≤ h ≤ m,  is reached. In the former case, set V: =V ∪ {(TM1,m, yk)} and A: =A ∪ {(SEk, (TM1,m, 

             yk)), ((TM1,m, yk), NEm)}. In the latter case, set V: =V ∪ {SEh, NWh} and A: =A ∪ {(SEk, SEh), (SEk, 

            NWh)}. Go to step 2. 

     5.   Draw a diagonal line with slope 450 starting from vertex NWk until either north boundary [(0, TM2,m), NEm] 

            of the rectangle H is reached in some vertex (xk, TM2,m) or open west boundary (SWh, NWh) of the rectangle 

           Hh, k+1 ≤ h ≤ m, is reached. In the former case, set V: = V ∪{(xk, TM2,m)} and A: = A∪{(NWk, (xk, TM2,m)), 

          ((xk, TM2,m), NEm)}. In the latter case, set V: = V∪ {SEh, NWh} and A: = A ∪ {(NWk, SEh), (NWk, NWh)}. 

          Go to step 2. 

In order to find the optimal path (i.e., optimal schedule) for the problem J|n=1|Φ we can use the following 

Algorithm, where the length of arc ((x, y), (x’, y’)) ∈ A is assumed to be equal to the length of the polygonal Line 

constructed by Algorithm with origin in the point (x, y) and with end in the point (x’, y’). 
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IV STABILITY ANALYSIS 

In what follows, we consider stability of an optimal schedule with respect to possible variations of the given vector 

t= (t1,1, t1,2, … , t1,m, t2,1, t2,2, …, t2,m) of operation processing times. 

Let (Vt, At) denote the digraph (V, A) constructed by Algorithm 1 for the problem F|n=2|  with vector t of 

operation processing times. Let Ρt be set of all shortest paths from vertex SW1 to the border vertices in the digraph 

(Vt, At). As follows from Algorithm 1, the same path may belong to sets Ρt constructed for different vectors t of 

operation processing times (since for any vector t we have Vt ⊆ V0). Notation su(t) is used for a schedule defined by 

path τu ∈ Ρt. The objective function value calculated for schedule su(t) is denoted as  (su(t)). A schedule is called 

active if none of the operations can start earlier than in this schedule, provided that the remaining operations could 

start no later. It is known (see Giffler and Thompson [3]) that a set of active schedules is dominant (i.e., it contains 

at least one optimal schedule) for any regular criterion. The following claim may be proven by induction with 

respect to number of machines m. 

To test whether optimality of the path τu ∈ Ρt is stable takes O(m log m) time for problem F |n=1|Φ and O(m2 log m) 

time for problem J |n=1| . Indeed, we can use Algorithm 2 for the vector t of the operation processing times and 

construct optimal paths with different border vertices. Number of the optimal paths which have to be tested due to 

theorem is restricted by the number of border vertices asymptotically restricted by O(m) for problem F |n=1|  and 

by O(m2) for problem J |n=1| . 

It is easy to convince that for the above sufficiency proof of Theorem 2 we can replace increasing function  by 

non-decreasing function . It should be noted that the most objective functions considered in classical scheduling 

theory are continuous non-decreasing functions of job completion times, e.g., 

 

 Make span Cmax, 

 Total completion time  

 Maximal lateness Lmax = max{ Ci,m – Di : i ∈ J} and 

 Total tardiness =  where Di denotes the given due date for a job i. 

And so sufficiency of applicable theorem may be violated in the break points of such a function . 
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