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ABSTRACT

The job-shop problem (JSP) is an optimization technique, in which ideal jobs are assigned to resources at
particular times. Practical view of deterministic scheduling process is not valid for every process in
practice. In present study, stability analysis has been performed and to test the suitable techniques of
optimization which will be applicable for job-shop problem also discussed how parametric relation are
affected for two jobs. Comparative study of some existing techniques with present study is also discussed

in this paper.
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I INTRODUCTION

The problem under consideration is to minimize the value of the given desired function of completion times of n
jobsJ={1, 2, ...,n} processed on m machines N = {1, 2, ..., m}. First, we assume that processing time t; of job j €
Jon machine k € N (i.e., processing time of operation O;) is known before scheduling.

Operation preemptions are not allowed. This problem is denoted as J||¢2 where ¢ desired objective function. Let C;
denote the completion time of the job in position i on machine k € N. We assume that desired function @ (Cym Com,

... Chm) is non-decreasing function of job completion times. Such a criterion is called regular.
For the job-shop problem J |n=1|Cmax with two jobs and make span desired function Cpa = max{Cl,m, C,pn,
...,.Cnm}, the geometric algorithm was proposed by Akers and Friedman [1] and developed by Brucker [2], Szwarc

[7], Hardgrave and Nemhauser [4]. Sotskov [5] generalized the geometric algorithm for the problem Jn=1| @ with

any given regular criterion. Sotskov [6] proven that both problems:

3 In=1|Cnax and J [n=2|ZC; (1)

are binary NP-hard. Hereafter, the criterion X C; ,, means minimization of total completion time

I Cim 2.2.
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I METHODOLOGY

Describing geometric model for the case of a flow-shop problem Jin=1| ¢, i.e., when all n jobs have the same
technological through m machines, namely, (1, 2, ...,m).
Let TM; denote the sum of the processing times of job j € J = {1, 2} on a subset of k machines {1, 2, ..., k} EN:

M = Ef ¢ 1I<k<m (3)

Assuming that TM;, = TM, = 0. Introducing a coordinate system xy on the plane, and draw the rectangle with
corners (0, 0), (TMym, 0), (0, TMy) and (TMyp,, TM, ). In the rectangle , we draw m rectangles Hy, k € {1, 2,
....m}, with corners (TMy k.1, TMa 1), (TMy1k, TMok1), (TMyka, TMay), (TMyx, TMay).

South-west corner (TMy .1, TMyx.1) of the rectangle Hy as SW,, north-west corner (TMyy.1, TM,y) as NW,, south
east corner (TMyy, TM, 1) as SEy, and north-east corner (TMyy, TM,,) as NE,. Obviously, point (0, 0) is SW; and
point (TMym TMy ) is NE.

Using Chebyshev’s metric, i.e., the length d [(X, y), (x’, y*)] of a segment [(X, y), (X’, y’)] connecting points (X,y)

and (x’, y’) in the rectangle H is calculated as follows:

D [(x, ), (X7, y")] = max {|x — x|, [y = y’[}. (4)

The length D[(X1, Y1), (X2, ¥2), ..., (X, ¥)] of a continuous polygonal line [(X1, Y1), (X2, ¥2), ..., (XnY:)] is equal to the
sum of the lengths of its segments. Since @ (Cym, Com) iS @ increasing function, the search for the optimal schedule
can be restricted to set S of schedules in which at any time of the interval [0, max{Cm, C,m}] at least one job is
processed. A schedule from set S can be suitably represented within the rectangle H on the plane xy as a trajectory
(Continuous polygonal line) T = [SWy, (X1, Y1), X2, ¥2) » ..., (X, Yr), NE] where either X, = TMy, or y, = TM, . Let
a point (X, y) belong to the trajectory t and let d be the length of the part of trajectory t from the point SW1 to the
point (x, y). The coordinate x (coordinate y) of point (x, y) defines the state of processing job 1 (job 2) as follows.

If SWu <x <SEuand SWv <y <NWv, u € M, v eM, then job 1 (job 2) is completed on the machines 1, 2,..., u-1
(on the machines 1, 2,..., v-1) at time d. Moreover at time d, job 1 (job 2) has been processed on machine u
(machine v) during x - SWu (during y - SWv) time units.

Since a machine cannot process more than one job at a time and operation preemptions are not allowed, each

straight segment [(X, y), (X, y’)] of a trajectory T may be either

e Horizontal (when only job 1 is processed) or
e  Vertical (when only job 2 is processed) or

e Diagonal with slope of 450 (when both jobs are processed simultaneously).
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It is clear that a horizontal segment (vertical segment) can only pass along south boundary (west boundary) of the
rectangle Hk, k € M, or along north (east) boundary of the rectangle H. The diagonal segment of trajectory t can
only pass either outside rectangle Hk or through point NWk or point SEk. Sotskov [5] proven that problem Jin=1|®
of finding the optimal schedule or, in other words, of finding the optimal trajectory, can be reduced to the shortest
path problem in the digraph (V, A) constructed by the following Algorithm 1. Again for simplicity, we describe this

algorithm for the case of a flow-shop problem F |n=1| @, when all n jobs have the same technological route through

m machines.
Vertex set V of the digraph (V, A) is a subset of set
Vo = {SWl, NEm} U{NWk, SEy : kEM}U{(Xk, Tszm), (TMl,ma yk) . kEM}

111 ALGORITHM

1. SetV ={SW,, SE;, NW;, NE,} and A = {(SW4, SE;), (SWy, NW;)}.

2. Take vertex (x, y) € V \ {NE} with zero out degree. If (X, y) = SEy, go to step 3. If (X, y) = NW,, go to
step

3. Ifset V\{NE.} has no vertex with zero out degree.

STOP
4. Draw a diagonal line with slop 450 starting from vertex SE until either east boundary [(TM; n, 0), NE,] of

the rectangle H is reached in some vertex (TMym, Y«) or open south boundary (SW, SE;) of the rectangle
Hp, k+1 < h <m, is reached. In the former case, set V: =V U {(TMyn, Y} and A: =A U {(SEx, (TMymn,
Vi), ((TMym, Vi), NEn)}. In the latter case, set V: =V U {SE;, NW,} and A: =A U {(SEy, SE;), (SEy,
NW.)}. Go to step 2.
5. Draw a diagonal line with slope 450 starting from vertex NW, until either north boundary [(0, TM; ), NEg]
of the rectangle H is reached in some vertex (Xx, TM,) or open west boundary (SWy,, NW,,) of the rectangle
Hh, k+1 <h <m, is reached. In the former case, set V: = V U{(Xx, TM2m)} and A: = AU{(NWy, (Xx, TMzm)),
(X TMym), NEm)}. In the latter case, set V: = VU {SE,, NW,} and A: = A U {(NW,, SE;), (NW,, NW;)}.
Go to step 2.
In order to find the optimal path (i.e., optimal schedule) for the problem Jin=1|® we can use the following
Algorithm, where the length of arc ((X, y), (X’, y”)) € A is assumed to be equal to the length of the polygonal Line
constructed by Algorithm with origin in the point (x, y) and with end in the point (x’, y’).
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IV STABILITY ANALYSIS

In what follows, we consider stability of an optimal schedule with respect to possible variations of the given vector
t= (tyq, tio . tim o1, to . tom) OF Operation processing times.

Let (V, A denote the digraph (V, A) constructed by Algorithm 1 for the problem F|n=2| ¢ with vector t of
operation processing times. Let P, be set of all shortest paths from vertex SW1 to the border vertices in the digraph
(Vi AY). As follows from Algorithm 1, the same path may belong to sets Pt constructed for different vectors t of
operation processing times (since for any vector t we have Vt € V0). Notation su(t) is used for a schedule defined by
path 1, € P. The objective function value calculated for schedule su(t) is denoted as @ (su(t)). A schedule is called
active if none of the operations can start earlier than in this schedule, provided that the remaining operations could
start no later. It is known (see Giffler and Thompson [3]) that a set of active schedules is dominant (i.e., it contains
at least one optimal schedule) for any regular criterion. The following claim may be proven by induction with
respect to number of machines m.

To test whether optimality of the path tu € Pt is stable takes O(m log m) time for problem F |n=1|® and O(m, log m)
time for problem J |n=1| . Indeed, we can use Algorithm 2 for the vector t of the operation processing times and
construct optimal paths with different border vertices. Number of the optimal paths which have to be tested due to
theorem is restricted by the number of border vertices asymptotically restricted by O(m) for problem F [n=1| @ and
by O(my) for problem J |n=1] .

It is easy to convince that for the above sufficiency proof of Theorem 2 we can replace increasing function @ by
non-decreasing function ¢. It should be noted that the most objective functions considered in classical scheduling

theory are continuous non-decreasing functions of job completion times, e.g.,

e Make span Cpay,

e Total completion time £I C;
o Maximal lateness Ly = max{ Cin—D;:i € J} and

e Total tardiness = 7 max {0, Cim — Dy ic]} where Di denotes the given due date for a job i.

And so sufficiency of applicable theorem may be violated in the break points of such a function g.
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