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Abstract

In this paper, we present the algorithms for calculating the differential geometric properiies of the non-transversal infersection
of almost tangential type of four parametric hypersurfaces in B, In non-transversal intersection the normals of the surfaces
at the intersection point are linearly dependent, while as in nontransversal intersection the normals of the surfaces at the
intersection point are linearly independent.

1. Introduction

The surface-surface intersection problem is a fundamental process needed in modeling shapes in CAIVCAM system. It
is useful in designing of complex objects and animations. The two types of surfaces mostly used in geomelric designing
are parametric and implicit surfaces. For that reason, different methods have been given for either parametric-parametric
or implicit-implicit surface intersection curves in B>, Differential geometry of a parametric curve in B can be found in
textbooks such as Struik [19], Willmore [20], whereas differential geometry of parametric curves in B can be found in the
lexthook such as in klingenberg [22] and in the contemporary literature on Geometric Modeling [Z]. On the other hand, for the
differential geometry of intersection curves, there exists a little literature. Willmore [20] and Akéssio [13] presented algorithms
to obtain the unit tangent, unit principal normal, unit binormal, curvature and torsion of the transversal inlersection curve
of two implicit surfaces. Ye and Maekawa [24] presented algorithms for computing the differential geometric properties of
both transversal and tangential intersection curves of two surfaces. Aléssio [T1] formulated the algorithms for obtaining the
geometric properties of intersection curves of three implicit hypersurfaces in R*. Based on the work of Aléssio [TT], Mustufa
Ditldal [7] worked with three parametric hypersurfaces in B* to derive the algorithms for differential geometric properties
of transversal intersection. To obtain the first geodesic curvature {rf:;,J and the first geodesic torsion {rf;\,} for the transversal

intersection curve of 4 parametric hypersurfaces in B, we need to derive the Darboux frame {Ui“*_,-n .U%“’}. The Darboux
frame is obtained by using the Gram-Schmidt orthogonalization process.

S. Yilmaz and M. Turgut [17] obtained the Frenet apparatus of a curve in Euclidean curve in Euclidean space B>, M. Turgut, et
al.[8] derived the Frenet apparatus of non-null curves in Lorentzian space L” and in [18] 8. Yilmaz and M. Turgut derived the
same for Partially Null and Pseudo Null Curves in Minkowski Space-time. Looking at their importance in physics, curves in
Fuclidean space in B and LY are greater importance [1L[{41[23]. In this connection we have not seen any paper on discussion of
intersection curves of parametric hy persurfaces in Euclidean space B°. Thus in this paper, we extend these to obtain the Frenet
frame {r,n by by, b3} and curvatures iy, &2, k3, k4 } of almost tangential intersection curve of four parametric hypersurfaces
in .
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2. Preliminaries

Definition 2 1. Let {#y, 2,63, 4,25} be the standard basis of five dimensional Euclidean space E3. Then the vector product
of the vectors x = EL] Xi€ V= EE‘=] ¥ifi, 1= ‘E?ﬂ zi¢; and w = E?:l wie; is defined by

E| €12 £3 €4 &5
X X2 X3 Xi X5
Y@ oM o ¥o¥ | (1
Iy I3 Ty Iy I§
Wp Wz Wi Wy Ws

IZyBIEwW

Il
=

The vector product x @y &z @ w yields a vector that is orthogonal to x, ¥, z, w.

let B  E* be a regular hypersurface given by € = @(uy, uz, 43, iy ) and y: 1 © B — < be an arbitrary curve with arc kength
parametrisation. If {r,m, by, b, b3} is the Frenet Frame along . then we have

= Kym,

n = —kyt -+ Kby

b} = —xan+ kb, (2
by = —x3by +xa b,

by = —xyba,

where ¢, m, by, b2 and b3 denote the tangent, the principal normal, the first binormal, the second binormal and thind binormal
vector fizlds. The normal vector i is the normalised acceleration vector ¥, The unit vector by is determined such that ' can be
decomposed into two components, a tangent one in the direction of ¢ and a normal one in the direction of b;. The unit vector
b is determined such that b} can be decomposed into two components - a normal and another in the direction of by. The unit
vector b3 is the unigue unit vector field perpendicular to four dimensional subspace {r,m, by, b2 ). The functions xy, k2, k3 and
K are the first, second, third and fourth curvatures of ¥{5). The first, second, third and fourth curvatures measure how rapidly
the curve pulls away in a neighbourhood of 5, from the tangent line, from planar curve, from three dimensional curve and from
the four dimensional curve at 5, respectively.

Now, using the Frenet Frame we have the derivatives of y as

ro=o vt =, ¥ = —xit 4 xin 4 xgaby, i3
?J:-i] = 3xpxit +{_K_I1+KT_K-IK_§}R+[2K‘EK‘2 + kK3 )by + Ky ks, @
= (23] — Ak 4k g + (—6xix] k] — x| K3
~3xpokg — 2 )+ (o — Ky -+ 3xx + 363 o — s )by
(323 + 2w 33 4 201 K3 + K w2Ks ) by + KKy, )

Also since € is regular, the partial derivatives 4y, 4, Q. dy, where (43 = g%] are linzarly independent at every point of 4
Lie, @y @dn @4 @4y # 0. Thus, the unit normal vector of 4 is given by

_ medhadady
[P @ D7 @01 & Dy

Furthermore, the first, second, and the third binormal vectors of the curve are given by

poo rereyet . heyerey' , _ heherer

3 = — T — ﬁ
Irererer| - Tkererori '~ ebherer ©
and the curvatures are obtained by
.I,l'f.l' 1) b, 5)
ki =yl ®= ﬂ K3 = (r*!.ba) - {T{ :b].}l. .

Kj KjK: K{K2K3

On the other hand, since the curve y(s) lies on €, we may write

T8} = Bl (5), 02(5),u3(5), a(5)).
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Then, we have
4
7(s)=Y @, (8)
i=
4
Y'(s) = Z‘(D;u,'-' + Z i, 9
4
7"(5) = ):¢u"'+ 3 ): Qi+ Y, g (10)
ij=1 i jk=1
4 4
" '’ I r
7(s) = Z@,u[ ) 14 Z D"+ 3 Z Oijluj +6 Y Cpuiug s Y @iy (1
ij=1 ij=1 ijk=1 ijki=1
‘ 4 . 4 4
¥ = Youl s ): @;ul i 410 )"_ O +10 Y @l 15 Y @l
=1 ij=l ij=1 ijk=1 i,jk=1
10 £ woror.r :
+ Z Dijijle; Ul g + Z O,W,,.u ; uku,u
ijkl=1 ijkLm=1
! 4
76 = ):«»u“” +6 ): e 415 ): @u ) 415 ): ¢,J,‘u“’ 410 ): "+ 60 Y @l
ij=1 =1 ijk= ij=1 ijk=1
4 4 4 4
420 Y @l upduy+15 Y, el +45 Y Opuuuiug 15 Y, Opumi vy,
ijkd=1 iy k=1 ijkl=1 ijkim=1
+ Z lo,-ju,.,.u}u}u;u;n;n;. (12)
ijkJ mmn=

Definition 2.2. Let @', @2, @ and ®* be the regular hy persurfaces, respectively. Then the unit normal of these hyprsurfaces
is obtained by _

¥} OV, 0P
RCEC T
Assuming that the intersection of these hypersurfaces is a smooth curve y(s) with arc length parametrisation 5. Let y(sp) =
Now. if Ni,N2,N3.Ny are linearly dependent we non-transversal intersection at p with the following subcases:

i=123,4

(1) Almost tangential intersection

Ny =aN{+bN, +cN3. ab,c€R. (13)
(2) Tangential intersection

Ny =N2 =N3 =Na. (14)

3. Almost tangential intersection of four parametric hypersurfaces

Since the normal vectors are not linearly independent. the calculation of geometric properties are not straightforward. In
the following theorem, we find the algorithm for tangential intersection of four parametric hypersurfaces.

3.1. Tangential direction in case of almost tangential intersection.
In the following theorem, we derive the algorithm for obtaining the tangential direction in case of of almost tangential
intersection of four parametric hypersurfaces.

Theorem 3.1. Let ®! @2 @ and @ be the four paramerric hypersurfaces with almost tangential, then unit tangent is given
b)’
Cu( @]+ ®ln + &0+ Epd)) + (9], + Oln + &0+ EHnd))
(@] + @l +&19Y + Epdl) + (@], + lp + E30) + Eopd})|

__(®] +®ln + E P+ E®L) + 0(P)y + Dl + &P+ Erpdl) _
(@] +@fn + 6103+ &) + v(®) + Oin + &0 + L))

or,
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Proof For the unit tangent, we have
4 4 4 4
1=y =L o =Y olvi=} oiwj =} @lr] (15)
i=1 i=1 i=1 i=1

Using (T3], we get
" Nd} = {y¥".aNy +f-‘1".l"& +cN3), Qe

4
Ehfj i —aEhU ,uj+b£h A +r£hu W (16)

where ;. k = 1,2,3,4 are the second fundamental form coefficients of the hypersurfaces .

Now, taking the dot product of ¥, @l =¥ @hv), T @lul=1? @w! and L} | @! ;:E}i:lfb'?r‘;withﬁl%,ibjj:@j,
j=1,2,3,4we obtain

4

f 4
(@] Eg%f, g{ﬁlr!,‘bﬁ:l:zﬂi*ﬂr and ;{‘I']'bd' ZEEJ

=1 =1

'l"‘]“

wher R{"j are the first fundamental form coefficients of the hypersurface @*. Thus, denoting the unknowns v, w} and r} in
terms of linear combinations of u] yields from (18]

ayy (142 + agaudud + agand g + agard iy + an (65?4 axubul + el
+aza(y)? + asquuly + agg(u))* =0, (17

where a; j are scalars.
Again, since {t,N2) =% | (@] Naju! # 0, then at least one of the inner products is non-zero. Suppose (@}, Na)u} # 0, then,
we obtain

uy = Py + Pous 4 fans, (18)
where f; = — 28 23
Using in ([T7]). we abtain
byp(u} ) + bpawd uh + byswiuh + b (u5)” + brawhal + baa(ul)? =0, (19)

where a; j are scalars.
Taking cross product of f = @]} + @b + ©luf + ®lu) with (@) » ©F x ®3), and then projecting onto Ny, we obtain
(@] =« @] 0] x @) -Nyu) + (D] 2 @] @] @) Njady + (@] D] 0] x BF)-Nyuh
F0] ] e D] T - Ny = 0,
or,
(@] % O} x B % ) Nywd) + (D) % D % OF 5 ©F) - Nywh + (D} x O} % O = I Nu§ = 0. (20)
Forif (] x @} x @] x ©) . Ny = der (@}, @), &, @3, Ny) # 0, denote

(@] x @) DT @) Ny dar( DL 001N

= — : = —— —. (21
S e el ol ad) N da(@lol.on.onM) )
Then we have
s = Equ] +Eaus. (22
Using in ([19]. we get
cyq (1] }2 ol 4 t‘:_gl:url]z =0 (23)
Denoting u — %litl-when rrmFElorn = Ellwhen agy = 0and ez 7 0 yields
enp’ +epp4en =0, 24)
czuz—cmu =1 (25)
Now if cqy # 0, then on solving for . the unit tangent vector from (T3] is obtained as
p(@l 4 Bl + &0l + £ B0l) + [=I-,a + B0} + E0l + Eapa0)) 26)

".H 'L¢"I +JBI'1".1 + '514:"3 +'§1ﬁ5¢"4?+ [‘I']'& —JB"'I"A + '§5¢'% +'§2ﬁ5'1’.1}" .
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Similarly if c32 # 0 and cqy = 0, then on solving (25 for v, the unit tangent vector from is obtained as
(@] 4 B0l + E10) +Eir0) + v(@]; + fr0] £ 50+ Bafa0)) -
O] 4 B 4 £ @) £E1Bad]) +u(®], + prd] L 0L L Bfad])|
O

There are four distinct cases for the solution of :- depending upon the discriminant 0 = Clll —4cpiem;

L. If [ < 0, then (23]) does not have anyn solution. In this case p is and isolated contact point of the hyprsurfaces.
2. If D = 0 then (23] has distinct roots, consequently p is a branch point of the intersection curve.
3 FD=0and .:'%1 +4:"|12 - ‘:'%2 #0, then :- has a double root. Thus the hy persurfaces intersect at pand at its neighbour-

hood.
4 Ifecyy =cpp=cp =0, then i vanishes for amy valve of 1} and u,r. Thus the hypersurfaces have contact of at least
second order at p.

Remark 3.1. For (®}.N2) #0 in @:-, following two cases arise

L. Ifwe write 1 = 1y} + rau; insted of , the comesponding equation for q is o111} P+ Cyaie ey + f"zl[ni}z =0
In this case the unit tangent vector is given by

8@ 4 B0l +m @54 mfa0)) (O], + frd) + 03]+ mfis®))
lui@] + pro] + m@l + nifa0]) + (@], + fro] + n3®l + naps0])|

of,
(@] + fro) + mol £ mpsel) + viel + o] + mel L mpel)
ROETE rr1¢'3+rr|ﬁ3‘1'd) u(®], + fr0] + ;] a0l
..H dea(d! Pyl v .
where g = =, v _:fand M= —dd':%_mi_m? i=1.3

2. If we wrile u| = Maieq £ M3k insied of (23, the c-:urrespundmg equation for | 5 is opq (0 }1 + cpau iy + ql[ng}z =1,
In this case the unit tangent vector is given I:@'

_ u(@] 4+ 0]+ m @+ 0] + (@] + Fr®) + 03P+ mafad])
O m(@] 4+ 10} +m @+ mipa®]) + (@] + fr@] +ma®] + maps])|

(@] + B} + mP] 4+ mB3®]) + v( Py + fr) + M)+ mPad])
[(®] + Fe] + m@] 4 fae]) + vl + fo] + el + el

wherey:'—:i.uzfpandm:—
3 1

As above, for each (®! N2} # 0, (i = 1,2,3), there arises two possibilities for each i.

3.2 First curvature of almost tangential infersection curve

In case of almost tangential intersection, to find the first curvature at the intersection point p, we have to find the second
order derivative of y{s). For that, we develop the following algorithm: The curvature vector of the intersection curve can be
Written as

4
=y = Yol Z uulu_r_zrtl'uf{+ Z'Ir;_rtv
i=1 ij=1 I iji=1
= :Ilf'm + }: <D'J3wawj =Y aolri+ ): oL (28)
ij=1 ij=1

To find the curvature vector, since u) are known from theorem q@, . we need to find only u}. Considering 1" = " =
P T +E?J_| 'Ir-,'_ru, U, we see that || is an equation in four unknowns u},i = 1,2,3,4. For that the first equation
is given by taking the dot product of
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with Nz, then we have
Z{q:-i Nohulf + }: (B Nl }: (@7 Np vy (29)
i =1 ij=1
Second equation can be found in the same way by taking the dot product of
4
E{I¢r}:a"+ Z ,J,n,n; _Z*Dﬁn + Z i
= I_|'— I_|'—
with Nz, ie.,
Z{::-' N3l + E (DL Najuu; = E (N3 wiw'. (30)
i =1 ig=1
On taking the dot product of[Z8]with r, we obtain the third required equation as
4 4
(') = L (@)l + ¥ (@G gor)uu] G0
i=1 ij=1
Since {¥", Ny} = (y™.aNy + bN; £ cN3), we have the additional gquation from
4 4 . 4
}: (@] N+ Y (@ Nyririr; }: (@ Ny Wi+ Y {-1»JJE N)uiadug
ij=1 ijk=1 ij=1 I':."J:
+b ( ¥ (®F N2 Wi+ Z {tiﬁk Najwiv'y ") +r( ¥ (07, N3 )w) Wi+ Z {ar rﬂc N3jwiw w") 32)
ij=1 ijk=1 ij=1 i j k=1
Now as in theorem (3.1]), representing v7', w}’ and ', 1 = 1,2,3,4 in term of linear combination of 4, we obtain the fourth

equation from . Thus, if the obtained linear system of equations from []E[:- — :- has a non-zero coefficient determinant,
then after solving this system of equations, we can find the curvature vector and consequently the principal normal vector by
= 'rT Depending upon the nature of {7, Ny} = {¥".aNy + N7 +eNs) i (¥, Ny) = {¥™.aV| + BNz + cN3) vanishes, then
. :- and constitutes a system whose coefficient matrix has rank 3. In this case, we solve the three unknowns by
means of fourth one. The fourth unknown can be obtained by differentiating (¥, Ny) = (¥",aNq 4+ bNa + o3}, ie., from

(NG = (7 aN] NG Fava), on (Y NG = (yTaNy 4 BNY 4 eNg) (33)

3.3 Third order devivarive and the second curvarwre of almost tangential intersection
Using ([10]), we have

4 A
¥ = Z::-' up +3 Z 'D,'_,n:’u_’, ¥ t‘D,ﬁufuf,u; = Etb,gv +3 E :,vf'vf, + ¥ 'b;-‘}k}ﬁﬁ,-mi (34)
i=1 I_|'— i j k=1 l_l'— ijk=2
4 4 4
=¥ w43 Z ¢53wa'1¢ + ¥ ¢3jn ATAT E¢rdr"’+3 Z tIlf_r i+ X tIl?;r}r}ri (35)
i=1 ij=31 ijk=3 i=1 ij=3 ijk=3

Since u} and b} are already known. To find the third derivative, it remains to find our . Thus cnnsidering ¥ = Ed It‘D]n’"
SEU ]'Dr'_ru:’ fr+‘L"J k= ItIl] upd gy, we see that ™ is an equation in four unknowns 17", 7", u3". uy’. For that, we constitute
4 system of four equations.

The first equation is given by taking the dot product of ¥}, ®!u + 3%}

351; Z'I’Er‘vf‘v‘f. +E,J;‘ Q‘I'er Vv with Mg, e,

1,.m 1 s o
i, j=1 'Dr_rul +EJ k= I:Iljj:“r _p“k - E I:I'ng"r' -

Z{q:-’ Nl 43 }: (L Najullud; + }: {:1-rJJE Nojujad, =3 }: (@F, N vV + }: (@ N (36)

hi=1 ijk= ij=1 ijk=
The second equation can be obtained by taking the dot product of TF , @lul” +3E,_,_| J_,nl Ui+ Eirj I‘I'rJ:c“: G =
Y _3E”_|'¢D'J3JNTH +E,Jj I"D‘fﬁﬁfﬁin with Nz, ie.,

}:{-n' Nyl 3 }: (D N3juf'nd; + ): (d.:-uJE Najuuag, =3 }: (@7 N3)wiw); + ): { LA KT
ij=1 ijk= ij=1 i, jk
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On differentiating {¥', 7"} = 0, we obtain {y™.+} = —k{. This gives us the third required equation as
4 4
Y@l 13 Y @b i+ Y (@l el = xF G8)
i=1 i j=1 ijk=1
Now, using (7%, Ny) = (¥¥.aNy + BNz + cNs), we get
1 1 4
Ay (@d Ny)r'r 43 }: (@of Na)rir 16 ¥ i“-?'?ﬁﬁd}r?r} }: 4T
i=1 ij=1 i, jk= Jk =
4
_a(4z{l1lu N|}nm ! +3Z{ Ny ”+5 E, {'I’r_rx Ny ju, “x + E, '[ Tkl Ni)uiud; “&”r)
ik ik =1

4 4
+b (4;{-1%:%)1’”1»’ 3 Z {:I-EJ.,N:}V"W & Z (tb'?ﬁ NV + Y o ,u. Naviy ff)
i= ik

ij=1 i k= l

+c (4fj( Najwi'w' 43 }: (@), N;:m"w"+6 }: ( i N3 wiwiwl & f‘, (@5, N3 )wiw H,‘w’) (39)
i=1 ij=1 ik =1

Now, as in the above subsection, representing v, w', r}’, i= 1,2,3,4 in terms of u; . the equations (36]-{39]) constitutes a linear

system of equations in four unknowns &, i = 1,2,3,4. If this system has a nonzero coefficient determinant, we can find the

required unknowns, which enables us to compute third order derivative of the intersection curve. Noting that, if the equation

(¥ Ng) = (%) aNy + BNz + N3 ) vanishes, we can replace the equation with {f’,NEi]} = (¥", a.Ni":' + !JNz[f:' + fﬁgﬂ}. i=

1,2,3,4.

34, The fourth order derivarive and the third curvature

On computing the fourth order derivative of the intersection curve, we are able to find the third, second and first binormal
vectors from (6. consequently the second and third curvature follows from (7).
Using (11} and taking the dot product of both sides of

4 4
1 (4] 1 me (] .rrr.r el
Ztllj-r,rl. +:‘+Et‘|.7r1‘,uJ u'; —SZ'DUJ,:, i +6 Z ::“““ e ‘I'r_r:c.r LA

ik =1
4 X0 4 4
=Y oy +4E¢iﬁ"v’ +3 Z 16 Y @l Y el N
i=1 i j=1 ijk=1 ik d=1
with Nz, we get the first required linear equation
4
1Y (@hN :.”’:.’-3 -n' N ] +6 -n Na bl =1- N Juiad g
E{ k"2 ikl k5
i,k i, jki=

4 4
= 42(4&“ N2V 43 Z {'D' N2V 4 6 Y I{:I-:'j:Ng}v:Lfr-Lf+ ¥ ]{tb?ﬁ,,ﬁl}vhﬂ-ﬁv;.
i i1 = ijkd=

The second linear equation is given in the same fashion by taking the dot product of

4 4 4
Z'b'um\’ 4Z L, +3£ olul+6 ¥ t‘D}ju: g+ ¥ ¢rlﬁ|.nfnfukul.
i=1 ij k=1 ijkJ=1
4 4 4
1 (4]
=Y oiw; +4Z¢fiﬁf’w’ 3 Z fD-f,wfn"+6 Y ¢~3 wiwg + Z k- VIWiW W)
i=1 i= ij=1 ij k=1 i k=1

with N3, e,

4 4 4 4
4£{‘D}_,-,N}}HE"M}+3Z{¢!J-:N5}Lﬂ3u;{+5 ¥ {:I'r_rk Najpupday' + Y {¢1jf N3 ey

i=1 i =1 ijdd=1
4 4 N 4 N 4
e o 1
- 42{-1%-:1'4'5)14-,- wi+3 Zl{dﬁ';j:ﬁ;jwf"n-j +6 ¥ I{‘I'r'_r'k="""3:""' g+ Y jl:fbfﬁ,,ﬁg_}w:uﬂ.wiw:.
i= ij= i k= i, ok J=
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On the other hand, differentiating (3,1} = —x{ gives the third equation as {y*}.r) = —3kik]. i.e..
4
2-:}1-' r}u['i:'+4 Z (ol ot G+ 3 E (ol i 16 Y |:¢rjﬁ g
= ij=1 ij=1 i, jk=1
4
+ ¥ { ke GG = —3kqk]. (40)

5=

Finally, if we use (35 Ny} = (%), aNy +bNa + cN3), we obtain

4
I'-i g WA R "
5 }:{ e Ny 410 }: (@] rj,-,m}+m_};1{¢-]jr ririNa) + 15 }: ('D:#r”r rl.Ny)
ij=1 ij=1 i, jk= ik

4 4
+|U E I{ J.‘ﬂl"}’r‘:l-r;r'r:ﬁi:|+ E I{‘I'r‘.urrrrrrrrf.'rrr:ﬁd}
g l'jj:J':—

[=
4 1 4 4
- a(S }: (q:-,'jnf W Ng) 10 }: (@La"W Ng)+10 ¥ (@l Ny +15 Y (@l Ny)
i

=1 ij=1 i, j.k=1 i jk=1
: 1 O or o : | L ] i (4) 4
+10 Y () s b i e, Ny )+ ¥ (D g bt g bl N} |+ Z (im0, Ny)
ik =1 ik dr=1 ij=1
4 4
+10 }: (@l Ng) 410 ¥ (@l v ad N 415 }: (@0 Tuf Ny)
i j=1 i k=1 i jk=1
4 4
+10 ¥ {rlllj,u,’nfru;u} N+ ¥ l[lIl,ﬂrr,r 0 Ly Ng}) +|:'(S Z (o} i J['i:' " Ny )
ijki=1 ijkdr=1 i1
4 4 4 4
+10 Z {¢r]‘,-nﬁ”nﬁr-'ﬂ¢}+ 10 Z {tIlr_rku'”u' N+ Z ':'I’._rx“f Gl Na) +10 E (! ._;&.' ALY
i j=1 i, jk=1 i k=1 i, jki=1
+ Z (trrlﬁkn' AT N.i:l) 41)
ik =1

Mow, as in the above subsections, writing 1:{4‘.- HM and r"'i] i=1,2,3,4 in terms of linear combinations nl'nﬂ:' Also, since
w, w;, w)" are already known, we obtain a system of four linear equations in um i=1,2,34. On solving this system of linear

equations we obtain the desired quantities. Again noting that if {fS]:N.i} = {aNy + BV7 + N3} vanishes, then this equation
can be replaced by (¥9,Ny) = (#9,av[? + VY + Ny i=1,2,3,4.

3.5 Fifth order derivarive and fourth curvarure of the almost tangential intersection

To find the fifth derivative of the intersection curve we need to find um i=1,2,3,4. For the required linear system of
equations, the first two equations can be found in the same way as in above subsections by taking the dot product of

1 4 1
Z'D' By s Z tIl]Jur'i]u_r, +10 Z L]+ Z P! WG+ 15 Y t‘Dﬁuf'uf,’ui +10 ¥ tIle,u:’nf,u;u}
i1 i1 = = ijkd=1
: : 2 (5 ! 1 {:1} . ! 7
+ ¥ ¢r}‘il._rn}n}u£u,’.u; Yo s Y @y V410 Z ¢'fr1':”v"’+ 0 Yy tll?jv:"ﬁ-ﬁ +15 Y @ppivig
ijkdr=1 i=1 ij=1 ij=1 i k=1 i jk=1

with N7 and

4 4 1
Z'D,-'ugﬂ Z ;i ['i] L+ 10 Z tIlLr,rf” HENi] Z ,tn "W +15 Y ¢r}- fufu+10 ) tIle_ru"n’u;u}
i=1 ij=1 ij=1 ijk=1 ik =1

4 4
+ ¥ ¢rj£rnira’u;u’u' = Z'b-n”] 5 Z tD-f,nl[d:'w' 10 Z w10 Y tllfjw‘,”w’w"
i.jktr=1 ij=1 i j=1 i, jk=1

4 4 4
w15 ¥ tD?ﬁwf'w:fu’ +10 ¥ ¢'3m14 wwwi+ ﬁjbnfujnkwfn
ijk=1 k=1 ik r=1
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The third equation is obtained by projecting ¥ onto ¢ and the last equation is obtained by using (7'® Ny} = (¥ aN; +
biNy + cN3). As in the above cases if (7'®) Ny} = (v'™aNy + bV; + oN3) vanishes, then this equation can be replaced by

9 wWg) = 9 vl b p vy i=1,2.3.4.5.

4. Tangential intersection of four parametric hypersurfaces

Here we assume that Ny = N2 = N3 = Ny = N. For the unit tangent vector, the algorithm is provided by the following

theorm:

Theorem 4.1, Let oy b, &3,y be the four parametric hypersurfaces in B3, then we have

) (@] + @) + (] + 20} )e + (@) + Lad))@

ar

o (@] a®he + (9] +A20)) + (P} + )@

ar
(@] + 40])e + (@] + A0l)m + (@] + A)

T @]+ ] + (@] + A20] )@ + (@f + A

Proof Projecting ¥ onto the common normal vector, we obtain
(F".Ny) = (" N2) = E2 Wb, = T4 R,

{?ﬂ:NI:I = {TJ:N5} = E?:] |l.rr!‘fl:‘r;l:’r_ri = E?:] h;_.r“Jr.“;
(YNt} = (7" No) = B hhwiad, = £ i

As in the above section replacing v}, wl, 7] by i}, we denote the first two equations of (#2) as system

T @]+ 4@]) + (@l 4 A0])e + (@] + o])o]

@ Ae]e + (@) 1 Aa0)) 1 (@1 1 ela]

42)

W2 g2 7
e (0] )" L epanins 4 epanng 4 eqaug i+ epa(un ) £ ewand 4 ey 4 fg.;(ui]z + enuiliy + ey (uy)” =0 (43)

S (g ]1 + froues £ A 4 fauiug 4+ ﬁg{nfz}l + fralhiy + fauhng + 1'33.{:1'5}1 + g+ fml:ua]l =0 {44

respectively, where e, fi;. §, j = 1,2,3, 4 are scalars.

Since, {t,N} =Ef—1=| {tIlr!,N}n: = 0, this means that at kxast one of the products is non-vanishing. Suppose {lbLN} # 0, this

implies that i = Ay} + Aqus + Aquy, where 4 = "fi"ii\':iz 1,2.3. Thus@and @] reducas to

N

F. " W2
myq(ng )" Fmyag el mpauies 4 ma(es) " Emosenns - maaei) =0,

2 22 ]
mpg (] )" mpoi b 4 myas el £ o () 4 ot nga(ey) =0

whem my;.m;. i, j=1.2,3 are scalars. Now, if we denoie

i i’ T My
=2, @=— whn gi=| = "l
uj " nm o
ar
i i m my
e=—L @m=2 when p=| " "7 |z0
w3 1ty myp n3
ar
r r
I I | m ma |
=L m=22 when ;= ' " lzo0
i3 i3 | 71 nn |
w obtain
fﬂp_‘.lfz—mjjﬁfz—m|gf+m']5m + mped +myy =0,
?71252+n33ﬁ}2—ﬂ|1£—ﬂ|3.ﬁ}—n23£ﬁ} +myp =0,
ar

m“‘-‘:2 —m;;ﬁfz + M€ + Myl + mye@ 4 myz =0,
r1'|]4‘.'2 + ."?1'3'_1IE:F2 +R2E+ i@ - npzEd 0 =0,

(45)

(46)

47

{48)
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ar
fﬂ]|£2_mﬂﬁjz_m|3f+ﬁfgjﬂ + M2 4 mzz =0, 49)
ME” + @ 4 My3e + M3l 4+ el +nag =0

respectively. We, see that {#7).{48) and {49} are pairs of conics with respect to £ and @. The intersection point (g, &) can be
found by any known methods of conic solutions, thus the unit tangent vector is obtained by

(@ raop+ (@) + Aa®))e + (@ + a0))@ o)
(@] +2:@]) + (@] + Az0])e + (@] + Lad])m]"
or
(] 0] Je + (@] + A1) + (D) + L)) @ .
(@] + 2i®])e + (@] + @] + (@] + )@’
or
o (@ Adl)e + (9] + 4910 + (P +AaP)) -
(@] + 2i®@])e + (@] + aa])@ + (@] + Az @)’ -
respectively. O
Mote that, we can use this method if 3; # 0, i=1,2,3, curit'EE‘_FI[mEr- +rrr?-‘,-]| #0and yy = y2 = x3 = 0, then ¢ may not
exist.

Remark 4.1. Depending upon the real inersection points of the conic pairs, we have following

When the conics do not have any point in common p is an isolated contact point.
When the conics have one point in common, ¢ is unigue.

When the conics have two or more points in commeon, then p is a branch point.
When EE'J-=| [m:'_r- - ?f%-:l =0, then conic pair vanishes for any values of u;, i.e., p is a higher order contact point. If all
the second fundamental coefficients of the hypersurfaces vanishes at p, then pis a flat point of the hy persurfaces,

i

4.1. Curvatwre vector of tangential intersection
To find the curvature vector, we need to find ', which needs a system of four linear equations in b}, 15, 3. 1) . Asin
the above section representing ', w?., r in terms of linear combination of &}, Also denoting ¥ be the curve associated with

@ i = 1,2,3, 4 hypersurface. Thus the first three equations of the required sysiem of equations is given by the following
projections

{{Tr‘}:ﬂl} = ':'i'.r'l]':f'-fz}:
{{Tr‘}mﬂl} = i('.r'}]'n;ﬁ-fs}: (53)
()" N = (") V),

and the last equation is given by ((¥')".(¥')") = 0. If the coefficient determinant of the system {53) is non-zero, then we
can find ) i = 1,2,3,4. substituting the resulis into @ gives the curvature vector. Consequently, the first curvature can be
found from (7) and n,x{ can be found from (3). Otherwise, if the coefficient determinant of (53] is zero, then among the
first three equations of {53 one or more equations vanishes, or one equation is proportional (o some other. In this case that
equation(vanishing) is mplaced by {{}‘]":Nﬂ = {(¥)" N}, or {[}‘}”:N]”} ={(¥)" NIYi=23,4.

4.2 Second curvatwre of the tangential intersection

For the the second curvature, we need to find ¥, To find this, we need to evaluate w)” i = 1,2,3_4. Hence a system of four
linear equations in & ,i = 1,23 4 is needed. On representing v}", wi", r}" in terms of linear combination of &}, the first three
equations are given by the following system

L 4
() w) = (A M),
(M) = (") 4). (54)
PN 1
(M) = ()" N,
and the last equation is obtained as ('), (')"") = —x{. If the coefficient matrix is non-singular, then " are easily found,

while as if any of the equations in | vanishes, then that equation is replaced by {(y')" N7} = ((¥))".NO), or {(v')" .N]) =
()" N or (') NPT) = () N = 2,3,4.
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4.3, Third curvature of the tangential intersection

To find the fourth curvature, we calculate uE”,r’ = 1,2,3.4. Representing vEd], wﬁdl, r}d] in tzrms of linear combination of

u';d] then the first three equations are

Pt

(LN = (A ),
(™ ) = (A ), (55)
(™ ) = (%) ).

Also the last equation depending on "1[4] is (') (v! ]“]} = —3xj k] If the determinant of coe ficient matrix is non-vanishing,
then uEd] are easily found, while as if any of the equations in vanishes, then that equation is replaced by {{T] }n:d] :Nf_rj} ~
()M Ny i=234 and j=1..-4.

4.4, Fourth curvature of the rangenrial intersection

Finally to find the fourth curvature, we find u}s:',:' =1,2,3 4. Writting v}s:', “,ES}_ rES\’ in terms of linear combination of
uES], we have

() ) = (9 ),
("M = tcr‘)‘:’m}, (56)
() ) = (%) ).

The fourth equation depending on ul[s:' is {(¥1), (¥t ][5]} = —3(xy ) —4xj ] +[|§:' +k7k3. 1f the determinant of coe fficient

matrix is non-zero, then u?\" are easily found, while as if any of the equations in

by ((71) N = ()P N =234 and j=1---5.
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