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ABSTRACT 

In this paper we will deal with quadratic penalty function method and discuss the original multiplier method 

with geometric interpretation. After that existence of local minima of the Augumented Lagrangian will be 

discussed. Then primal function will be introduced and convergence analysis will be done for method of 

multipliers. In last, comparative study of Penalty method and Multiplier method will be examined. 
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I.THE ORIGINAL METHOD OF MULTIPLIERS 

Consider the Equality Constrained Problem 

(ECP)                         minimize  xf  

                                   subject to   0xh  

where 
mnn RRhRRf  :,: are given functions and mhh ,...,1 are the components of h . For any scalar 

kc and 
k is multiplier vector. Now we will consider the Augmented Lagrangian function 

                                         
2' )(

2

1
)()(),( xhcxhxfxL kkkck
   

In this we will assume that 
*x is a local minimum satisfying second order sufficient condition. 

Assumption (S): The vector 
*x is a strict local minimum and a regular point of (ECP), and, 

2, Chf  on some 

open sphere centred at 
*x . And also 

*x together with its associated Lagrange multiplier vector 
*  satisfies 

                                                     0, **

0

2'  zxLz xx   

for all 0z with   0
'*  zxh . 
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II.METHOD OF MULTIPLIERS 

We minimize  kck
L ,.  over 

nR , given a multiplier vector k and a penalty parameter kc and then obtain a 

vector kx . We then set 

                                                         kkkk xhc  1 ,                           (1) 

A penalty parameter kk cc 1 is chosen and repeat the process. 

The initial vector 0 is chosen arbitrarily, and the sequence  kc may be either determined or pre selected on 

the basis of results obtained during the algorithmic process. 

By using the updating formula (7), The multipliers k are determined. 

III.GEOMETRIC INTERPRETATION 

Geometric interpretation of method of multipliers motivates the subsequent convergence analysis. Define the 

primal functional p of (ECP) by 

                                                    
  uxh

xfup


min  

where the minimization is local in an open sphere within which 
*x is the unique local minimum of (ECP). Also 

   *0 xfp  and   *0 p . The minimization of  ,.cL can be break down into two stages, first 

minimizing over all x such that   uxh  with u fixed and then minimizing over all u so that 

                                 

 
 

     

 





















2'

2'

2

1
min

2

1
minmin,min

ucuup

xhcxhxfxL

u

uxhu
c

x





 

where the minimization is local in the neighbourhood of 0u . The minimization can be understood by the 

figure given below. The minimum point is found at the point  cu , and the gradient of 

 
2'

2

1
ucuup   will be zero at minimum point or equivalently 

                                     








  cuuucup ,

2

2

1
 

So we get the minimum point  cu , as in figure. 
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p(u)+   |u|  
2C

2

slope–*

p(u)

p(o)=f(x*)

min L (x, )C 
x

Ou( , c)

slope –

– 'u( , c) 

u

 

                              Fig. 1 Geometric interpretation of minimization of the Augumented Lagrangian 

We also know that 

                                             
2' ,

2

1
,,,min cuccupcuxLc

x
   

Also the tangent of the graph  
2

2

1
ucup  at  cu ,  intersects y-axis at  ,min xLc

x
. If we take 

c sufficiently large then  
2'

2

1
ucuup   will become convex in the neighbourhood of the origin. When 

 will close to 
* and c will take large values then  ,min xLc

x
 will be close to    *0 xfp  . 

Now we will discuss geometric interpretation of the multiplier iteration (1). Here also the vector  kk xhu   

will minimize  
2'

2

1
ucuup    if kx  minimizes  kck

L ,. . Hence, 

                                              
k

uuk k
ucup 









 

2

2

1
 

And                                    kkkkkkk xhcucup    

So                                             kkkkk upxhc   1  
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as shown in figure given below 

                                     

p(u)+   |u|  
2C

2

p(u)

min L (x , C  k k+ 1)
x

Ouk

slope –k

slope– =v (u ) k+ 1 k

uk+ 1 u

slope–*
slope –k+ 2

slope –k+ 1

min L (x , C  k k)
x

k

k

p(o)=f(x*)

 

                                      Fig. 2 Geometric interpretation of first-order multiplier iteration 

the multiplier 1k will be closer to 
*  than k when kc will take large values and k will be close to 

* . 

Convergence to 
* will be obtained in one iteration when  up will be linear and convergence will be fast 

enough if   002  p . In this kc is not necessary for convergence but kc must be increased at some 

threshold level. 

IV.EXISTENCE OF LOCAL MINIMA OF THE AUGMENTED LAGRANGIAN 

In penalty method we investigate whether local minima of the augmented Lagrangian exist, and if so how far 

their distance from local minima of original problem is affected by the values of the penalty parameter c and the 

multiplier  . Here we focus on local minimum 
*x satisfying Assumption together with Lagrangian multiplier 

* . For any scalar c ,we have 

                               
2

****** )(
2

1
)()(),( xhcxhxfxLc    

                    
         ******* , xhxhcxhxfxLcx    

                              0,, **

0

******   xLxchxhxfxL xcx                               (2) 

and                               '****

0

2**2 ,, xhxhcxLxL xxcxx    
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also there exists a scalar c such that 

                                       ccxLcxx  0, **2                                                                 (3) 

hence
*x is a strict local minimum of  *,. cL  for all cc using (2) and (3). From above, we conclude that a 

local minimum of  *,. cL  close to 
*x exists for every cc , if  is close enough to 

* . This will also be 

true when c is sufficiently large even if  is far from 
* . The following result makes this idea accurate. 

Proposition 1: Let Assumption holds and let c be a positive scalar such that  

                                                0, **2  xLcxx                                                                      (4) 

Then positive scalars ,, and M exists such that: 

         (a) For all  c, in the set 
1 mRD defined by 

                                       ccccD  ,, *  ,                                                   (5) 

the problem 

                                                   minimize  ,xLc                                                                (6) 

                                                  subject to  ;*xSx  

has a unique solution  cx , . The function  .,.x is continuously differentiable in the interior of D , and, for 

all   Dc , , 

                                                  cMxcx **,                                                           (7) 

            (b) For all   Dc , , 

                                                   cMc **,
~

                                                       (8) 

where                               cxchc ,,
~

                                                                              (9) 

           (c) For all   Dc , , the matrix    ,,2 cxLcxx  is positive definite and the matrix   cxh ,  

has rank m . 



 

1601 | P a g e  
 

Hence it can be seen that for any  , there exists a c such that  c, belongs to D for every kcc  . The 

estimate c grows linearly with c on the allowable distance of  from 
* . In some cases the allowable distance 

may grow at a higher rate than linear. And also it is possible that for every  and 0c , a unique global 

minimum of  ,.cL exists. 

Thus the above proposition provide convergence and rate of convergence result for the multiplier iteration 

                                                           kkkk xhc  1  

If the generated sequence  k  is bounded, the penalty parameter kc  is sufficiently large after a certain index, 

and the minimization of  kck
L ,.  provides the local minimum  kkk cxx ,  closest to 

*x after that index, 

then we obtain 
** ,   kk xx . 

Now we will try to obtain a fast convergence and rate of convergence result. For this we have to introduce the 

primal function. 

V.THE PRIMAL FUNCTION 

Take the system of equations in  ux ,,  

                                0,0  uxhxhxf   

The above system has the solution  0,, ** x . Also by Implicit Function Theorem, there exists a 0 and 

functions   1Cux  and   1Cu  , such that   *0 xx  and   *0   , and for u , 

                                       0,0  uuxhuuxhuxf                                    (10) 

Again for some and for u , we have    *xux and     *u . The function 

  RSp ;0:  is given by 

                                                     ;0Suuxfup   

is called the primal functional corresponding to 
*x . In view of assumptions,  ux  will become actually a local 

minimum of the problem of minimizing  xf  subject to   uxh  when we take  and  sufficiently small. 

An equivalent definition of p is given by 
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                                           ;,min *xSxuxhxfuxfup                                         (11) 

Also                                  ;0Suuup                                                                          (12) 

By differentiating (10), we get 

                                                 0,
'

0

2  uxhuuuxLux uxxu  ,                                     (13) 

                                                                  Iuxhuxu                                           (14) 

for any Rc , we have, multiply (14) with   'uxhc both sides, then we get 

                             ''
uxhcuxhuxhuxc u                                        (15) 

By adding (13) and (15), we get 

                     0, ''

0

2  uxhcIuuxhuxhcuuxLux uxxu    

By multiplying the above equation with             1'

0

2 ,


 uxhuxhcuuxLxx  we get that for every 

c the inverse below exists 

                     0,
1'

0

2' 


uxhuxhcuuxLuxhcIuux xxuu    

Multiplying both sides with   uxh  , we get 

                          0,
1'

0

2' 


uxhuxhuxhcuuxLuxhcIuuxhux xxuu 

  

    Now using (12) and (14), we get 

                     0,
1'

0

2'2 


uxhuxhuxhcuuxLuxhcIupI xx   

                    uxhuxhuxhcuuxLuxhcIupI xx 
1'

0

2'2 ,  

                 
  cIup

uxhuxhuxhcuuxLuxh

I

xx






2

1'

0

2'
,

 

                     11'

0

2'2 ,


 uxhuxhuxhcuuxLuxhupcI xx               (16) 

Above equation holds for all u with u  and for all c for which the inverse above exists. 
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For 0u , we get 

                                      cIxhxLxhp cxx 
 1

*1**2'*2 ,0                                   (17) 

for any c for which inverse of  **2 ,xLcxx  exists. If    1**

0

2 ,


 xLxx  exists then 

                                         1
*1**

0

2'*2 ,0


 xhxLxhp xx                                                (18) 

Now the following result will show that the point after which sudden changes are expected, can be characterized 

in terms of the eigen values of the matrix  02 p . 

Proposition 2: Suppose that the assumptions hold and for any scalar , we have 

                             00,...,max0, 2

1

**2  cIpeecxL mcxx                     (19) 

where mee ,...,1  are the eigen values of  02 p . 

Now we shall show that the rate of convergence of the method of multipliers can also be characterized in terms 

of eigen values. 

VI.CONVERGENCE ANALYSIS 

In this we will find the convergence and fast rate of convergence result for the method of multipliers. 

Proposition 3: Suppose Assumption holds and let c and  be as described above. For all  c, in the set 

D defined by (11), there holds 

                                
1

0

****,
~

 dNc c                                 (20) 

where for all   Dc , , the mm matrix cN is defined by 

                            cxhcxLcxhcIN cxxc ,,,,
12'

 


                        (21) 

where I is the identity matrix. 

Theorem 4: Suppose assumption holds, let c and  be as described above. mee ,...,1  are the eigen values of 

 02 p  given by (17) or (18). Assume also that 
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                                                  meec 2,...,2max 1                                                              (22) 

(or   0
2

1
02  Icp ). Then a scalar 

1 with   10 exists such that if  kc and 0  satisfy 

                               ,...,1,0, 110

*

0   kcccc kk                           (23) 

Then the sequence k generatedby   kkkkk cxhc ,1                                                             (24) 

is well defined as  kk c,  belongs to the set D of (5) for all k  so  kk cx , is well defined. 

and also we have 
* k and   *, xcx kk  . Also if 



*suplim cck
k

and 
* k for all k , 

there holds         
*,...,1*

*

1
maxsuplim

ce

e

i

i

mi
k

k

k 










 


,                                                                        (25) 

if kc and 
* k for all k , there holds              

                                                        0lim
*

*

1






 



k

k

k
.                                                                     (26) 

Proof: In this we will consider the matrix cN of (21), we get 

                                      *1**2'** , xhxLxhcIN cxxc 


  

As we have  

                                    cIxhxLxhp cxx 
 1

*1**2'*2 ,0   

Then we get                        1
*1**2'*2 ,0


 xhxLxhcIp cxx   

and                                        *1**2'*12 ,0 xhxLxhcIp cxx 


  

so by using above, we get 

                                                             12* 0


 cIpcINc   

If we take    cc m ,...,1 as eigen values of  *cN , then we get 

                                               
ce

e

ce

c
c

i

i

i

i





1  
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As the eigen values of  02 p  are  mee ,...,1 and   cIp  02
 are cei  . 

  Dc  , , from (21) we have 

                                            cxhcxLcxhcIN cxxc ,,,,
12'  


 

And also we have 

                                         '****

0

2**2 ,, xhxhcxLxL xxcxx    

Then                          '

0

22 ,,,,,,,, cxhcxhcccxLccxL xxcxx    

This implies 

                                  '0

212 ,,,,,,,, chcxhccxLccccxL xxcxx   
 

And finally we get 

               

                   cxhcxhcxhccxLccxhIN xxc ,,,,
~

,,,
1'

0

21'
 




 

Hence by using Proposition 1 and the above result, we can easily see that for given any 01  ,   ,01   

exists, such that   Dc  , i.e. with ccc  ,1

*  , we get 

                              1
,...,1

1
,...,1

1

* maxmax  



 ce

e
cNN

i

i

mi
i

mi
cc  

And by (20), we get for all these pairs  c,  

                                        *

1
,...,1

* max,
~

 


















 ce

e
c

i

i

mi
                                    (27) 

Hence from (22) and (23), we get that   1max
,...,1




cee ii
mi

hence if we will select 1 sufficiently small then 

we get for some  1,0 and all  c, with 1

*   c and cc    

                                                                    **,
~

 c  

So we get 
* k and   *, xcx kk  by using (7) and (23). Also the convergence rate can also be 

calculated by using (27). 

 

VII.COMPARISON OF PENALTY METHOD AND MULTIPLIER METHOD 

 In Penalty Method, the multiplier k constant, and it is necessary to increase the penalty parameter kc to 

infinity. But in method of multiplier, it is not necessary to increase kc to infinity in order to obtain 

convergence. 
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 Rate of convergence of method of multiplier is better than the penalty method. 

 In method of multipliers, the rate of convergence is linear or super linear while in penalty method, the rate of 

convergence depends on the rate at which the penalty parameter is increased. 

But it is important to know how one should select the initial multiplier 0 and the penalty parameter sequence. 

We should have to choose 0 as close as possible to
* . The following points may help us in selecting penalty 

parameter sequence:- 

 The parameter kc should become larger than that point after which sudden changes are likely to occur. 

 The initial parameter 0c should not be too large. 

 The parameter kc  should not be increased too fast. 

 The parameter kc  should not be increased too slowly. 

These conditions may be contradictory for some extent. Also for non convex problems, it is difficult to know 

about that point, after which changes are likely to occur for penalty parameter. Usually 0c is chosen and 

subsequent values of kc are monotonically increased by the equation kk cc 1 , where  is a scalar with 

.1 The choices for  can be taken from  10,4 .  By this, the threshold level i.e. that point after which 

sudden changes are likely to occur, for multiplier convergence will be exceeded. 

We can increase kc by multiplication with a factor 1 only if the constraint violation, measured by 

  kk cxh , is not decreased by a factor 1 over the minimization, i.e. 

                                  
     
     















11

11

1
,,

,,,

kkkkk

kkkkk

k
cxhcxhifc

cxhcxhifc
c




 

10 and 25.0 are mostly used. For above scheme, If  k remains bounded, then the penalty parameter 

sequence  kc will remains bounded. 

Another way is to use a different penalty parameter for each constraint   0xhi , and to increase the penalty 

parameter by a certain factor which correspond to those equations for which the  constraint violation, measured 

by   kki cxh , is not decreased by a factor over the minimization. 

Thus, from above discussion it can be noted that the method strongly depends on the initial choice of the 

multiplier 0  and choice of 0  close to 
* will give best convergence result and reduces computational 

requirement of the method. 
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