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ABSTRACT

In this paper we will deal with quadratic penalty function method and discuss the original multiplier method
with geometric interpretation. After that existence of local minima of the Augumented Lagrangian will be
discussed. Then primal function will be introduced and convergence analysis will be done for method of
multipliers. In last, comparative study of Penalty method and Multiplier method will be examined.
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I.THE ORIGINAL METHOD OF MULTIPLIERS

Consider the Equality Constrained Problem
(ECP) minimize f(X)

subject to h(x) =0

where f :R" — R,h:R" — R™are given functions and h,,..., h_ are the components of h . For any scalar

c,and A, is multiplier vector. Now we will consider the Augmented Lagrangian function

: 1 2
L, (X, 4) = f(X)+4h(x)+ Eck Ih(x)|
In this we will assume that X is a local minimum satisfying second order sufficient condition.

Assumption (S): The vector X is a strict local minimum and a regular point of (ECP), and, f,h eC?on some

open sphere centred at X . And also X together with its associated Lagrange multiplier vector A satisfies

z'VixLO(x*,ﬂ*)z >0

forall z » Owith Vh(x")z=0.
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ILMETHOD OF MULTIPLIERS

We minimize LCk (.,ﬂk) over R", given a multiplier vector A, and a penalty parameter C, and then obtain a
vector X, . We then set

;{’k+1 =/1k +Cy h(xk ) @
A penalty parameter C,,, = C, is chosen and repeat the process.

The initial vector A;is chosen arbitrarily, and the sequence {Ck }may be either determined or pre selected on

the basis of results obtained during the algorithmic process.

By using the updating formula (7), The multipliers /1k are determined.

I11.GEOMETRIC INTERPRETATION

Geometric interpretation of method of multipliers motivates the subsequent convergence analysis. Define the

primal functional p of (ECP) by

where the minimization is local in an open sphere within which X is the unique local minimum of (ECP). Also
p(O): f(x*)and Vp(O):—f. The minimization of L, (/1) can be break down into two stages, first

minimizing over all X such that h(x)=u with U fixed and then minimizing over all U so that

min L, (x, 2)=min mi {f(x)+ /I'h(X)+%C|h(X)2}

(x)=u
. N R
=min { p(u)+2u +Ec|u| }

where the minimization is local in the neighbourhood of U=0. The minimization can be understood by the

figure given below. The minimum point is found at the point u(ﬂ,,c)and the gradient of

- 1 2 . . .
p(u)+ AU +—C| u | will be zero at minimum point or equivalently

-4

u=u(i,c) —

V{p(u)+%c|u|z}

So we get the minimum pointu(l, C)as in figure.
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C 2
A p(u)+?|u‘

p(o)= f(x¥)

min L.(x,A)
Q

(0] u

Fig. 1 Geometric interpretation of minimization of the Augumented Lagrangian

We also know that

min L (x.2)- 2u(2,¢)=plu(t,o]l+ S e[ ulz.c)

Also the tangent of the graph p(u)+%c|u |2atu(/1,c) intersects y-axis at min L, (X,/’t). If we take
X

- 1
C sufficiently large then p(u)+ AU+ E C| u |2 will become convex in the neighbourhood of the origin. When

A will close to A and C will take large values then min L, (X,ﬂ) will be close to p(O): f(x*).
X

Now we will discuss geometric interpretation of the multiplier iteration (1). Here also the vector U, = h(Xk)

will minimize p(u)+ AU +%c|u |2 if X, minimizes Lck(.,/lk). Hence,

1
V{p(u)+zck lu |2} vy ==,
And Vp(uy )=— (& +c.u)=—[4 +cch(x )]
So Aya =Hy +Cy h(Xk ):_ Vp(uk )
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as shown in figure given below

p P+ Sl

slope -A,,,

slope-1*
slope -1, ,
p(o)=f(x*)

p(u)

—~ min LCI((XkI A
X 4

v

0 U, u

slope—i,., =vplu)

Fig. 2 Geometric interpretation of first-order multiplier iteration

the multiplier A, ., will be closer to 4~ than A, when C, will take large values and A, will be close to A .
Convergence to A will be obtained in one iteration when p(u)will be linear and convergence will be fast
enough if V2 p(0)=0. In this C, — oois not necessary for convergence but C, must be increased at some
threshold level.

IV.EXISTENCE OF LOCAL MINIMA OF THE AUGMENTED LAGRANGIAN

In penalty method we investigate whether local minima of the augmented Lagrangian exist, and if so how far

their distance from local minima of original problem is affected by the values of the penalty parameter C and the
multiplier A . Here we focus on local minimum X satisfying Assumption together with Lagrangian multiplier

A . For any scalar C,we have

2

L.(X",A) = f(x*)+/1*h(x*)+%c‘h(x*)
V, L (x", )=V (x")+Vh(x" )2 +ch(x h(x")
V, L (x", 2 )=V (X" )+ Vh(x )2 +ch(x' )=V, Ly (x", 47 )=0 @
and V2L (x4 )=V2 Ly (x", A" )+cvh(x Wh(x")
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also there exists a scalar C such that
V2L (x",2)>0 ve=c 3)

hence X is a strict local minimum of LC(.,/I*) for all ¢> C using (2) and (3). From above, we conclude that a
local minimum of Lc(.,/1*> close to X exists for every C>C , if A is close enough to A". This will also be

true when C is sufficiently large even if A is far from A". The following result makes this idea accurate.

Proposition 1: Let Assumption holds and let C be a positive scalar such that
V2L (x",2)>0 4)
Then positive scalars o, &, and M exists such that:
(a) For all (ﬂ , C)in the set D < R™" defined by
D={4.¢)|2-4|<&.c <cf ©)
the problem
minimize L (X, 4) (6)
subjectto X € S(X*; 8)

has a unique solution X(/I,c). The function x(.,.)is continuously differentiable in the interior of D, and, for

all (1,c)eD,

|(x(2.c)-x")[<M|2-7]/c @)
(b) Forall (1,¢)e D,
(E(e)-7)| <M |2-2]/c ®)
where A(2,¢)=A+ch[x(,c)] ©)

(c) For all (/I,c) e D, the matrix V2 L, [X(/l,c),ﬁ] is positive definite and the matrix Vh[x(ﬁ,,c)]

has rank m..
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Hence it can be seen that for any A, there exists a C, such that (ﬂ,,c) belongs to D for every C=C,. The

estimate & grows linearly with € on the allowable distance of A from A". In some cases the allowable distance

may grow at a higher rate than linear. And also it is possible that for every Aand ¢ > 0, a unique global

minimum of L, (.J,) exists.
Thus the above proposition provide convergence and rate of convergence result for the multiplier iteration

ﬂ“k+1 :ﬂ“k +Cy h(Xk )

If the generated sequence {lk } is bounded, the penalty parameter C, is sufficiently large after a certain index,
and the minimization of LCk (.,ﬁ,k) provides the local minimum X, =X(/Lk ,Ck) closest to X after that index,

then we obtain X, — X , 4, —> A4 .

Now we will try to obtain a fast convergence and rate of convergence result. For this we have to introduce the

primal function.

V. THE PRIMAL FUNCTION

Take the system of equations in (X, A, u)
Vf (x)+Vh(x)1=0, h(x)-u=0

The above system has the solution (X*,/l*,O). Also by Implicit Function Theorem, there exists a ¢ > Oand

functions X(u) eC*and A(u)eC*, such that X(0)=x"and A(0)=1", and for | u | <0,
v [x(u)]+Vh[x(u)]A(u)=0, h[x(u)]-u=0 (10)

Again for some and for |u|<5, we have ‘X(u)—x*‘<8and ‘l(u)—f‘<g. The function
p:S(0;8) — R is given by
p(u)=f[x(u)] Vues(0;5)

is called the primal functional corresponding to X" . In view of assumptions, x(u) will become actually a local

minimum of the problem of minimizing f (X) subject to h(X):u when we take o and ¢ sufficiently small.

An equivalent definition of p is given by
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p(u)=f [x(u)]:min{f (x) h(x)=u,x S € (x"; 5)} (11)

Also Vp(u)=—A(u) Vvues(0;5) (12)

By differentiating (10), we get
V x(u)V2 Lo [x(u), A(u)]+V, A(u)Vh[x(u)] =0, (13)
v x(u)Vh[x(u)]=1 (14)
forany ¢ € R, we have, multiply (14) with cVh[x(u)] both sides, then we get
¢V, x(u)Vh[x(u)[vh[x(u)] =cVh[x(u)] (15)
By adding (13) and (15), we get

v, x(u ){Vix L, [x(u), A(u)]+ ¢ Vh]x(u)Wh[x(u)] }+ [V, A(u)—-cl Whix(u)] =0

By multiplying the above equation with {V )20( L, [X(u), ﬂ,(U)]-FCVh[X(U)]Vh[X(U)]I }71 we get that for every

c the inverse below exists

V x(u)+[V, Au)—cl Whx(u)]’ x{ViXLO [x(u), A(u)]+c Vh[x(u)Vh[x(u)] }71 =0

Multiplying both sides with Vh[x(u)] , We get
V x(u)Vh[x(u)]+ [V, A(u)-cl Wh[x(u)] " x {Vix Lo [x(u), 2(u)]+c Vhx(u)Wh[x(u)] }&Vh[x(u )]=0

Now using (12) and (14), we get

1+ V2 plu) -t [h[x(u)] x{¥ L [x(u) A(u)]+c vhlx(u)vhix(w)] | vhix(w)]=0
== plu)—ct [vhlx(u)] x{V2, Lo [x(u) Au)]+c Vhlx(u)hDeu)] | vhlx(u)]

Vh{x(u)] x 72 Ly [x(u), A(u)]+ cvhix(u)Vh[x(u)] | *Vh[x(u)]
o1+ plu)= 0] 72, Lo ) 200 eV RB] | orbl) o

= [v?p(u)+cl ]

Above equation holds for all u with | u | < ¢ and for all ¢ for which the inverse above exists.
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For u=0, we get

0)=vh(x ) [v2.L. (¢ 2 ol )| —ci an

for any ¢ for which inverse of V2, L (X*, 2,*) exists. If [Vix L, (X* A )]71 exists then

©)={wn(x ) [ Lo(x, 2 )T wn(x )| 1)

Now the following result will show that the point after which sudden changes are expected, can be characterized

in terms of the eigen values of the matrix V2 p(O).
Proposition 2: Suppose that the assumptions hold and for any scalar , we have

V2L (X", 2)>0ec>maxi—e,,...—e, }«<>V?p(0)+cl >0 (19)

where €,,...,€, are the eigen values of Vv? p(O).

Now we shall show that the rate of convergence of the method of multipliers can also be characterized in terms

of eigen values.
VI.CONVERGENCE ANALYSIS

In this we will find the convergence and fast rate of convergence result for the method of multipliers.

Proposition 3: Suppose Assumption holds and let Cand o be as described above. For all (/I,c)in the set

D defined by (11), there holds
A(A,0)-Z =[ NJx +5la-7 2 -7 )ds (20)
where for all (1,c)e D, the mxmmatrix N_ is defined by
N, (1) =1 —cVh[x(4,c)] (V2 L [x(2.c), ] Vh[x(4.c)] 21)

where | is the identity matrix.

Theorem 4: Suppose assumption holds, let Cand o be as described above. €,,...,€,, are the eigen values of

v? p(O) given by (17) or (18). Assume also that
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C >max{-2e,,..,-2¢,} (22)

(or V? p(0)+ %CI > 0). Then a scalar 6, with 0 < &, < & exists such that if {Ck }and Ao satisfy
Ao = 4| fco < 51, c<c <c., vk=041,.., (23)
Then the sequence {/Ik }generatedby A, ,, =4, +C, h[X(ﬂ,k .Cy )] (24)

is well defined as (ﬂk,ck) belongs to the set D of (5) for all k so X(ﬂk,ck)is well defined.

and also we have 4, — A'and X(4,,c, )— X". Also if limsupc, —c¢” <ooand A, # A for all k,

kK—o0
. ‘/’tk-#l - €,
there holds limsup - max - (25)
kosoo ‘ik A Tishemle +c

if ¢, —ooand A, = A forall K, there holds

. ﬂ’k+1 _ﬂ’*

lim = (26)

k—o0

Proof: In this we will consider the matrix N of (21), we get

N (1) =1 —evh(x w2 L (2 T vn(c)
0)=fvh(x ) [72.L.(x ﬂ) () —al

Then we get VZp(0)+cl ={Vh ) v w L ( ) *)_1Vh(x*)}_l

and [v2p(0)+cl | —{Vh 2 ) vhi(x )}

so by using above, we get

As we have

N, (4" )=1-c[v?p(0)+cl |
If we take ,ul(C),..., y7 (C)as eigen values of N (/1*), then we get

c e
. :1— = !
#(0) e +C € +C
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As the eigen values of V2 p(0) are €,,...,e,and V>p(0)+cl are € +cC.
V(/i, C) e D, from (21) we have

N, (2)=1—cVh[x(4,c)] V2 L [x(4.c), Al Vh[x(4,c)]
And also we have

V2L, (x*, A )=V§X L, (x* : /1*)+ th(x* )Vh(x* )
Then V2L [x(4,¢) A4 c)|=V2 L[x(4,c), A(4, )]+ cVh[x(4, c)Wh[x(4,c)]
This implies

V2 L [x(4,¢), (4, c)]=clc V2 Ly [x(4.c), A(4,¢)]+ Vh[x(4,c)Vh[A.c] |

And finally we get

N, (1) =1 = Vh[ x(1,¢) [{e V2 Lo [x(2,¢), Z(2,¢)|+ Vh[x(4, c)Wh[x(4,c)] | Vh[x(2,c)]

Hence by using Proposition 1 and the above result, we can easily see that for given any & > 0, 51 S (0,5]

exists, such that ‘v’(/I, C) e Di.e. with ‘/1 —ﬂ*‘/c <0, C<cC,weget

x e
IN.(2)]< Nc(ﬂ )‘+gl=i—1?‘.),r(n|ﬂi(c)|+51=ir—rl]?.>§n—ei e
And by (20), we get for all these pairs (l, C)
‘E(/l,c)—/l*‘ < [max i +81]‘A—/1*‘ 27)
i=l,...m ei +C

we get for some p € (0,1) and all (l, C)with ‘/1 — /1*‘/0 <od,and C<cC

A(e)-Al<pa-x
| <

So we get A, — A and X(/lk,ck)—> X" by using (7) and (23). Also the convergence rate can also be

calculated by using (27).

VII.COMPARISON OF PENALTY METHOD AND MULTIPLIER METHOD

e In Penalty Method, the multiplier A, = constant, and it is necessary to increase the penalty parameter C, to

infinity. But in method of multiplier, it is not necessary to increase C,to infinity in order to obtain

convergence.
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o Rate of convergence of method of multiplier is better than the penalty method.
¢ In method of multipliers, the rate of convergence is linear or super linear while in penalty method, the rate of

convergence depends on the rate at which the penalty parameter is increased.

But it is important to know how one should select the initial multiplier A;and the penalty parameter sequence.

We should have to choose A as close as possible to A The following points may help us in selecting penalty
parameter sequence:-

e The parameter C, should become larger than that point after which sudden changes are likely to occur.
o The initial parameter C, should not be too large.
e The parameter C, should not be increased too fast.

e The parameter C, should not be increased too slowly.

These conditions may be contradictory for some extent. Also for non convex problems, it is difficult to know

about that point, after which changes are likely to occur for penalty parameter. Usually C,is chosen and
subsequent values of C, are monotonically increased by the equation C,,, =/ C,, where [ is a scalar with

L > 1.The choices for £ can be taken from S 6[4,10]. By this, the threshold level i.e. that point after which
sudden changes are likely to occur, for multiplier convergence will be exceeded.
We can increase C, by multiplication with a factor £ >1lonly if the constraint violation, measured by

|h[X(/1k Gy )]| is not decreased by a factor y <1 over the minimization, i.e.

. ={/3ck if | h[x(4,c)l|> 7| h[X(A 1, cc )]
K+ C, if | h[x(ﬂk,ck )]|§7| h[X(ﬂk_l,Ck_l)”

L =10and y=0.25 are mostly used. For above scheme, If {ﬂk }remains bounded, then the penalty parameter

sequence {Ck }will remains bounded.

Another way is to use a different penalty parameter for each constraint hi (X):O, and to increase the penalty
parameter by a certain factor which correspond to those equations for which the constraint violation, measured

by |hi [X(lk o )]| is not decreased by a factor over the minimization.

Thus, from above discussion it can be noted that the method strongly depends on the initial choice of the
multiplier A, and choice of A, close to A will give best convergence result and reduces computational

requirement of the method.
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