# International Journal of Advance Research in Science and Engineering Volume No.06, Issue No. 12, December 2017 IJARSE WWW.ijarse.com ISSN: 2319-8354

# Electrochemical investigation of methanol electrooxidation over GO and ZSM-5 composite in different ratios

### **Basu Maan Daas**

Department of Chemistry,
Netaji Subhash Mahavidyalaya, Udaipur , Tripura(India)

### **ABSTRACT**

Graphene oxide and ZSM-5 are both known to be conductive to electricity and the former is recognized to catalyze methanol electro-oxidation in acidic media and the latter is recognized to be an effective support and second catalyst. In this research work, electro-oxidation of methanol over composites of graphene oxide and ZSM-5 in different ratios is analyzed to find out the combined effect of graphene oxide and ZSM-5 in catalyzing the electro-oxidation reaction. The composites of graphene oxide and ZSM-5 analyzed are 1:0, 2:1, 1:2 and 0:1. From the cyclic voltammetric experimental data, it is found that the composite of 1:2 ratio of graphene oxide and ZSM-5 is the most effective in catalyzing methanol electro-oxidation reaction in acidic media. This information can add more to the understanding of the role of graphene oxide and ZSM-5 in methanol electro-oxidation for fuel cell applications in direct methanol fuel cells.

Keywords: Graphene oxide, ZSM-5, Electro-oxidation, Methanol, Cyclic voltammetry.

### **I.INTRODUCTION**

The electro-oxidation of methanol (MeOH) is easier than that of ethanol and thus there has been much research about direct methanol fuel cells (DMFCs) [1,2]. DMFCs are considered a way to tackle the global energy crisis by non-conventional energy generation method for utilization in small electronic devices requiring less amount of electricity [3-12]. Graphene oxide and ZSM-5 are both known to be conductive to electricity and the former is recognized to catalyze MeOH electro-oxidation in acidic media and the latter is recognized to be an effective support and second catalyst [3,13-21]. However, the two dimensional rGO sheets have a tendency to pile together owing to  $\pi$ - $\pi$  interaction between the individual sheets; this in turn reduces the effective surface area of rGO, consequently increasing the resistance for the influx of MeOH molecules and decreasing the catalysis [22-24]. In the preparation of GO, irreversible clustering/restacking occurs during drying due to van der Waals interactions [25,26]. The rGO sheets also possess defects which retard the overall electron transfer rate within the rGO sheets and also at the interface. The basal layers in rGO deters dispersion of electrolyte within the layers [27,28]. Thus, zeolite is used in the experimental composites to see if it can improve DMFC applications. Owing to the exceptional surface area, miniscule diffusion path lengths and readily accessible active sites ZSM-5 can promote the catalysis of MeOH electro-oxidation [29-35].

Volume No.06, Issue No. 12, December 2017 www.ijarse.com



### **II.EXPERIMENTAL DETAILS**

#### 2.1. Instrumentation

GO was analyzed by Fourier transform infrared (FTIR) spectroscopy using Shimadzu FT-IR 8400 S. ZSM-5 was analyzed by Powder X-Ray diffraction (XRD) using Rigaku Ultima IV. GO:ZSM-5/C electrodes were prepared with the ratio of GO:ZSM-5 being 1:0, 2:1, 1:2 and 0:1 and their electro-catalytic behavior on oxidation of 1 M MeOH in 0.5 M  $H_2SO_4$  was analyzed by Autolab cylic voltammeter (CV) (model PGSTAT128N) of Metrohm, Switzerland. Electrochemical surface area (ECSA), chronoamperometric analysis (CA), and tafel plot (TP) analyses were also done by the CV.

### 2.2. Chemicals, reagents & working electrodes

Graphite powder, carbon felt (C-felt) and H<sub>2</sub>PtCl<sub>6</sub> were purchased from Alfa-Aeser (India); ZSM-5 from Greenstone, Switzerland; KMnO<sub>4</sub>, NaNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, HCl, and 30% H<sub>2</sub>O<sub>2</sub> from Merck (India). Freshly triple-distilled water was used for the whole experiment. Graphene oxide was prepared as done in my previous works [36,37]. GO/C, [GO:ZSM-5]/C (2:1), [GO:ZSM-5]/C (1:2), and ZSM-5/C electrodes were prepared as done in my previous work [38]. The ratio of GO and ZSM-5 in the electrodes were maintained by taking mechanical 1:0, 2:1, 1:2 and 0:1 mixtures by weight. These electrodes were electrochemically reduced to rGO/C, r[GO:ZSM-5]/C (2:1), r[GO:ZSM-5]/C (1:2), and rZSM-5/C electrodes on a bath containing 0.5 M H<sub>2</sub>SO<sub>4</sub> solution, by passing a current of (-)0.001 mA/cm<sup>-2</sup> for 30 min and washing thoroughly by deionized water. Then, platinum (Pt) was galvanostatically electrodeposited on all the rGO/C, r[GO:ZSM-5]/C (2:1), r[GO:ZSM-5]/C (1:2), and rZSM-5/C electrodes to obtain the working electrodes, Pt/rGO/C, Pt/r[GO:ZSM-5]/C (2:1), Pt/r[GO:ZSM-5]/C (1:2), and Pt/rZSM-5/C, by passing (-)0.001 A/cm<sup>2</sup> for 100 s through a 2 × 10<sup>-3</sup> M solution of chloroplatinic acid (H<sub>2</sub>PtCl<sub>6</sub>.6H<sub>2</sub>O) in 1.0 M H<sub>2</sub>SO<sub>4</sub> with each of the electrodes dipped separately.

### III. EXPERIMENTAL RESULTS

In the FTIR spectrum of GO (Fig.1) peaks at 3600 - 3400 cm<sup>-1</sup>, 1740 cm<sup>-1</sup>, 1590 cm<sup>-1</sup>, 1420 cm<sup>-1</sup>, 1230 cm<sup>-1</sup> and 840 cm<sup>-1</sup> can be attributed to -OH stretching vibrations, C = O stretching vibration, skeletal vibration from unoxidized graphitic domains, aromatic C = C stretching, C-OH stretching vibrations, and epoxy group respectively confirming the formation of GO [38,39].

In the X-ray diffractogram of ZSM-5 (Fig. 2) the pattern matched with the characteristic diffraction pattern with hkl peaks of (011), (020), (051), (101), (301), (501) and (503) at  $2\theta = 22.99^{\circ}$  to  $25^{\circ}$  [40-42]. This confirmed the purity and authenticity of the purchased ZSM-5.

Volume No.06, Issue No. 12, December 2017 www.ijarse.com



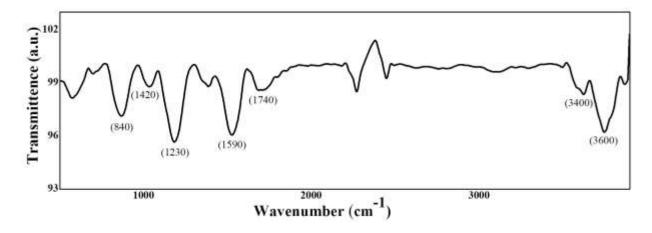
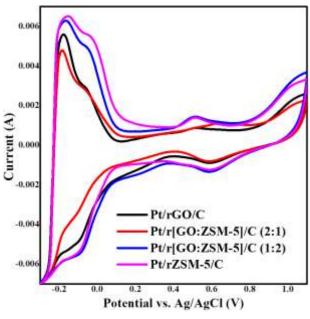



Fig. 1: FTIR spectrum of GO.

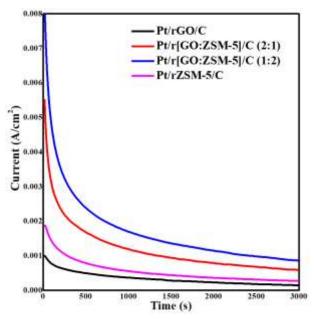



Fig. 2: X-ray diffractogram of ZSM-5.

The ECSA (Fig. 3) of Pt/rGO/C, Pt/r[GO:ZSM-5]/C (2:1), Pt/r[GO:ZSM-5]/C (1:2), and Pt/rZSM-5/C electrodes are reported in Fig. 1. The calculated ECSA of Pt/rGO/C, Pt/r[GO:ZSM-5]/C (2:1), Pt/r[GO:ZSM-5]/C (1:2), and Pt/rZSM-5/C electrodes were found to be 89.6, 96, 103.6 and 81.9 cm<sup>2</sup>/mg respectively.

The CV (Fig. 4) of 1 M MeOH oxidation in 0.5 M  $H_2SO_4$  catalyzed by Pt/rGO/C, Pt/r[GO:ZSM-5]/C (2:1), Pt/r[GO:ZSM-5]/C (1:2), and Pt/rZSM-5/C. The forward peak current density ( $I_f$ ) of Pt/rGO/C, Pt/r[GO:ZSM-5]/C (2:1), Pt/r[GO:ZSM-5]/C (1:2), and Pt/rZSM-5/C electrodes were found to be 0.018, 0.024, 0.038 and 0.016 A/cm<sup>2</sup> while backward peak current density ( $I_b$ ) are 0.005, 0.008, 0.015 and 0.005 A/cm<sup>2</sup> respectively; the  $I_f/I_b$  ratio for Pt/rGO/C, Pt/r[GO:ZSM-5]/C (2:1), Pt/r[GO:ZSM-5]/C (1:2), and Pt/rZSM-5/C electrodes being 3.6, 3.0, 2.5 and 3.2 respectively.

Volume No.06, Issue No. 12, December 2017 www.ijarse.com






0.04 0.03 Current (A/cm²) Pt/rGO/C Pt/r[GO:ZSM-5]/C (2:1) -0.03 Pt/r[GO:ZSM-5]/C (1:2) Pt/rZSM-5/C 0,6 0.4 Potential vs Ag/AgCl (V)

Fig. 3: ECSA of Pt/rGO/C, Pt/r[GO:ZSM-5]/C (2:1), Pt/r[GO:ZSM-5]/C (1:2), and Pt/rZSM-5/C electrodes in 0.5 M H<sub>2</sub>SO<sub>4</sub>.

Fig. 4: CV of 1 M MeOH oxidation in 0.5 M H<sub>2</sub>SO<sub>4</sub> Pt/rGO/C, Pt/r[GO:ZSM-5]/C catalyzed Pt/r[GO:ZSM-5]/C (1:2), and Pt/rZSM-5/C electrodes.



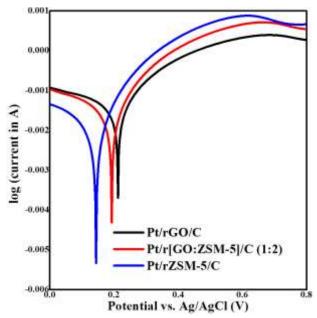



Fig. 5: CA of Pt/rGO/C, Pt/r[GO:ZSM-5]/C (2:1), Fig. 6: TP of Pt/rGO/C, Pt/r[GO:ZSM-5]/C (1:2) and Pt/r[GO:ZSM-5]/C (1:2), and Pt/rZSM-5/C electrodes in Pt/rZSM-5/C in 1 M MeOH and 0.5 M H<sub>2</sub>SO<sub>4</sub>. 1 M MeOH and 0.5 M  $H_2SO_4$  at 0.4 V for 3000s.

# Volume No.06, Issue No. 12, December 2017 www.ijarse.com IJARSE ISSN: 2319-8354

The CA (Fig. 5) of Pt/rGO/C, Pt/r[GO:ZSM-5]/C (2:1), Pt/r[GO:ZSM-5]/C (1:2), and Pt/rZSM-5/C electrodes in 1 M MeOH and 0.5 M  $H_2SO_4$  at 0.4 V for 3000s were done. The current density decreased for all the electrodes but after 3000s the current density was found to be maximum for Pt/r[GO:ZSM-5]/C (1:2) electrode. The turn over number (TON) calculated from the electro chemical data with the current density at 3000 s; TON was found to be maximum for Pt/r[GO:ZSM-5]/C (1:2) electrode [43,44].

The TP (Fig. 6) of Pt/rGO/C, Pt/r[GO:ZSM-5]/C (1:2) and Pt/rZSM-5/C electrodes in 1 M MeOH and 0.5 M  $H_2SO_4$  gave the corrosion potential ( $E_{corr}$ ) and the corrosion current density ( $i_{corr}$ ) at the point of intersection of extrapolated cathodic and anodic tafel slopes. The Pt/r[GO:ZSM-5]/C (1:2) electrode was not considered here as the CV and CA experimental data showed that Pt/r[GO:ZSM-5]/C (1:2) electrode was the one with highest catalytic possibility. The Pt/r[GO:ZSM-5]/C (1:2) electrode was found to possess highest  $i_{corr}$  and lowest  $E_{corr}$  in the TP.

### **IV.DISCUSSION**

It is seen that ECSA and  $I_f$  increases in the ascending order of Pt/rGO/C < Pt/rZSM-5/C < Pt/r[GO:ZSM-5]/C (2:1) < Pt/r[GO:ZSM-5]/C (1:2) electrodes. This shows that the electrodeposited Pt nanoparticles (PNPs) were of smallest size in case of the Pt/r[GO:ZSM-5]/C (1:2) electrode resulting maximum active surface area which in turn resulted in maximum cyclic voltammetric current density for the said electrode. From the CA experimental data, it is seen that the residual current after a time period of 3000 s was maximum for Pt/r[GO:ZSM-5]/C (1:2) electrode as well as the TON calculated is seen to be maximum. From the TP experimental data, it is seen that in case of Pt/r[GO:ZSM-5]/C (1:2) electrode maximum current was generated at minimum potential which strengthens the statement that Pt/r[GO:ZSM-5]/C (1:2) electrode is the most capable electrode of all the working electrodes [3,43].

### V. CONCLUSION

From the electrochemical investigation of methanol electro-oxidation over Pt/rGO/C, Pt/r[GO:ZSM-5]/C (2:1), Pt/r[GO:ZSM-5]/C (1:2), and Pt/rZSM-5/C electrodes in acidic medium proves that the composite of GO and ZSM-5 in the ratio of 1:2 is the most potent catalyst for methanol electro-oxidation. As a further scope of work it may be concluded that there is enough scope of investigation more ratios of GO:ZSM-5 to identify the optimum ratio for catalyzing methanol electro-oxidation in acidic media.

#### REFERENCES

[1] E. Antolini, J.R.C. Salgado, and E.R. Gonzalez, Carbon supported Pt75M25 (M = Co, Ni) alloys as anode and cathode electrocatalysts for direct methanol fuel cells, Journal of Electroanalytical Chemistry, 580(1), 2005, 145-154.

## Volume No.06, Issue No. 12, December 2017 www.ijarse.com



- [2] Y.H. Lin, X.L. Cui, C. Yen, and C.M. Wai, Platinum/Carbon Carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells, Journal of Physical Chemistry B 109(30), 2005, 14410-14415.
- [3] H. Pang, J. Chen, L. Yang, B. Liu, X. Zhong, and X. Wei, Ethanol electrooxidation on PtZSM-5 zeolite-C catalyst, Journal of Solid State Electrochemistry, 12, 2008, 237-243.
- [4] F. Kadirgan, S. Beyhan, and T. Atilan, Preparation and characterization of nano-sized Pt-Pd/Carbon catalysts and comparison of their electro-activity toward methanol and ethanol oxidation, International Journal of Hydrogen Energy, 34(10), 2009, 4312-4320.
- [5] J.B. Raoof, N. Azizi, R. Ojani, S. Ghodrati, M. Abrishamkar, and F. Chekin, Synthesis of ZSM-5 zeolite: electrochemical behavior of carbon paste electrode modified with Ni (II)–zeolite and its application for electrocatalytic oxidation of methanol, International Journal of Hydrogen Energy, 36, 2011, 13295-13300.
- [6] T.S. Zhao, R. Chen, W.W. Yang, and C. Xu, Small direct methanol fuel cells with passive supply of reactants, Journal of Power Sources 191, 2009, 185-202.
- [7] X. Li, A. Faghri, and C. Xu, Water management of the DMFC passively fed with a high concentration methanol solution, International Journal of Hydrogen Energy, 35(16), 2010, 8690-8698.
- [8] J.H. Kim, H.Y. Kim, K.T. Hwang, and J.Y. Lee, Performance of air-breathing direct methanol fuel cell with anion-exchange membrane, International Journal of Hydrogen Energy, 35, 2010, 768-773.
- [9] Q. Yi, W. Huang, J. Zhang, and X. Liu, L. Li, Methanol oxidation on titanium-supported nano-scale Ni flakes, Catalysis Communications, 9, 2008, 2053-2058.
- [10] A.S. Arico, S. Srinivasan, and V. Antonucci, DMFCs: from fundamental aspects to technology development, Fuel Cells, 1, 2001, 133-161.
- [11] K.D. Nam, T.J. Kim, S.K. Kim, B. Lee, D.H. Peck, S.K. Ryu, and D.H. Jung, Preparation of uniform porous carbon from mesophase pitch and its characteristics of catalyst support for the direct methanol fuel cell, Korean Journal of Industrial and Engineering Chemistry 17(2), 2006, 223-228.
- [12] R.K. Ahluwalia, and X. Wang, Direct hydrogen fuel cell systems for hybrid vehicles, Journal of Power Sources, 139, 2005, 152-164.
- [13] Z. Mojović, P. Banković, N. Jović-Jovicić, A. Milutinović-Nikolić, A.A. Rabi-Stanković, and D. Jovanović, Electrocatalytic behavior of nickel impregnated zeolite electrode, International Journal of Hydrogen Energy, 36, 2011, 13343-13351.
- [14] Z. Mojović, T. Mudrinić, A.A. Rabi-Stanković, A. Ivanović-Šašić, S. Marinović, M. Zunić, and D. Jovanović, Methanol electrooxidation on PtRu modified zeolite X, Science of Sintering, 45, 2013, 89-96.
- [15] R. Baronia, J. Goel, S. Tiwari, P. Singh, D. Singh, S.P. Singh, and S.K. Singhal, Efficient electro-oxidation of methanol using PtCo nanocatalysts supported reduced graphene oxide matrix as anode for DMFC, International Journal of Hydrogen Energy, 42(15), 2017, 10238-10247.

# Volume No.06, Issue No. 12, December 2017 www.ijarse.com



- [16] R. Liu, H. Zhou, J. Liu, Y. Yao, Z. Huang, C. Fu, and Y. Kuang, Preparation of Pd/MnO2-reduced graphene oxide nanocomposite for methanol electro-oxidation in alkaline media, Electrochemistry Communications, 26, 2013, 63-66.
- [17] S. Siwal, S. Ghosh, D. Nandi, N. Devi, V.K. Perla, R. Barik and K. Mallick, Synergistic effect of graphene oxide on the methanol oxidation for fuel cell application, Materials Research Express, 4(9), 2017, 095306.
- [18] A.B. Yousaf, R. Khan, M. Imran, C. Fernandez, C.Z. Yuan, and L. Song, Synergistic electronic pull of graphene oxide supported Pd nanoparticles on enhancing catalytic activity of electro deposited Pt nanoparticles for methanol oxidation reaction, International Journal of Electrochemical Science, 11, 2016, 6735-6746.
- [19] W. Huang, H. Wang, J. Zhou, J. Wang, P.N. Duchesne, D. Muir, P. Zhang, N. Han, F. Zhao, M. Zeng, J. Zhong, C. Jin, Y. Li, S.T. Lee, and H. Dai, Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum—nickel hydroxide-graphene, Nature Communications, 6, 2015, 10035.
- [20] Y. Wang, J.W. Ren, K. Deng, L.L. Gui, and Y.Q. Tang, Preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media, Chemistry of Materials, 12(6), 2000, 1622-1627.
- [21] G. Fernanda, R.S. Medeiros, G.E. Jean, and G.A. Lucia, Active sites for ethanol oxidation over SnO<sub>2</sub>-supported molybdenum oxides, Applied Catalysis A: General, 193, 2000, 195-202.
- [22] Y. Si, and E.T. Samulski, Exfoliated graphene separated by platinum nanoparticles, Chemistry of Materials, 20(21), 2008, 6792-6797.
- [23] B. Nam, H.J. Lee, H. Goh, Y.B. Lee, W.S. Choi, Sandwich-like graphene nano composites armed with nano needles, Journal of Materials Chemistry, 22(7), 2012, 3148-3153.
- [24] Y. Liang, D. Wu, X. Feng, and K. Müllen, Dispersion of graphene sheets in organic solvent supported by ionic interactions, Advanced Materials, 21(17), 2009, 1679-1683.
- [25] H. Yang, F. Li, C. Shan, D. Han, Q. Zhang, L. Niu, and A. Ivaska, Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement, Journal of Materials Chemistry, 2009, 19(26), 4632-4638.
- [26] S.Z. Zu, and B.H. Han, Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel, Journal of Physical Chemistry C, 113, 2009, 13651-13657.
- [27] C. Gómez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Electronic transport properties of individual chemically reduced graphene oxide sheets, Nano Letters, 7(11), 2007, 3499-3503.
- [28] E. Yoo, J. Kim, E. Hosono, H.S. Zhou, T. Kudo, and I. Honma, Large reversible Li Storage of graphene nanosheet families for use in rechargeable lithium ion batteries, Nano Letters, 8(8), 2008, 2277-2282.

## Volume No.06, Issue No. 12, December 2017 www.ijarse.com



- [29] G. Reding, T. Maurer, and B. Kraushaar-Czarnetzki, Comparing synthesis routes to nano-crystalline zeolite
  ZSM-5, Microporous and Mesoporous Materials, 57, 2003, 83-92.
- [30] R.V. Grieken, J.L. Sotelo, J.M. Menendez, J.A. Melero, Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5, Microporous and Mesoporous Materials, 39(1-2), 2000, 135–147.
- [31] Q. Li, Z. Wang, J. Hedlund, D. Creaser, H. Zhang, X. Zou, and A. Bons, Synthesis and characterization of colloidal zoned MFI crystals, Microporous and Mesoporous Materials, 2005, 78, 1–10.
- [32] W. Song, R.E. Justice, C.A. Jones, V.H. Grassian, and S.C. Larsen, Synthesis, characterization, and adsorption properties of nanocrystalline ZSM-5, Langmuir, 20(19), 2004, 8301–8306.
- [33] S.D. Kim, S.H. Noh, J.W. Park, and W.J. Kim, Organic-free synthesis of ZSM-5 with narrow crystal size distribution using two-step temperature process, Microporous and Mesoporous Materials, 92(1-3), 2006, 181–187.
- [34] J. Aguado, D.P. Serrano, J.M. Escola, and J.M. Rodriguez, Low temperature synthesis and properties of ZSM-5 aggregates formed by ultra-small nanocrystals, Microporous and Mesoporous Materials, 75, 2004, 41-49.
- [35] S. Frisch, L. Rosken, J. Caro, and M. Wark, Ion conductivity of nano-scaled Al-rich ZSM-5 synthesized in the pores of carbon black, Microporous and Mesoporous Materials, 120, 2009, 47-52.
- [36] B.M. Daas, D. Das, and S. Ghosh, Ethanol electro-oxidation by Pt/r(GO-ZSM)/graphite foil, Advanced Materials Proceedings, 384(1), 1999, 1-16.
- [37] D. Das, S. Ghosh, and I. Basumallick, Electrochemical studies on glucose oxidation in an enzymatic fuel cell with enzyme immobilized on to reduced graphene oxide surface, Electroanalysis, 26, 2014, 2408-2418.
- [38] E. Choi, T.H. Han, J. Hong, J.E. Kim, S.H. Lee, H.W. Kim, and S.O. Kim, Noncovalent functionalization of graphene with end-functional polymers, Journal of Materials Chemistry 20(10), 2010, 1907-1912.
- [39] B.M Daas, P.K. Ghosh, and S. Ghosh, Composites of graphene oxide and zeolite as a potential inhibitor for alkaline corrosion of aluminium, Indian Journal of Science and Technology, 10(25), 2017, 1-11.
- [40] P. Morales-Pacheco, F. Alvarez-Ramirez, P. Del Angel, L. Bucio, and J.M. Dominguez, Synthesis and structural properties of zeolytic nanocrystals I. MFI type zeolites, Journal of Physical Chemistry C 111(6), 2007, 2368-2378.
- [41] M.M.J. Treacy, J.B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites (Amsterdam: Elsevier, 2001).
- [42] D. Das, P.K. Ghosh, and B.M. Daas, Electro-oxidation of ethanol onto Pt/rGO/C, Pt/rGO-G, Pt/rGO-CB/C and Pt/rGO-ZSM/C composite carbon-felt electrode for fuel cell application, International Journal of ChemTech Research, 10(10), 2017, 459-473.

# International Journal of Advance Research in Science and Engineering Volume No.06, Issue No. 12, December 2017 IJARSE Www.ijarse.com ISSN: 2319-8354

- [43] B.M. Daas, Electro- oxidation of methanol and ethanol catalyzed by Pt/ZSM- 5/C, Electroanalysis, 29(11), 2017, 2516-2525.
- [44] W. Ye, X. Zhang, Y. Chen, Y. Du, F. Zhou, C. Wang, Pulsed electrodeposition of reduced graphene oxide on glass carbon electrode as an effective support of electrodeposited Pt microspherical particles, International Journal of Electrochemical Science, 8(2), 2013, 2122-2139.