Volume No.06, Issue No. 12, December 2017 www.ijarse.com

On w-semi-T-continuous maps

Nitakshi Goyal¹, Navpreet Singh Noorie²

^{1,2} Department of Mathematics, Punjabi University Patiala, Punjab(India).

ABSTRACT

In this paper we will give introduce w-semi-T-continuous mappings and give various characterizations of it.

Key Words and phrases: w-semi-T-open, w-semi-T-continuous.

2000 MSC: 54C10.

I.INTRODUCTION

In [3], Janković and Hamlett introduced the concept of T-open sets in topological spaces. In [1] Hatir and Noiri introduced the notion of semi-X-open sets and semi-X-continuous functions and in [2] they further investigate the properties of semi-X-continuous functions. The subject of ideals in topological spaces were introduced by Kuratowski[5] and further studied by Vaidyanathaswamy[6]. Corresponding to an ideal a new topology $\tau^*(\mathfrak{T}, \tau)$ called the *-topology was given which is generally finer than the original topology having the kuratowski closure operator $cl^*(A) = A \cup A^*(\mathfrak{T},\tau)[7]$, where $A^*(\mathfrak{T},\tau) = \{x \in X : U \cap A \notin \mathfrak{T} \text{ for every open subset } U \text{ of } x \text{ in } I$ X called a local function of A with respect to \mathfrak{T} and τ. We will write τ^* for $\tau^*(\mathfrak{T}, \tau)$.

The following section contains some definitions and results that will be used in our further sections.

Definition 1.1.[5]: Let (X, τ) be a topological space. An ideal $\mathfrak T$ on X is a collection of non-empty subsets of Xsuch that (a) $\phi \in \mathfrak{T}$ (b) $A \in \mathfrak{T}$ and $B \in \mathfrak{T}$ implies $A \cup B \in \mathfrak{T}$ (c) $B \in \mathfrak{T}$ and $A \subset B$ implies $A \in \mathfrak{T}$.

Definition 1.2 [2]: Let(X, τ, \mathfrak{T}) be an ideal space and A be any subset of X. Then A is said to be semi- \mathfrak{T} -open if $A \subset cl^*(int(A)).$

Definition 1.3 [1]: Let (X,τ,\mathfrak{T}) and (Y,σ) be two topological spaces. Then a map $f:(X,\tau,\mathfrak{T})\to (Y,\sigma)$ is said to be semi-T-continuous if inverse image of every open set in Y is semi-T-open in X.

Definition 1.4 [1]: Let (X,τ,\mathfrak{T}) and (Y,σ,\mathcal{J}) with $\mathcal{J}=f(\mathfrak{T})$ be two ideal topological spaces. Then a map

 $f: (X, \tau, \mathfrak{T}) \to (Y, \sigma, \mathcal{J})$ is said to be semi- \mathfrak{T} -irresolute if inverse image of every semi- \mathcal{J} -open subset in Y is semi- \mathfrak{T} -open in X.

Definition 1.5.[4]: A mapping $f: (X,\tau,\mathfrak{T}) \rightarrow (Y,\sigma)$ is said to be pointwise \mathfrak{T} -continuous if the inverse image of every open set in Y is τ^* -open in X.

Lemma 1.6.[3]: Let (X,τ,\mathfrak{T}) be an ideal space and Y be subset of X. Then

Volume No.06, Issue No. 12, December 2017 www.ijarse.com

IJARSE ISSN: 2319-8354

 $\mathfrak{T}_{Y} = \{I \cap Y \mid I \in \}$ is an ideal on Y.

II.RESULTS

Definition 2.1: Let (X,τ,\mathfrak{T}) be an ideal space and A be any subset of X. Then A is said to be w-semi- \mathfrak{T} -open if $A \subset cl(int^*(A))$.

Definition 2.2: Let (X,τ,\mathfrak{T}) and (Y,σ) be two topological spaces. Then a map $f:(X,\tau,\mathfrak{T})\to (Y,\sigma)$ is said to be w-semi- \mathfrak{T} -continuous if inverse image of every open set in Y is w-semi- \mathfrak{T} -open in X.

i.e. f is w-semi- $\mathfrak T$ -continuous if $\forall\ V\in\sigma,\ f^1(V)$ is w-semi- $\mathfrak T$ -open subset of X.

Definition 2.3: Let (X,τ,\mathfrak{T}) and (Y,σ,\mathcal{J}) with $\mathcal{J}=f(\mathfrak{T})$ be two topological spaces. Then a map

 $f:(X,\tau,\mathfrak{T})\to (Y,\sigma,\mathcal{J})$ is said to be w*-semi- \mathfrak{T} -continuous if inverse image of every σ^* -open set in Y is w-semi- \mathfrak{T} -open in X.

i.e. f is w*-semi- \mathfrak{T} -continuous if $\forall V \in \sigma^*$, $f^1(V)$ is w-semi- \mathfrak{T} -open subset of X.

Remark 2.4: Since $\sigma \subset \sigma^*$. Therefore, it can be easily seen that every w*-semi- \mathfrak{T} -continuous map is w-semi- \mathfrak{T} -continuous.

Definition 2.5: Let (X,τ,\mathfrak{T}) and (Y,σ,\mathcal{J}) with $\mathcal{J}=f(\mathfrak{T})$ be two ideal topological spaces. Then a map

 $f:(X,\tau,\mathfrak{T})\to (Y,\sigma,\mathcal{J})$ is said to be w-semi- \mathfrak{T} -irresolute if inverse image of every w-semi- \mathcal{J} -open subset in Y is w-semi- \mathfrak{T} -open in X.

i.e. f is w-semi- \mathfrak{T} -irresolute if \forall w-semi- \mathcal{J} -open subset V in Y, $f^{-1}(V)$ is w-semi- \mathfrak{T} -open subset of X.

Remark 2.6: Since, every τ^* -open subset V in an ideal space (X,τ,\mathfrak{T}) is w-semi- \mathfrak{T} -open and every open subset of X is τ^* -open. Therefore,

- 1.) Every pointwise-T-continuous map is w-semi-T-continuous.
- 2.) Every w-semi-\mathbb{T}-irresolute is w-semi-\mathbb{T}-continuous map.

Theorem 2.7: Let (X,τ,\mathfrak{T}) and (Y,σ) be two topological spaces and $f:(X,\tau,\mathfrak{T})\to (Y,\sigma)$ be any map. Then prove that the following are equivalent:

- a) f is w-semi-T-continuous.
- b) For each $x \in X$ and any open set V containing f(x) in Y, there exists a w-semi- \mathfrak{T} -open subset U of x such that $f(U) \subset V$.
- c) The inverse image of every closed set in Y is w-semi- \mathfrak{T} -closed in X.

Volume No.06, Issue No. 12, December 2017 www.ijarse.com

Proof: (a) \Rightarrow (b): Let $x \in X$ be any element and V be any open set in Y containing f(x). Then by (1), $f^{-1}(V)$ is w-semi- \mathfrak{T} -open subset of X containing x. Let $U = f^{-1}(V)$. Hence there exist w-semi- \mathfrak{T} -open subset U of X containing x such that $f(U) = f(f^{-1}(V)) \subset V$.

(b)⇒(a): Let V be an open subset of Y. Then there can be two possibilities:

1.) $f^{-1}(V) = \phi$, then we have nothing to prove.

2.) $f^1(V) \neq \phi$. Let $x \in f^1(V)$ then $f(x) \in V$. Now by (2), there exist w-semi- \mathfrak{T} -open subset U of X containing x such that $f(x) \in f(U) \subset V$ and so $x \in f^1(f(U)) \subset f^1(V)$. Therefore, $x \in U \subset f^1(f(U)) \subset f^1(V)$. Hence $\forall x \in f^1(V)$, there exist w-semi- \mathfrak{T} -open subset U of X containing x such that $x \in U \subset f^1(V)$. This implies that $f^1(V)$ is the union of w-semi- \mathfrak{T} -open sets. But union of w-semi- \mathfrak{T} -open sets is also w-semi- \mathfrak{T} -open set. So, $f^1(V)$ is w-semi- \mathfrak{T} -open subset of X. Hence f is w-semi- \mathfrak{T} -continuous.

(a) \Leftrightarrow (c): f is w-semi- \mathfrak{T} -continuous if and only if inverse image of every open subset V in Y is w-semi- \mathfrak{T} -open in X i.e. if and only if \forall V \in σ , $f^1(V)$ is w-semi- \mathfrak{T} -open subset of X if and only if for every closed set F in Y i.e. Y-F is open in Y, $f^1(Y-F)$ is w-semi- \mathfrak{T} -open in X i.e. if and only if for every closed F in Y, X- $f^1(F)$ is w-semi- \mathfrak{T} -open in X i.e. if and only if for every closed F in Y, $f^1(F)$ is w-semi- \mathfrak{T} -closed in X if and only if inverse image of every closed set in Y is w-semi- \mathfrak{T} -closed in X.

Theorem 2.8: Let (X,τ,\mathfrak{T}) and (Y,σ) be two topological spaces and $f:(X,\tau,\mathfrak{T})\to (Y,\sigma)$ be any w-semi- \mathfrak{T} -continuous map. If U be any τ -open subset of X then prove that

$$f|U:(U,\tau|U,\mathfrak{T}|U)\to (Y,\sigma)$$
 is w-semi- \mathfrak{T} -continuous.

Proof: Let V be any open subset of Y. Then f is w-semi- \mathfrak{T} -continuous implies that $f^1(V)$ is w-semi- \mathfrak{T} -open in X.

Now, U is τ -open subset of X implies that $f^1(V) \cap U \subset cl(int^*(f^1(V))) \cap int(U) \subset cl(int^*(f^1(V) \cap U))$. Therefore, $f^1(V) \cap U$ is w-semi- \mathfrak{T} -open subset of U.

Hence f|U is w-semi- \mathfrak{T} -continuous.

Theorem 2.9: Let $f:(X,\tau,\mathfrak{T})\to (Y,\sigma,\mathcal{J})$ and $g:(Y,\sigma,\mathcal{J})\to (Z,\eta)$ be any two mappings. Then prove that the following hold:

- (a) gof is w-semi- $\mathfrak T$ -continuous if g is continuous and f is w-semi- $\mathfrak T$ -continuous.
- (b) gof is w-semi-\mathcal{I}-continuous if g is w-semi-\mathcal{I}-continuous and f is w-semi-\mathcal{I}-irresolute.

Proof: (a): Let W be any open subset of Z. Then g is continuous implies that $g^{-1}(W)$ is open in Y. Further, f is w-semi- \mathfrak{T} -continuous implies that $f^{-1}(g^{-1}(W))$ is w-semi- \mathfrak{T} -open subset of X and so $(gof)^{-1}(W)$ is w-semi- \mathfrak{T} -open subset of X.

Volume No.06, Issue No. 12, December 2017 www.ijarse.com

IJARSE ISSN: 2319-8354

Hence gof is w-semi-T-continuous.

(b): Let W be any open subset of Z. Then g is w-semi- \mathfrak{T} -continuous implies that $g^{-1}(W)$ is w-semi- \mathfrak{T} -open in Y. Further, f is w-semi- \mathfrak{T} -irresolute implies that $f^{-1}(g^{-1}(W))$ is w-semi- \mathfrak{T} -open subset of X and so $(gof)^{-1}(W)$ is w-semi- \mathfrak{T} -open subset of X.

Hence gof is w-semi- \mathfrak{T} -continuous .

Theorem 2.10 : Let $f:(X,\tau,\mathfrak{T})\to (Y,\sigma,\mathcal{J})$ be any w*-semi- \mathfrak{T} -continuous map such that $f^1(cl(V))\subset cl(f^1(V))$ for every τ^* -open subset V of Y. Then prove that f is w-semi- \mathfrak{T} -irresolute.

Proof: Let W be any w-semi- \mathcal{J} -open subset of Y. Then there exist τ^* -open subset G of Y such that

 $G \subset W \subset cl(G)$ and so $f^1(G) \subset f^1(W) \subset f^1(cl(G)) \subset cl(f^1(G))$. Now f is w*-semi- \mathfrak{T} -continuous implies that

 $f^1(G)$ is w-semi- \mathfrak{T} -open subset of X. Therefore, $f^1(W)$ is such that there exist w-semi- \mathfrak{T} -open subset $f^1(G)$ of X such that $f^1(G) \subset f^1(W) \subset cl(f^1(G))$. Hence $f^1(W)$ is w-semi- \mathfrak{T} -open subset of X.

Hence f is w-semi-T-irresolute.

Next we introduce w-semi-\(\mathbf{T}\)-compact spaces.

Definition 2.11: An ideal space (X,τ,\mathfrak{T}) is said to be w-semi- \mathfrak{T} -compact if for every w-semi- \mathfrak{T} -open cover $\{V_{\alpha}|\ \alpha\in\Delta\}$ of X, there is a finite subset Δ_0 of Δ such that $X-\cup\{V_{\alpha}|\ \alpha\in\Delta_0\}\in\mathfrak{T}$.

Theorem 2.12: Let (X,τ,\mathfrak{T}) and (Y,σ) be two topological spaces and $f:(X,\tau,\mathfrak{T})\to (Y,\sigma,\mathcal{J})$ be any surjective w-semi- \mathfrak{T} -continuous mapping. If X is w-semi- \mathfrak{T} -compact space then prove that Y is also \mathcal{J} -compact space.

Proof: Let $\{U_{\alpha} | \alpha \in \Delta\}$ be an open cover of Y i.e. $Y = \bigcup_{\alpha} U_{\alpha}$. Then f is w-semi- \mathfrak{T} -continuous implies that $f^{-1}(U_{\alpha})$ is w-semi- \mathfrak{T} -open subset of $X \forall \alpha \in \Delta$. Now $Y = \bigcup_{\alpha} U_{\alpha}$ implies that $f^{-1}(Y) = f^{-1}(\bigcup_{\alpha} U_{\alpha}) = \bigcup_{\alpha} f^{-1}(\bigcup_{\alpha} U_{\alpha})$ and so $X = \bigcup_{\alpha} f^{-1}(\bigcup_{\alpha} U_{\alpha})$. But X is w-semi- \mathfrak{T} -compact implies that there exist a finite subset Δ_0 of Δ such that

X - U{ $f^{-1}(U\alpha) \mid \alpha \in \Delta_0$ } ϵ \mathfrak{T} . Therefore, $f(X-U_{\alpha \in \Delta_0}f^{-1}(U\alpha)) \epsilon$ $f(\mathfrak{T})$ and so Y- $f(U_{\alpha \in \Delta_0}f^{-1}(U\alpha)) \epsilon$ $f(\mathfrak{T})$ and so Y- $U_{\alpha \in \Delta_0}f(f^{-1}(U\alpha)) \epsilon$ $f(\mathfrak{T})$. Now, since f is surjective so Y- $U_{\alpha \in \Delta_0}U_{\alpha} \epsilon$ $f(\mathfrak{T})$ i.e. Y- $U_{\alpha \in \Delta_0}U_{\alpha} \epsilon$ $f(\mathfrak{T})$. Hence Y is \mathcal{J} -compact space.

REFERENCES

[1]E. Hatir and T.Noiri, On decompositions of continuity via idealization , Acta Math. Hunger., 96 (2002), 341-349

[2]E. Hatir and T.Noiri, On semi-I-open sets and semi-I-continuous functions, Acta Math. Hunger., 107 (2005), 345-353.

Volume No.06, Issue No. 12, December 2017 www.ijarse.com

IJARSE ISSN: 2319-8354

[3]D.Jankovic and T.R. Hamlett, *New topologies from old via ideals*, The American Mathematical Monthly, 97, No. 4 (1990), 295-310.

- [4] J. Kanicwski and Z. Piotrowski, *Concerning* continuity apart from a meager set, Proc. Amer. Math. Soc., 98(1986), 324-328.
- [5] K. Kuratowski, Topology, volume I, Academic Press, New York, 1966.
- [6] R. Vaidyanathaswamy, The localisation Theory in Set Topology, Proc. Indian Acad. Sci., 20(1945), 51-61.
- [7] -----, Set Topology, Chelsea Publishing Company, New York, 1946.