
 

976 | P a g e  

 

Robust unspoken Speech (Electroencephalogram) 

recognition algorithm using Long Short Term  

Memory –Deep Neural Networks approach 

 

 K Jeevan Reddy
1
, Dr S P VenuMadhava Rao

2 

1
Associate Professor, ECE Department, SNIST, Hyderabad, (India) 

2
Principal, KPRIT, Hyderabad, (India) 

  

ABSTRACT 

The brain signal recognition speech generally referred as  unspoken speech  is one  of the most challenging task. 

EEG signals are highly non stationary and require complex processing in analyzing the signals.This paper 

proposes the application  of a deep neural network (DNN) to discover unknown feature correlation between 

input signals that is crucial for the learning task. The DNN is implemented with a stacked autoencoder using 

hierarchical feature learning approach. Input features of the network are power spectral densities of 32-channel 

EEG signals from 32 subjects. To alleviate overfitting problem, principal component analysis (PCA) is applied 

to extract the most important components of initial input features.  Long short term memory provides behavioral 

information on lapse events with good temporal resolution. We propose an automated behavior grading system 

and trained it to estimate the mean opinion of 3 human raters on the likelihood of a lapse. We then trained an 

LSTM neural network to estimate the output of the lapse rating system given only EEG spectral data through 

discrete arithmetic discrete wavelet transform. The detection system was designed to operate in real-time 

without calibration for individual subjects.  

 

I.INTRODUCTION 

Human-computer interface (BCI) is an emerging and complex biomedical engineering research fields for years. 

It provides a promising technology allowing humans to control external devices by modulating their brain 

waves. Most BCI applications have been developed for noninvasive brain signal processing which is practical to 

implement in real-world scenarios. There are plenty of successful EEG-based BCI applications such as word 

speller programs [1] and wheelchair controllers [2]. Not only can BCI be employed to mentally control devices, 

but also it can be implemented for understanding our mental states. Emotion recognition is one of such 

applications. Automatic emotion recognition algorithms potentially bridge the gap between human and machine 

interactions.A model of emotion can be characterized by two main dimensions called valence and arousal. The 

valence is the degree of attraction or aversion that an individual feels toward a specific object or event. It ranges 

from negative to positive. The arousal is a physiological and psychological state of being awake or reactive to 

stimuli, ranging from passive to active.  

https://www.hindawi.com/journals/tswj/2014/627892/#B1
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The valence-arousal dimensional model, represented in Figure 1, of emotion is widely used in many research 

studies. 

 

 

 

Figure 1 : Valence-Arousal modal. 
 

The electroencephalogram (EEG) measures the activity of large numbers (populations) of neurons.EEG 

recordings are noninvasive, painless, do not interfere much with a human subject’s ability to move or perceive 

stimuli, are relatively low-cost.Electrodes measure voltage-differences at the scalp in the microvolt (μV) 

range.Voltage-traces are recorded with millisecond resolution – great advantage over brain imaging (fMRI or 

PET). 

 
Figure 2 : standard EEG with fMRI analysis 

 
Standard placements of electrodes on the human scalp: A, auricle; C, central; F, frontal; Fp, frontal pole; O, 

occipital; P, parietal; T, temporal. The additional analysis is done using fMRI on active subjects while 

concurrently recording both voice and EEG. EEG rhythms correlate with patterns of behavior (level of 

attentiveness, sleeping, waking, seizures, coma). 

Rhythms occur in distinct frequency ranges: 

Gamma:  20-60 Hz (“cognitive” frequency band) 

Beta:                14-20 Hz (activated cortex) 

Alpha:                8-13 Hz (quiet waking) 

neutral positivenegative

Excited

Arousal

Valence

I

High-Positive

II

High-Negative

III

Low-Negative

IV

Low-Positive

calm

excited

Delighted

Happy

Content

Relaxed

CalmTired

Bored

Depressed

Tense

Angry

Frustrated

https://www.hindawi.com/journals/tswj/2014/627892/fig1/


 

978 | P a g e  

 

Theta:                4-7 Hz (sleep stages) 

Delta:                less than 4 Hz (sleep stages, especially “deep sleep”) 

Higher frequencies:  Active processing, relatively de-synchronized activity (alert wakefulness, dream sleep). 

Lower frequencies: Strongly synchronized activity (nondreaming sleep, coma). 

 

II. LONG SHORT TERM MEMORY  

An LSTM is a special kind of RNN architecture, capable of learning long-term dependencies.An LSTM can 

learn to bridge time intervals in excess of 1000 steps. LSTM networks outperform RNNs and Hidden Markov 

Models (HMM): Speech Recognition: 17.7% phoneme error rate on TIMIT acoustic phonetic corpus. Winner of 

the ICDAR handwriting competition for the best known results in handwriting recognition. This is achieved by 

multiplicative gate units that learn to open and close access to the constant error flow.  

 
 

Figure 3 :LSTM Memory cell 

 
Traditional RNNs are a special case of LSTMs: Set the input gate to all ones (passing all new information), the 

forget gate to all zeros (forgetting all of the previous memory) and the output gate to all ones (exposing the 

entire memory). 

 

2.1 LSTM Equations 
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• input gate, how much of the new information 

will be let through the memory cell.  

• : forget gate, responsible for information should 

be thrown away from memory cell.  

• output gate, how much of the information will 

be passed to expose to the next time step. 

• self-recurrent which is equal to standard RNN 

• : internal memory of the memory cell  

• : hidden state  

• : final output 
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2.2 DBLSTM training and regularization 

 
End-to-end training methods : 

 Connectionist Temporal 

Classification (CTC); 

 RNN Transducer. 

Regularization: 

Early stopping: monitoring the model’s performance on a validation set.  

weight noise: adding Gaussian noise to the network weights during training. Weight noise was added once per 

training sequence, rather than at every time step. 

 

 
Figure 4: Training EEG Signals 

 

 

III. METHODOLOGY 

  

We set the number of convolutional filters as 30 in the first convolutional layer to extract 30 different kinds of 

correlation information, namely 30 different features. At the same time, to extract the multiple scale spatial 

characteristics of MFI, we use different size receptive fields in the first convolutional layer. The field sizes are 2 

× 2 pixels, 5 × 5 pixels and 10 × 10 pixels, respectively. Corresponding to the different sizes of the field, the 

strides are 2, 5 and 10 pixels, respectively, without overlap between the strides. The activation function is 

ReLU. Following the first convolutional layer is a max pooling layer with pooling size of 2 × 2, and the strides 

are 2. The second convolutional layer is set as 10 different filters with a size of 2 × 2 without overlap between 

strides. This setting helps to further fuse the information of a specific scale range from the prior features. The 

structure of the hybrid deep neural networks used for emotion classification. 

 The Construction of Convolutional Neural Networks The inputting MFI size of the networks is 200×200 pixels, 

and it contains three color channels. We set the number of convolutional filters as 30 in the first convolutional 

layer to extract 30 different kinds of correlation information ,namely 30differentfeatures. At the same time, to 

extract the multiple scale spatial characteristics of MFI, we use different size receptive fields in the first 

convolutional layer. The field sizes are 2×2 pixels, 5×5 pixels and 10×10 pixels, respectively. Corresponding to 

the different sizes of the field, the strides are 2, 5 and 10 pixels, respectively, without overlap between the 
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strides. The activation function is ReLU. Following the first convolutional layer is a max pooling layer with 

pooling size of 2×2, and the strides are 2. The second convolutional layer is set as 10 different filters with a size 

of 2 × 2 without overlap between strides. This setting helps to further fuse the information of a specific scale 

range from the prior features.  

 

IV. EXPERIMENTAL SETUP AND RESULTS 

 
The proposed EEG-based emotion recognition system is implemented with a stack of three autoencoders with 

two softmax layer,.The system performs emotion classification by estimating valence and arousal states 

separately. Two softmax classifiers, one for valence and another for arousal, can share the outcome of 

unsupervised pretraining procedure because they both use the same set of unlabeled raw data. However, two 

softmax classifiers need to use different stacked autoencoders during fine-tuning back propagation.The DLN 

utilizes the unsupervised pretraining technique with greedy layerwise training, starting from the input layer to 

the softmax layer. The first sparse autoencoder (1st hidden layer) is trained on the inputs’ features (230 power 

spectral features) to learn the primary features on these input features. We use L-BFGS to optimize the cost 

function, squared error between input features and outputs. Subsequently, the algorithm performs forward 

propagation by using the input features into this trained sparse autoencoder to obtain the primary feature 

activations. The features, deriving from feedforward propagation of the 1st hidden layer, must be used to 

perform unsupervised pretraining in the second hidden layer. The algorithm computes its features in the same 

procedure from the learned features from the previous hidden layers. 

 

The weight and bias parameters of the softmax layer are trained by using a supervised learning approach. The 

output features of the last hidden layer are used as the input features of both softmax layers. We use a set of self-

assessment emotion states (valence and arousal) of subjects as a ground truth. These softmax layers can be 

trained as the parameters concurrently. After the network finishes learning weight and bias parameters in both 

softmax classifiers, the algorithm has to perform fine-tuning of all weight and bias parameters in the whole 

network simultaneously. However, we are not able to use the same network parameters for two classifiers. We 

need to save the learned parameter outcomes of unsupervised pretraining and load the parameters for fine-tuning 

process of another softmax classifier. The fine-tuning process treats all layers of a stacked autoencoder and 

softmax layer as a single model and improves all the weights of all layers in the network by using 

backpropagation technique with supervised approach. The backpropagation process is used to learn the network 

weights and biases based on labeled training examples to minimize the classification errors.The algorithm 

performs a greedy layerwise unsupervised pertaining process, starting from the first hidden layer to the last 

hidden layer. Initial weights and biases of the trained hidden layer are assigned for parameter optimizations. 

Next, the features from feed forward propagation of the hidden layer must be used to perform unsupervised 

pretraining in the next hidden layer. After finishing unsupervised pretraining in the last hidden layer, softmax 

training and fine-tuning procedures are required. 
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Covariate Shift Adaptation of Principal Components 

 

Deep learning networks implemented with stacked autoencoders have capability of representing a highly 

expressive abstraction. Therefore, we are confronted with overfitting problems, especially with the tremendous 

number of input features and hidden nodes. Moreover, a nonstationary effect of EEG signal is still challenging 

to develop a reliable EEG-based emotion recognition. The proposed system employs the concept of principal 

component based covariate shift adaptation [22] to handle both overfitting problems and nonstationary effects 

simultaneously. Principal component analysis (PCA) [23] is to extract the most important principal components 

and normalize these components individually by shifting a window over the data to alleviate the effect of 

nonstationarity. 

 

PCA is a statistical method that uses orthogonal transformation to convert a set of observations of possibly 

correlated variables into a set of values of linearly uncorrelated variables called principal components. The 

number of principal components is less than or equal to the number of original variables. This transformation is 

defined in such a way that the first principal component has the largest possible variance. The proposed system 

reduces the number of input features from 230 to 50 features. 

To minimize the nonstationary effects of input features, the proposed system normalizes the input features with 

the average of previous feature values within a rectangular window of length . We performed this normalization 

for each input feature individually. Figure 11 illustrates the shifting window during input feature normalization 

for covariate shift adaptation in each video trial.  

 

In our experiments, the efficiency of our proposed EEG-based emotion recognition system was evaluated by 

four experiment setups. In the first setup, we implemented the emotion recognition by using a deep learning 

network with 100 hidden nodes in each layer (DLN-100). We employed the feature extraction process to 

calculate all of input features of the DLN from 32-channel EEG signals. At each epoch, the system learned 230 

input features consisting of power spectral density of 5 frequency bands and the differences of power spectral 

densities of 14 asymmetry pairs. Next, the second experiment reduced the number of hidden nodes to 50 (DLN-

50) for investigating the effect of hidden node size in the DLN.The PCA extracted the 50 most important 

components from initial 230 input features. The extracted features were fed into the DLN with 50 hidden nodes 

in each layer.The last experimental setup enhanced the efficiency of the emotion recognition system by applying 

covariate shift adaptation (CSA) concept to solve the problem of nonstationarity in EEG signals. The system 

normalized the input features with the average of previous feature values within a rectangular window of length. 

This normalization was processed for each input feature individually.  

 

The classification accuracy of valence and arousal states in four experiment setups was measured with a leave-

one-out cross validation scheme. The full leave-one-out cross validation of 32 subject acquisitions was 

performed. A training dataset was a composition of all input features from the other 31 subjects. A test dataset 

was the subject’s input features under evaluation. Each individual dataset consisted of power spectral features 

from EEG signal records while the subject was watching 40 one-minute music videos. The DLN performed its 



 

982 | P a g e  

 

weight and bias optimization based on gradient descent approach. Therefore, the classification accuracy was 

occasionally affected by its initial weight and bias parameter. In our experiment, we repeated the classification 

accuracy measurement five times and used the average of the accuracy for further analysis. 

 The average accuracy and standard deviation of 32 subjects in four experiments are depicted in Figure 13. The 

DLN-100 provides the accuracy of 49.52% for valence and 46.03% for arousal. The DLN-50 accuracy slightly 

decreases into 47.87% and 45.50%. The number of hidden nodes in the DLN affects accuracy performance of 

affective state classification. The greater the number of hidden nodes is, the higher accuracy the DLN provides. 

In experiments, the number of hidden nodes in each layer was reduced from 100 to 50 nodes. The accuracy 

decreased 1.62% and 0.53% for valence and arousal classifications, respectively. 

 

 
Figure 5:DNN Training Procedure Flow Chart 

 

V. DISCUSSION AND CONCLUSION 

 
The primary purpose of this research is to explore how well the deep learning network in the version of stacked 

autoencoder performs EEG-based affective computing algorithm. From our experimental results, the average of 

emotion classification accuracy from the deep learning network with a stack of autoencoders is better than 

existing algorithms. Consequently, the DLN is a promising alternative as EEG-based emotion classifier. 

However, one of the most challenging limitations for performing EEG-based emotion recognition algorithm is 

coping with the problem of intersubject variations in their EEG signals. 

 

There are several promising methods to handle the inter subject variations. Lotte and Guan [27] proposed an 

algorithm for learning features from other subjects by performing regularization of common spatial patterns 

(CSP) and linear discriminant analysis (LDA). The method regularized the estimated covariance matrix toward 

the average covariance matrix of other subjects. Samek et al. [28] studied transferring information about 

nonstationarities in data, instead of learning the task-relevant part from others. These principal nonstationarities 
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are similar between subjects and can be transferable. Also they have an adverse effect on classification 

performance, and thus removing them is favorable. We plan to implement one of these two methods, depending 

on the nonstationary characteristics of the dataset, for alleviating the intersubject variations in our next version 

of EEG-based emotion recognition system. 

 

One of the major limitations of the DLN is its tremendous amount of computational time requirement during 

unsupervised pretraining and supervised fine-tuning procedures. In our experiment setup, the DLN for EEG-

based emotion recognition is constituted of three stacks of hidden layers and each hidden layer has 100 hidden 

nodes. At each epoch, the algorithm learned 230 input features. To estimate an individual subject’s classification 

accuracy, there were in total 31 subjects watching 40 videos, each of 60 seconds ( 74,400) epochs. They are 

used to adjust the weight and bias parameters of the DLN. Table 1 shows other DLN’s parameter settings. The 

approximated time used to train the DLN is 20–25 minutes on a laptop computer (Core i5-3320M 2.6 GHz, 

RAM 8 GB, SSD 128 GB, Windows 7 64-bit Professional). 
 

To speed up training time of the DLN, we are able to exploit some parallelism between two softmax classifiers. 

However, we need to duplicate the stack of autoencoder implementation for valence and arousal states. Both 

stacks of autoencoders can be used for separated fine-tuning process of valence and arousal simultaneously. 

During unsupervised pretraining, two softmax classifiers can share the outcome of unsupervised pretraining 

procedure because they both use the same set of unlabeled raw data. After completing all sequences of DLN 

training procedure, shown in Figure 10, the DLN can be used to classify emotion states in real time. Even 

though the DLN requires tremendous amount of training time, it is able to perform EEG-based emotion 

classification in real time. During classification phase, the DLN simply feeds the input features through all 

layers of the network. To give better response, we are able to decrease the window size of covariate shift 

adaptation but we may trade off with lower classification accuracy. 

 

The proposed EEG-based emotion recognition is implemented with a deep learning network and then enhanced 

with covariate shift adaptation of the principal components. The deep learning network is constituted of a stack 

of three autoencoders and two softmax classifiers for valence and arousal state classifications. The purpose of 

PCA is to reduce dimension of input features. The CSA handles the nonstationary effect of EEG signals. The 

classification accuracy of the DLN with PCA+CSA is 53.42% and 52.05% to classify three levels of valence 

states and three levels of arousal states. The DLN provides better accuracy performance compared to SVM and 

naive Bayes classifier. One of the major limitations for performing EEG-based emotion recognition algorithm is 

dealing with the problem of intersubject variations in their EEG signals. The common features of transferable 

nonstationary information can be investigated to alleviate the intersubject variation problems. 
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