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ABSTRACT

The brain signal recognition speech generally referred as unspoken speech is one of the most challenging task.
EEG signals are highly non stationary and require complex processing in analyzing the signals.This paper
proposes the application of a deep neural network (DNN) to discover unknown feature correlation between
input signals that is crucial for the learning task. The DNN is implemented with a stacked autoencoder using
hierarchical feature learning approach. Input features of the network are power spectral densities of 32-channel
EEG signals from 32 subjects. To alleviate overfitting problem, principal component analysis (PCA) is applied
to extract the most important components of initial input features. Long short term memory provides behavioral
information on lapse events with good temporal resolution. We propose an automated behavior grading system
and trained it to estimate the mean opinion of 3 human raters on the likelihood of a lapse. We then trained an
LSTM neural network to estimate the output of the lapse rating system given only EEG spectral data through
discrete arithmetic discrete wavelet transform. The detection system was designed to operate in real-time

without calibration for individual subjects.

I.INTRODUCTION

Human-computer interface (BCl) is an emerging and complex biomedical engineering research fields for years.
It provides a promising technology allowing humans to control external devices by modulating their brain
waves. Most BCI applications have been developed for noninvasive brain signal processing which is practical to
implement in real-world scenarios. There are plenty of successful EEG-based BCI applications such as word
speller programs [1] and wheelchair controllers [2]. Not only can BCI be employed to mentally control devices,
but also it can be implemented for understanding our mental states. Emotion recognition is one of such
applications. Automatic emotion recognition algorithms potentially bridge the gap between human and machine
interactions.A model of emotion can be characterized by two main dimensions called valence and arousal. The
valence is the degree of attraction or aversion that an individual feels toward a specific object or event. It ranges
from negative to positive. The arousal is a physiological and psychological state of being awake or reactive to

stimuli, ranging from passive to active.
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The valence-arousal dimensional model, represented in Figure 1, of emotion is widely used in many research

studies.
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Figure 1 : Valence-Arousal modal.

The electroencephalogram (EEG) measures the activity of large numbers (populations) of neurons.EEG
recordings are noninvasive, painless, do not interfere much with a human subject’s ability to move or perceive
stimuli, are relatively low-cost.Electrodes measure voltage-differences at the scalp in the microvolt (uV)
range.Voltage-traces are recorded with millisecond resolution — great advantage over brain imaging (fMRI or
PET).

Figure 2 : standard EEG with fMRI analysis

Standard placements of electrodes on the human scalp: A, auricle; C, central; F, frontal; Fp, frontal pole; O,
occipital; P, parietal; T, temporal. The additional analysis is done using fMRI on active subjects while
concurrently recording both voice and EEG. EEG rhythms correlate with patterns of behavior (level of
attentiveness, sleeping, waking, seizures, coma).

Rhythms occur in distinct frequency ranges:

Gamma: 20-60 Hz (“cognitive” frequency band)
Beta: 14-20 Hz (activated cortex)
Alpha; 8-13 Hz (quiet waking)
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Theta: 4-7 Hz (sleep stages)
Delta: less than 4 Hz (sleep stages, especially “deep sleep™)

Higher frequencies: Active processing, relatively de-synchronized activity (alert wakefulness, dream sleep).

Lower frequencies: Strongly synchronized activity (nondreaming sleep, coma).

I1. LONG SHORT TERM MEMORY

An LSTM is a special kind of RNN architecture, capable of learning long-term dependencies.An LSTM can
learn to bridge time intervals in excess of 1000 steps. LSTM networks outperform RNNs and Hidden Markov
Models (HMM): Speech Recognition: 17.7% phoneme error rate on TIMIT acoustic phonetic corpus. Winner of

the ICDAR handwriting competition for the best known results in handwriting recognition. This is achieved by

multiplicative gate units that learn to open and close access to the constant error flow.

NET OUTPUT

OUTPUT GATE

FORGET GATE

NET INPUT

Figure 3 :LSTM Memory cell

Traditional RNNSs are a special case of LSTMs: Set the input gate to all ones (passing all new information), the
forget gate to all zeros (forgetting all of the previous memory) and the output gate to all ones (exposing the

entire memory).

2.1 LSTM Equations

e i: input gate, how much of the new information
.« i= g{xrui + 5:—1WE} will be let through the memory cell.
. f= cr'[erf + S:—lwf} »  f:forget gate, responsible for information should

be thrown away from memory cell.

© 0= ol U+ s W) « o: output gate, how much of the information will
« g= tanh(x U9 +5,_,W9) be passed to expose to the next time step.

»  g: self-recurrent which is equal to standard RNN
s co=crq1°f+gei * ¢ internal memory of the memory cell
« s5,= tanh(c,)co * 5. hidden state

e v final output
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2.2 DBLSTM training and regularization

End-to-end training methods :

) Connectionist Temporal
Classification (CTC);
. RNN Transducer.

Regularization:
Early stopping: monitoring the model’s performance on a validation set.
weight noise: adding Gaussian noise to the network weights during training. Weight noise was added once per

training sequence, rather than at every time step.
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Figure 4: Training EEG Signals

I11. METHODOLOGY

We set the number of convolutional filters as 30 in the first convolutional layer to extract 30 different kinds of
correlation information, namely 30 different features. At the same time, to extract the multiple scale spatial
characteristics of MFI, we use different size receptive fields in the first convolutional layer. The field sizes are 2
x 2 pixels, 5 x 5 pixels and 10 x 10 pixels, respectively. Corresponding to the different sizes of the field, the
strides are 2, 5 and 10 pixels, respectively, without overlap between the strides. The activation function is
ReLU. Following the first convolutional layer is a max pooling layer with pooling size of 2 x 2, and the strides
are 2. The second convolutional layer is set as 10 different filters with a size of 2 x 2 without overlap between
strides. This setting helps to further fuse the information of a specific scale range from the prior features. The
structure of the hybrid deep neural networks used for emotion classification.

The Construction of Convolutional Neural Networks The inputting MFI size of the networks is 200x200 pixels,
and it contains three color channels. We set the number of convolutional filters as 30 in the first convolutional
layer to extract 30 different kinds of correlation information ,namely 30differentfeatures. At the same time, to
extract the multiple scale spatial characteristics of MFI, we use different size receptive fields in the first
convolutional layer. The field sizes are 2x2 pixels, 5x5 pixels and 10x10 pixels, respectively. Corresponding to

the different sizes of the field, the strides are 2, 5 and 10 pixels, respectively, without overlap between the
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strides. The activation function is ReLU. Following the first convolutional layer is a max pooling layer with
pooling size of 2x2, and the strides are 2. The second convolutional layer is set as 10 different filters with a size
of 2 x 2 without overlap between strides. This setting helps to further fuse the information of a specific scale

range from the prior features.

IV. EXPERIMENTAL SETUP AND RESULTS

The proposed EEG-based emotion recognition system is implemented with a stack of three autoencoders with
two softmax layer,.The system performs emotion classification by estimating valence and arousal states
separately. Two softmax classifiers, one for valence and another for arousal, can share the outcome of
unsupervised pretraining procedure because they both use the same set of unlabeled raw data. However, two
softmax classifiers need to use different stacked autoencoders during fine-tuning back propagation.The DLN
utilizes the unsupervised pretraining technique with greedy layerwise training, starting from the input layer to
the softmax layer. The first sparse autoencoder (1st hidden layer) is trained on the inputs’ features (230 power
spectral features) to learn the primary features on these input features. We use L-BFGS to optimize the cost
function, squared error between input features and outputs. Subsequently, the algorithm performs forward
propagation by using the input features into this trained sparse autoencoder to obtain the primary feature
activations. The features, deriving from feedforward propagation of the 1st hidden layer, must be used to
perform unsupervised pretraining in the second hidden layer. The algorithm computes its features in the same

procedure from the learned features from the previous hidden layers.

The weight and bias parameters of the softmax layer are trained by using a supervised learning approach. The
output features of the last hidden layer are used as the input features of both softmax layers. We use a set of self-
assessment emotion states (valence and arousal) of subjects as a ground truth. These softmax layers can be
trained as the parameters concurrently. After the network finishes learning weight and bias parameters in both
softmax classifiers, the algorithm has to perform fine-tuning of all weight and bias parameters in the whole
network simultaneously. However, we are not able to use the same network parameters for two classifiers. We
need to save the learned parameter outcomes of unsupervised pretraining and load the parameters for fine-tuning
process of another softmax classifier. The fine-tuning process treats all layers of a stacked autoencoder and
softmax layer as a single model and improves all the weights of all layers in the network by using
backpropagation technique with supervised approach. The backpropagation process is used to learn the network
weights and biases based on labeled training examples to minimize the classification errors.The algorithm
performs a greedy layerwise unsupervised pertaining process, starting from the first hidden layer to the last
hidden layer. Initial weights and biases of the trained hidden layer are assigned for parameter optimizations.
Next, the features from feed forward propagation of the hidden layer must be used to perform unsupervised
pretraining in the next hidden layer. After finishing unsupervised pretraining in the last hidden layer, softmax

training and fine-tuning procedures are required.
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Covariate Shift Adaptation of Principal Components

Deep learning networks implemented with stacked autoencoders have capability of representing a highly
expressive abstraction. Therefore, we are confronted with overfitting problems, especially with the tremendous
number of input features and hidden nodes. Moreover, a nonstationary effect of EEG signal is still challenging
to develop a reliable EEG-based emotion recognition. The proposed system employs the concept of principal
component based covariate shift adaptation [22] to handle both overfitting problems and nonstationary effects
simultaneously. Principal component analysis (PCA) [23] is to extract the most important principal components
and normalize these components individually by shifting a window over the data to alleviate the effect of

nonstationarity.

PCA is a statistical method that uses orthogonal transformation to convert a set of observations of possibly
correlated variables into a set of values of linearly uncorrelated variables called principal components. The
number of principal components is less than or equal to the number of original variables. This transformation is
defined in such a way that the first principal component has the largest possible variance. The proposed system
reduces the number of input features from 230 to 50 features.

To minimize the nonstationary effects of input features, the proposed system normalizes the input features with
the average of previous feature values within a rectangular window of length . We performed this normalization
for each input feature individually. Figure 11 illustrates the shifting window during input feature normalization

for covariate shift adaptation in each video trial.

In our experiments, the efficiency of our proposed EEG-based emotion recognition system was evaluated by
four experiment setups. In the first setup, we implemented the emotion recognition by using a deep learning
network with 100 hidden nodes in each layer (DLN-100). We employed the feature extraction process to
calculate all of input features of the DLN from 32-channel EEG signals. At each epoch, the system learned 230
input features consisting of power spectral density of 5 frequency bands and the differences of power spectral
densities of 14 asymmetry pairs. Next, the second experiment reduced the number of hidden nodes to 50 (DLN-
50) for investigating the effect of hidden node size in the DLN.The PCA extracted the 50 most important
components from initial 230 input features. The extracted features were fed into the DLN with 50 hidden nodes
in each layer.The last experimental setup enhanced the efficiency of the emotion recognition system by applying
covariate shift adaptation (CSA) concept to solve the problem of nonstationarity in EEG signals. The system
normalized the input features with the average of previous feature values within a rectangular window of length.

This normalization was processed for each input feature individually.

The classification accuracy of valence and arousal states in four experiment setups was measured with a leave-
one-out cross validation scheme. The full leave-one-out cross validation of 32 subject acquisitions was
performed. A training dataset was a composition of all input features from the other 31 subjects. A test dataset
was the subject’s input features under evaluation. Each individual dataset consisted of power spectral features

from EEG signal records while the subject was watching 40 one-minute music videos. The DLN performed its
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weight and bias optimization based on gradient descent approach. Therefore, the classification accuracy was
occasionally affected by its initial weight and bias parameter. In our experiment, we repeated the classification
accuracy measurement five times and used the average of the accuracy for further analysis.

The average accuracy and standard deviation of 32 subjects in four experiments are depicted in Figure 13. The
DLN-100 provides the accuracy of 49.52% for valence and 46.03% for arousal. The DLN-50 accuracy slightly
decreases into 47.87% and 45.50%. The number of hidden nodes in the DLN affects accuracy performance of
affective state classification. The greater the number of hidden nodes is, the higher accuracy the DLN provides.
In experiments, the number of hidden nodes in each layer was reduced from 100 to 50 nodes. The accuracy

decreased 1.62% and 0.53% for valence and arousal classifications, respectively.

Initialize weights and biases
of a hidden layer

Train weights and biases of
a hidden layer

Feedforward features with
parameter of a hidden layer

Unsupervised pretraining
on the next hidden layer

No

Last hidden
layer?

Softmax training

Fine-tuning

Figure 5:DNN Training Procedure Flow Chart
V. DISCUSSION AND CONCLUSION

The primary purpose of this research is to explore how well the deep learning network in the version of stacked
autoencoder performs EEG-based affective computing algorithm. From our experimental results, the average of
emotion classification accuracy from the deep learning network with a stack of autoencoders is better than
existing algorithms. Consequently, the DLN is a promising alternative as EEG-based emotion classifier.
However, one of the most challenging limitations for performing EEG-based emotion recognition algorithm is

coping with the problem of intersubject variations in their EEG signals.

There are several promising methods to handle the inter subject variations. Lotte and Guan [27] proposed an
algorithm for learning features from other subjects by performing regularization of common spatial patterns
(CSP) and linear discriminant analysis (LDA). The method regularized the estimated covariance matrix toward
the average covariance matrix of other subjects. Samek et al. [28] studied transferring information about

nonstationarities in data, instead of learning the task-relevant part from others. These principal nonstationarities

982|Page




International Journal of Advance Research in Science and Engineering jé

Volume No.06, Issue No. 12, December 2017 IJARSE
www.ijarse.com ISSN: 2319-8354

are similar between subjects and can be transferable. Also they have an adverse effect on classification
performance, and thus removing them is favorable. We plan to implement one of these two methods, depending
on the nonstationary characteristics of the dataset, for alleviating the intersubject variations in our next version

of EEG-based emotion recognition system.

One of the major limitations of the DLN is its tremendous amount of computational time requirement during
unsupervised pretraining and supervised fine-tuning procedures. In our experiment setup, the DLN for EEG-
based emotion recognition is constituted of three stacks of hidden layers and each hidden layer has 100 hidden
nodes. At each epoch, the algorithm learned 230 input features. To estimate an individual subject’s classification
accuracy, there were in total 31 subjects watching 40 videos, each of 60 seconds ( 74,400) epochs. They are
used to adjust the weight and bias parameters of the DLN. Table 1 shows other DLN’s parameter settings. The
approximated time used to train the DLN is 20-25 minutes on a laptop computer (Core i5-3320M 2.6 GHz,
RAM 8 GB, SSD 128 GB, Windows 7 64-bit Professional).

To speed up training time of the DLN, we are able to exploit some parallelism between two softmax classifiers.
However, we need to duplicate the stack of autoencoder implementation for valence and arousal states. Both
stacks of autoencoders can be used for separated fine-tuning process of valence and arousal simultaneously.
During unsupervised pretraining, two softmax classifiers can share the outcome of unsupervised pretraining
procedure because they both use the same set of unlabeled raw data. After completing all sequences of DLN
training procedure, shown in Figure 10, the DLN can be used to classify emotion states in real time. Even
though the DLN requires tremendous amount of training time, it is able to perform EEG-based emotion
classification in real time. During classification phase, the DLN simply feeds the input features through all
layers of the network. To give better response, we are able to decrease the window size of covariate shift

adaptation but we may trade off with lower classification accuracy.

The proposed EEG-based emotion recognition is implemented with a deep learning network and then enhanced
with covariate shift adaptation of the principal components. The deep learning network is constituted of a stack
of three autoencoders and two softmax classifiers for valence and arousal state classifications. The purpose of
PCA is to reduce dimension of input features. The CSA handles the nonstationary effect of EEG signals. The
classification accuracy of the DLN with PCA+CSA is 53.42% and 52.05% to classify three levels of valence
states and three levels of arousal states. The DLN provides better accuracy performance compared to SVM and
naive Bayes classifier. One of the major limitations for performing EEG-based emotion recognition algorithm is
dealing with the problem of intersubject variations in their EEG signals. The common features of transferable

nonstationary information can be investigated to alleviate the intersubject variation problems.
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