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ABSTRACT

This paper investigates the single server retrial queue with collisions by using
the fuzzy set theory. A mathematical programming approach is proposed to
develop the membership function of the system performance, where the arrival
rate, service rate and retrial rate are fuzzy. Based upon the a-cut approach
and Zadeh's extension principle, the fuzzy retrial queue is transformed to a
family of crisp retrial queues. The defuzzification of the system characteristics
is also provided via Yager ranking index for practical purpose.

Key Words: Fuzzy sets, Membership functions, Non-linear programming,
Collisions.

I INTRODUCTION

Retrial queueing systems arise naturally in many telecommunication and computer
systems and are characterized by the fact that a customer who finds the server busy
upon arrival must leave the service area and joins a retrial group in order to repeat
his request after some random time. Between retrials the customers are said to be
in the orbit or in the retrial group and are called retrial customers. Retrial queues
have been widely used in designing local area networks, data transfer via telephone
networks and radio and cellular networks. For a detailed overview, we refer the
readers to the surveys by Yang and Templeton [5], Falin [1], the book by Falin and
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Templeton [2] and Artalejo [3, 4].

Retrial queues with collisions has wide applications in medium access control pro-
tocols for wireless LANs proposed to date. This type of queueing systems has the
feature that if an arriving customer finds the server busy, then the arriving cus-
tomer collides with a customer in service, both customers join the orbit and the
server becomes idle immediately, as in the unslotted 1- and pi-persistent Carrier
Sense Multiple Access with Collision Detection (CSMA-CD) protocols for a fiber
optic bus network with a finite number of stations, each of which has an infinite
storage buffer, the collisions occur during the transmission of arbitrary length pack-
ets because no slot synchronization is needed. A retrial queueing model with collision
arising from the specific communication protocol CSMA/CD has been analyzed by
Choti [6]. Some results on the number of collisions in p-persistent CSMA/CD pro-
tocols have been obtained by Gomez-Corral [7]. Kim [9] considered a retrial queue-
ing system with collisions and impatience. Recently, Krishna Kumar [8] studied a
Markovian single server retrial queue with collisions.

In the literature described above, the inter arrival times, retrial times and service
times of customers are determined by certain probability distributions with fixed
parameters. However, in many real world applications of retrial queues, the param-
eter distributions may only be characterized subjectively, rather than with complete
probability distribution. In other words, system parameters are more possibilistic
than probabilistic in many practical situations. Thus, by extending the usual crisp
retrial queunes to fuzzy retrial queunes in the context, these retrial queueing models
become much more useful and realistic than the commony used crisp retrial queues.

Li and Lee [10] analyzed the analytical results for fuzzy queues using Zadeh's ex-
tension principle, the possibility concept and fuzzy Markov chaons. Negi and Lee
[11] proposed a procedure to analyse fuzzy queunes using a-cuts and two variable
simulation. Kao et al. [13] constructed the membership functions of the system
characteristics using parametric programming for fuzzy queues and applied them
to four simple fuzzy queues: M/F/1/0c, F/M/1/00, F/F/1/oc and FM/FM/1/0c,
where F represents fuzzy time and FM represents fuzzified exponential distribu-
tions. Chuan et al. Ke and Lin [19] and Lin et al. [20] analyzed the FM/FM/
(FM.FM)/1, FM*/FM/1/FV and FM*/FM/1/FSET fuzzy queues, respectively,
where FV represents the fuzzified exponential vacation rate and FSET represents
the fuzzified exponential setup rate. Similarly, Chen [16, 17] developed FM/FM/1/L
and FM/FMI¥1/1/~c fuzzy queues. Recently Ke et al. [21] obtained the membership
functions of system characteristics of a retrial queueing model with fuzzy arrival,
retrial and service rates.
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In this paper, a mathematical programming approach is provided that derives the
membership functions of the system characteristics for the considered retrial queune
with three fuzzy variables: fuzzified exponential arrival, retrial and service rates.
The fuzzy retyrial queues are transformed to a family of crisp retrial queues by ap-
plving the a-cuts and Zadeh's extension principle. As a varies, the family of crisp
retrial queues is desecribed and solved by using parametric non-linear programming
(NLP). The NLP solutions yield the membership functions of the system character-
istics.

The rest of the paper is organised as follows. In the next Section, the system
characteristics of standard and fuzzy retrial queueing systems with collisions is pre-
sented. In Section 3, a mathematical programming approach is developed to derive
the membership functions of these system characteristics. In Section 4. a realstic
numerical example is described and solved to demonstrate the validity of proposed
approach. Conclusions are drawn in last Section 5. For notational convenience, our
model in this paper is here after denoted as FM/FM/1-(FR), where FR represents
the fuzzified exponential retrial rate and 1 represents the single server.

Il FUZZY RETRIAL QUEUES WITH COLLISIONS

2.1 Some basic definitions of fuzzy set theory

Fuzzy Set: Let X denote a universe of discourse. Then a fuzzy set A in X is
characterized by a membership function as follows:

ni: X —[0,1]

which assigns to each element x in X, and a real number n3(z) is in the interval
[0.1]. Thus, the function value of 7 ;(x) represents the membership of x in A.

Convex Fuzzy Set: A fuzzy set A of a set X is convex if

ni(0z1 4+ (1 = 8)z2) > min (3 (z1),n5(x2)): Vai,72 € X and J € [0, 1].
a-Cut Set: A, ={z|n; (r) = a,z € X} = [I5(a), ¢ ;(a)] is called the a-cut of the
fuzzy set A for Va € [0,1]. The symbols ! j(a) and ¢ j(a) represent the lower bound

and the upper bound of the a-cut of the fuzzy set A, respectively.

Trapezoidal Fuzzy Number: A fuzzy number A= (a.b,c,d) is said to be a
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trapezoidal fuzzy number if its membership function is given by:
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2.2 FM/FM/1-(FR) retrial queue

An FM/FM/1-(FR) queueing system is considered. It is assumed that customers
arrive at a service facility at rate X, where ) is a fuzzy number. An arriving cus-
tomer enters the service facility and if the server is busy, the arriving customer
collides with the customer in service resulting both being shifted to orbit. Retrial
customers attempts service after an uncertain amount of time, called retrial time.
If the server is free, the arriving customer or the customer from orbit gets served
completely and departs the system. The orbit capacity is assumed to be infinite.
The successive retrial times are assumed to follow an exponential distribution with
fuzzy retrial rate 7. The service time is also exponentially distributed with fuzzy
rate ji. The inter arrival times, retrial times and service times are assumed to be
mutually independent.

In this queueing model the arrival rate A, retrial rate 7 and service rate ji are
approximately known and can be represented by convex fuzzy sets. Let n5(z), ns(s)
and 7;z(y) denote the membership functions of A, 7 and ji, respectively. So, we have
the following fuzzy sets:

A= {(z,n5(2))| = € X} (1a)
v={(s.n:(v))|s € S} (1b)
a={(y.7a(y)|lyeY} (1c)

where X, S and Y are the crisp universal sets of the arrival, retrial and service rates,
respectively.

Let f(x, s, y)_denote the system characteristics of interest. Since . 7 and j1 are fuzzy

numbers, f(A, 2, j1) is also a fuzzy number. The membership function of the system
characteristic f(A, &, 1) be defined using Zadeh’s extension principle([12]) as follows:

Nraem?) = sup min { n3(x), ns(s), na(y)| z = flx.s,y)} (2)
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where Q={z € X,s€ S,y Y|z > 0,y > 0}

Assume that the fuzzy system characteristics of interest are E[IW] and E[N], the
expected waiting time in the queue and the expected number of customers in the
orbit, respectively. Based on the result of the single server retrial queue with colli-
sions [8], if 22%/(y = 2x?) < s the expected waiting time and the expected number
of customers in the system, respectively, are

o ley+z(3y—2) "
A= o -20 - 27 e
E[N] = z[sy + z(3y — x)) (3b)

(y — z)[s(y — 2z) — 227

Using (2) and (3a), the membership functions of E[W] and E[N], respectively, be-
come

Megin(2) = sup min{nx(x)nia(S)dm(y)lz= O _[';q);(;(f!{z;)lj]hg]} (4a)

(y=227) g

New(z) = sup  min { malx). mo(s). ma(y)| 2 = » _T[IS;/[;;(_‘;; T-) iuz.r?] } (4b)

2x
y=22) <°

It is very difficult to imagine the shapes of membership functions associated with
Mgy and ngpgy. since these functions are not expressed in usual forms. In this
paper, a mathematical programming technique is used to solve this problem and in
the next section parametric NLPs are developed to find the a-cuts of f (:\, v, ji).

111 THE SOLUTION PROCEDURE

As stated previous section, the membership function of E[W] and E[N] are not
in usable form. To construct the membership function in usable form, we apply
Zadeh'’s extension principle to derive the a-cuts of E[W] and E[N], respectively.
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Denote the a-cuts of ;\, 7 and ji as crisp interval as follows:
Ma) = [zg. 23] = [gg_{; {#ln5(x) = a} . max {z] n5(x) > a}] (5a)
(@) = ok, = [ ol 6) > e (s () | ()
) = o o] = [mip (o170 > ) e (o1 > | (59

From equations (5a)-(5c), it indicates that ), 7 and ji are shown as intervals when
the membership functions are not less than a given possibility level for a. By the fun-
damental property of convexity of fuzzy numbers, the upper and lower bounds of A,

i and ji can be represented as functions of a as r% = min n;'(a), r¥ = max r)'-:'(a),

st = min 7;%(a), sY = max ;% (a). y& = min n;'(a) and 4¥ = max n;'(a).

Therefore we can use the a-cut approach to construct the membership functions of
E[W] and E[N] since the membership functions defined in (4a) and (4b) are pa-
rameterized by a.

Now we derive the membership function of the expected waiting time. Using Zadeh's
extension principle, nb‘[ﬁ"l(z) is the minimum of n3(x), 7z(s) and n;(y). To derive
the membership function, we need at least one of the three cases of the following to
hold such that:

[sy + z(3y — z)]
(y — z)[s(y — 2) — 277

to satisfy "71-_‘[31'](3) = a.

>
-

Case (i): (15(z) = @ mo(s) > a,7a(y) > a).

Case (ii): (75(z) = a,ma(s) = a,n:(y) = a),

Case (iii): (n3(z) = @, na(s) = a,na(y) = a).
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(EW])e = | (6a)

a h? [(u - z)[s(y — 2x) — 227

[sy + z(3y = z)]
y = x)[s(y — 2z) - 121] (6b)

222

(E[W]){* = max [ (

similarly for case (ii) are

i B [sy + z(3y — x)]
EWDE = pin [(y it - 27) - m}] A
(V) = e _[GrJ [': ;‘(Eyz':)fl] 12]] (7h)
and for case (iii) are
—— [sy + z(3y = x)]
(E[W])k = (;;_:( [(y —2)[s(y — 27) = 2 2]] (8a)
. ' [sy + (3y — )]
(E[W])g* = “;E%_a;_)\“ [(y —2)[s(y — 27) = 2 2]] (8b)

From the definitions of A(a), v(a) and p(a) in (5a)-(5¢), = € A(a). s € v(a) and
y € v(a) can be replaced by = € [z%,zY], s € [sL,sY] and y € [yL,yY]. It is noted
that a-cuts of r, s and y forms a nested structure with respect to a ([1 14]) i.e. for
two possibility levels a; and asz, we have [z .28 ] C [z, 28], [sL,.s ] sk al]
and [y% .yY] € [¥%,. 5] where 0 < as < az < 1. In order to couqtruct the

membership function New: it suffices to find the left and right shape functions
of ny ";] which is equivalent to finding the lower and upper bound [E[W])% and
[E[W]), . respectively, of the a-cuts of gy, which based on (3a) can be written as:

Y = min [Sll o (3J = t)]
(BEWDE o [(q —o)[s(y — 2x) — 212]] (9)

st. sk<r<zl st<s<sfandyt <y<i¥,

(E'[H'])ﬁ = :?2&\ [

[sy + z(3y — x)] ] (10)
(,—_—r

(y — z)[s(y — 2z) — 227]
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o

st. zh Lo <al, L <s<sY and yt <y <Y

The equation nlf[ﬁ"]( z) = a is true only when at least one of the x, s or y must hit the
boundries of their a-cuts. The crisp interval [(E[W])%, (E[W])Y] obtained from (9)
and (10) represents the a-cuts of E[IW]. Now, using the results of Zimmermann [14]
and Kaufmann [15] and convexity properties to E[IV], we have (E[W])%, > (E[W]),
and (E[W])Y < (E[W])L, for given 0 < a; < ay < 1. In other words, (E[W])} in-
creases and (E[W])Y decreases as a increases. Therefore, the membership function

Nep(2) can be found from (9) and (10).

If both (E[W])E and (E[W])Y are invertible with respect to a, then the membership
fnction 771«:[»?-’](3) can be expressed as follows:

L(2). (E[W])am <2< (EW]);

a=() — a=1

new(z) =94 1. (E[W))iz1 < 2 < (E[W])i (11)
R(z), (EWDL, <2< (EW]iL

where the left shape function L(2) and the right shape function R(z) are [( E[W])5]~!
and [(E[W])Y]2, respectively. In most cases, (E[W])% and (E[W])Y can not be de-
rived analytically, however, they can be constructed numerically at different possible
v levels to approximate the shapes L(z) and R(2). The membership function of the
expected number of customers in the system can be derived in a similar manner.

Since the performance measures are described by membership function, the values
conserve fuzziness of arrival rate, service rate and retrial rate. To find one crisp
value for one of performance measures rather than a fuzzy set, we defuzzify the
fuzzy values of performance measures by Yager’s ranking index method [18]. Thus
suitable values of performance measures are calculated by

X 1AL AU
O(A) = / %da, (12)
0

where A is a convex fuzzy number and (A%, AY) is the a-cut of A .
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IV NUMERICAL EXAMPLE

Consider an Ethernet protocol which uses an access method called CSMA /CD (Car-
rier Sense Multiple Access/Collision Detection). This is a system where each com-
puter listens to the cable before sending anything through the network. If the net-
work is clear, the computer will transmit the message. If some other node is already

transmitting on the cable, the message comes back to the computer and stored in
a buffer to be retransmitted after some time. A situation of collision occurs when
sometimes, two computers attempt to transmit the message at the same instant,
resulting both messages are lost. The buffer in the computer, the cable and the
retransmission policy can be considered as orbit, the server and the retrial policy,
respectively, in queueing terminology.

4.1 The fuzzy expected waiting time in the system (E[IV])

Suppose the arrival, retrial and service rates are trapezoidal fuzzy numbers repre-
sented by A = [1,2,3.4], 7 = [3.6,9,12] and /1 = [20,21, 22, 23]. It is simple to deter-
mine [z£, Y] = [14a,4=qa], [sL.sY] = [343a,12=3a] and [y%, Y] = [20+a, 23-q].
Obviously, the expected waiting time in the system attains its minimum value when
r =zl s=skand y = y* and attains its maximum value when r = z%, 5 = sY
and y = y¥. According to Equations (9) and (10), the lower and upper bounds of
the a-cut of E[IW], respectively, are

1 =344 + 17a + a?
E[W)): ==
(E[W])a 2 (=11 + a)(250 = 103a + 7a2)

2 (8+a)(4+ 6la + 7a?)

With the help of MATLAB® 7.4.0, the inverse functions of (E[W)])E and (E[W])Y

exist, yielding the membership function

e 26 o 163
L(z), o5
I e 163 = 17
WE[W](*-) = L, i =S 5
R(z), 5<2<h
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where

L(z) = 1/(14z = 1)(564402° 4 7640422 = 347102 — 1025 + 168(—48122* 4 1070762°
—6181522 = 2605502 — 13875)(1/2) 2 = 12(=48122* 4 1070762* — 6181522
—260550z — 13875)M/2)1/3) 4 (149222 + 8362 + 145) /(142 — 1)/(564402°
+764042% = 347102 — 1025 + 168(=48122" + 1070762 = 618152% = 2605502
—13875)(1/2) 2 — 12(=48122* + 1070762* — 6181522 — 2605502
—13875)/2)(1/3) _ 3(262 + 3)/(14z — 1)

and

R(z) = =1/2/(142 = 1)(=564402* = 7640427 + 347102 4 1025 + 168(=48122" +
1070762% — 618152% = 2605502 — 13875)(/ 2 — 12(=48122" + 1070762*
—618152% — 260550z — 13875)M/2)(/3) _ 1/2(14922% + 8362 + 145)/
(142 = 1)/(=564402" = 764042 + 34710z + 1025 + 168(=48122" + 1070762°
—618152% — 260550z — 13875)/?) 2 — (149222 + 8362 + 145)/(14z — 1)/
(=564402 — 7640422 + 347102 — 12(=48122" + 1070762* — 6181522
—=2605502 — 13875)/2) /3 4 6(202 + 1) /(142 — 1) + 1025 + 168(—48122*
+1070762° — 6181522 — 2605502 — 13875)M/2) 2 — 12(—48122* + 1070762°
—618152% — 260550z — 13875)(1/2))(1/3)

as shown in Figure 1. The membership functions L(z) and R(z) have complex val-
111535 with t.hf;ir imaginary parts approaching zero when 2= < 2 < 2% for L(z) and
= < z < 15 for R(z). Hence, the imaginary parts of these two functions can be
disregarded.

Now find the expected waiting time in the system by applying the Yager ranking

index method stated (12) as follows:

(=11 +a)(250 — 103a + 7a2) (8 + a)(d + 6la + 7a?)

s 1 =344 4 17a + a2 =284 = 23a + a?
O(E[V]) = / Z[ +17a +a +a ] :
o )

= 0.4303
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The a-cuts of arrival, retrial and service rates and fuzzy expected waiting time in
the system at eleven distinct e values are presented in Table 1. The range of fuzzy

=

expected waiting time in the system at a = 0 is [0.0625, 4.4375], indicating that the
value of expected waiting time in the system will never exceed (0.0625 or fall below
4.4375. Moreover, the fuzzy expected waiting time in the system is most likely to
fall between (.1058 and 0.2361 when a = 1.

4.2 The fuzzy expected number of customers in the system

(E[N])

Similar to (£ [W]), the a-cuts of fuzzy expected number of customers in the system
(E[N]) are

1.5

[V 3

35

Figure 1: The membership function for fuzzy expected waiting time in the system.

Table 1: a-cuts of arrival. retrial and service rates and expected waiting time in the

system

a [ =f [ 22 [ =& [ 52 [ o [ o2 [EWIL[EWE
0.0 1.00 | 4.00 | 20.00 | 23.00 | 3.00 | 12.00 | 0.0625 4.4375
0.1 1.10 | 3.90 | 20.10 | 22.90 | 3.30 | 11.70 | 0.0655 1.7377
0.2 1.20 | 3.80 | 20.20 | 22.80 | 3.60 | 11.40 | 0.0686 1.0677
0.3]11.30| 3.70 | 20.30 | 22.70 | 3.90 | 11.10 | 0.0721 0.7640
0.4 1.40 | 3.60 | 20.40 | 22.60 | 4.20 | 10.80 | 0.0757 0.5909
0.5 1.50 | 3.50 | 20.50 | 22.50 | 4.50 | 10.50 | 0.0797 0.4791
0.6 1.60 | 3.40 | 20.60 | 22.40 | 4.80 10.20 0.0841 0.4010
0.7 ] 1.70 | 3.30 | 20.70 | 22.30 | 5.10 9.90 0.0888 0.3435
0.8 1.80 | 3.20 | 20.80 | 22.20 | 5.40 9.60 0.0939 0.2993
0.9 1.90 | 3.10 | 20.90 | 22.10 | 5.70 9.30 0.0996 0.2644
1.0 | 2.00 | 3.00 | 21.00 | 22.00 | 6.00 9.00 0.1058 0.2361
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(E[N]E = 1 (14 a)(=344 + 17a + o?)
e T (=11 4 a)(250 = 103a + Ta?)
1(=4+ a)(—284 — 2: 2
BN =S B B )
2 (84 a)(d+6la+ T7a?)
The membership function of (E[N]) is represented as:
~ 86 - 163
b(z);: s=rz&2
negm(2) =1 1, szl
R(2), <2<
where
L(z) = =1/2/(142 = 1)(=56440z* = 7640422 4 34710z + 1025 + 168(—48122*
+1070762% — 6181522 = 2605502 — 13875)(1/2) 2 — 12(=48122* 4 1070762°
—6181522 = 260550z — 13875)/2)(/3) _ 1/2(149227 + 8362 + 145)/
(142 = 1) /(=564402* = 7640427 + 347102 + 1025 + 168(—48122" + 1070762°
—6181522 = 260550z — 13875)1/2) 2 — 12(-48122* + 1070762 — 6181527
—2605502 — 13875)1/2)(/3) 4 6(202 + 1)/(142 = 1) = (149222 + 8362 + 145)
/(142 = 1)/(=564402" = 764042% + 34710z + 1025 + 168(=48122" + 1070762*
—6181522 — 2605502 — 13875)(/2 2 — 12(—48122" + 1070762* — 6181527
=260550z — 13875)(1/2))(/3))
and

R(z) = 1/(14z = 1)(564402% 4 7640422 — 34710z — 1025 + 168(=48122" + 1070762"
—6181527 = 260550z — 13875)1/2) 2 — 12(=48122" 4+ 1070762* — 6181522
—2605502 — 13875)1/2) /3 4 (149222 + 8362 + 145) /(142 — 1)

(564402° 4 764042% — 34710z — 1025 + 168(=4812z2" 4 1070762 — 6181527
—2605502 = 13875)(1/2) 2 — 12(=48122" + 1070762* — 6181522 — 2605502
—13875)1/2)(1/3) — 3(262 + 3) /(142 — 1)

as shown in Figure 2. Here also the membership functions L(z) and R(z) have

complex values with their imaginary parts approaching zero when £ < z < 12
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12

Figure 2: The membership function for fuzzy expected number of customers in the
system.

for L(z) and % < % for R(z). So, the imaginary parts of these two functions
can be disregarded.

By the same argument of (E [ﬁ]) the Yager ranking index of the fuzzy expected
number of the customers in the system is as follows:

do

O(E[N]) = /' 1[_(1+a)(=344+17a+0a?) | (=4+a)(=284—23a+a?)
3 - 0 1 (—11 -+ (‘z)(250 — 103 + 702) (8 4 0)(4 + 6la + 702)

=1.5121

Table 2 presents the a-cuts of arrival, retrial and service rates and fuzzy expected
number of customers in the system at eleven distinct a values. At one extreme
level @ = 1 the range of fuzzy expected number of cutomers in the system is
[0.2117,0.7083], indicating that the fuzzy expected number of customers in the sys-
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Table 2: a-cuts of arrival, retrial and service rates and expected number of customers
in the system

o T f; 1:2 S{; Sg yﬁ !If.' E [NLI; E [N]f,’
0.0 | 1.00 | 4.00 | 20.00 | 23.00 | 3.00 | 12.00 | 0.0625 | 17.7500
0.1 ] 1.10 | 3.90 | 20.10 | 22.90 | 3.30 | 11.70 | 0.0720 | 6.7770
0.2 ] 1.20 | 3.80 | 20.20 | 22.80 | 3.60 | 11.40 | 0.0824 [ 4.0571
0.311.30 ] 3.70 | 20.30 | 22.70 | 3.90 | 11.10 | 0.0937 | 2.8268
0.4 | 1.40 | 3.60 | 20.40 | 22.60 | 4.20 | 10.80 | 0.1060 [ 2.1272
0.5 | 1.50 | 3.50 | 20.50 | 22.50 | 4.50 | 10.50 | 0.1196 | 1.6769
0.6 | 1.60 | 3.40 | 20.60 | 22.40 | 4.80 | 10.20 | 0.1345 | 1.3636
0.7 | 1.70 | 3.30 | 20.70 | 22.30 | 5.10 | 9.90 | 0.1509 [ 1.1335
0.8 1.80 | 3.20 | 20.80 [ 22.20 | 5.40 | 9.60 | 0.1691 | 0.9578
0.911.90 | 3.10 | 20.90 | 22.10 | 5.70 | 9.30 | 0.1892 | 0.8196
1.0 | 2.00 | 3.00 | 21.00 | 22.00 | 6.00 | 9.00 | 0.2117 | 0.7083

tem falls between (0.2117 and 0.7083. Moreover, at the other extreme level a = 0,
the fuzzy expected number of customers in the system is impossible to fall below
0.0625 or exceed 17.75.

V CONCLUSION

In this paper, a fuzzy retrial queue with collisions is investigated. The concepts of
a-cuts and Zadeh's extension principle has been applied to construct membership
functions of the expected waiting time and the expected number of customers in the
system using paired NLP models. The proposed approach leads to the closed-form
expressions for the system characteristics by inverting the a-cuts of the membership
functions of system characteristics. Since the system characteristics are described
by the membership functions, it would provide more realistic information to system
analysts or designers.

Acknowledgement
One of the authors, Ms. Shinu Rani is thankful to Department of Science and
Technology (D.S.T.), Government of India, New Delhi for providing the grant for

carrying out this research.

1185 | Page




International Journal of Advance Research in Science and Engineering
Volume No.06, Special Issue No.(01), Nov 2017 IJARSE

www.ijarse.com ISSN: 2319-8354

REFERENCES

[1] G.I. Falin., A survey of retrial queues, Queueing Systems 7 (1990) 127-167.

[2] G.I. Falin, J.G.C. Templeton, Retrial Queues, Chapman and Hall, London,
1997.

[3] J.R. Artalejo, A classified bibliography of research in retrial queues: Progress
in 1990-1999, Top 7 (1999) 187-211.

[4] J.R. Artalejo, Accessible bibliography on retrial queunes, Mathematical and
Computer Modelling 30 (1999) 1-6.

[5] T. Yang, J.G.C. Templeton. A survey on retrial queues, Queueing Systems 2
(1987) 201-233.

[6] Choi. B.D. (1992). Retrial queues with collision arising from unslotted
CSMA /CD protocol. Queueing Systems, 11. 335-356.

[7] Gomez-Corral, A. (2010). On the applicability of the number of collisions in p-
persistent CSMA /CD protocols. Computers and Operations Research, 37, 1199-
1211.

[8] Krishna Kumar, B., Vijayalakshmi, G., Krishnamoorthy, A. and Sadiq Basha,
S. (2010). A single server feedback retrial queue with collisions, Computers and
Operations Research, 37, 1247-1255.

[9] Kim, J. (2010). Retrial queueing system with collision and impatience. Com-
munications in Korean Mathematical Society, 25(4), 647-653.

[10] R.J. Li and E.S. Lee, Analysis of fuzzy queues, Comput. Math. Appl. 17 (1989)
1143-1147.

[11] D.S. Negi and E.S. Lee, Analysis and simulation of fuzzy queue, Fuzzy Set.
Syst. 46(1992) 321-330.

[12] L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Set. Syst.
1(1978) 3-28.

[13] C. Kao, C.C. Li, S.P. Chen, Parametric programming to the analysis of fuzzy
queues, Fuzzy Set. Syst. 107 (1999) 93-100.

[14] H.J. Zimmermann, Fuzzy Set Theory and Its Applications, second ed., Kluwer
Academic, Boston, 1985.

1186 | Page




International Journal of Advance Research in Science and Engineering
Volume No.06, Special Issue No.(01), Nov 2017 IJARSE
www.ijarse.com ISSN: 2319-8354

[15] A. Kaufmann, Introduction to the Theory of Fuzzy Subsets, vol. 1, Academic
Press, New York, 1975.

[16] S.P. Chen, Parametric nonlinear programming for analyzing fuzzy queues with
finite capacity, Eur. J. Oper. Res. 157 (2004) 429-438.

[17] S.P. Chen, Parametric nonlinear programming approach to fuzzy queues with
bulk service, Eur. J. Oper. Res. 163 (2005) 434-444.

[18] R.R. Yager, A procedure for ordering fuzzy subsets of the unit interval, Inform.
Sei. 24 (1981) 143-161.

[19] Ke, J. C. and Lin, C. H., Fuzzy analysis of queueing systems with an unre-
liable server: A nonlinear programming approach, Applied Mathematics and
Computation, Vol. 175, pp.330-346, 2006.

[20] Lin, C.-H., Huang, H.-1. and Ke, J.-C., On a batch arrival queue with setup
and uncertain parameter patterns, International Journal of Applied Science and
Engineering, Vol. 6. pp.163-180, 2008.

[21] Ke, J. C., Huang, H.I. and Lin, C. H., On retrial queueing model with fuzzy
parameters, Physica A, 374 (2007) 272-280.

1187 |Page




