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ABSTRACT 

 
Milling process is one among the common traditional metal cutting operations mainly to trim down to the size, 

shape and required surface quality. At the same time during milling operations on composite materials, the 

commonly named damage delamination is one of the inevitable issue which are mainly depend on the input 

machining parameters.  In this attempt the optimization of machining parameters referring to the surface roughness 

and delamination during milling on Viapal VUP 9731 GFRP composite material, is analyzed through Differential 

Search Algorithm and estimated the optimal combinations of such parameters. The objective is to lay down a path 

for reference according to the requirement of the product end quality. Initially algorithm is executed in MATLAB to 

iterate the values and the effectiveness of simulation is analyzed individually by means MSE. Subsequently the 

regression relationship is taken as the conditional approach for further simulation. On confirming the outcome found 

to be tuned with the earlier results further forecasting of delamination factor, surface roughness for various 

combination of machining parameters is executedwith step up number of iterations.  

 

KEYWORDS : Milling, Viapal 9731 frp composite, Surface finish, Machining Force, Delamination, DSA, 

Hybrid, Optimisation, Minitab, MATLAB. 

1 INTRODUCTION 

As the applications of FRPs are tremendously increased in every field of manufacturing wherever the weight density 

ratio plays a major role; also having the combination of their physical and mechanical properties such as high 

specific strength, high specific stiffness.  At time of shaping the product concerned with these materials machining 

operations are being performed to reach the required dimension. Milling operations is one such process and the 
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outcome is associated with the input cutting parameters. During the machining operations on FRP composites the 

machining forces significantly influence and make the major impact on the surface quality such as delamination and 

surface roughness. In this study, the experiment conducted on Viapal VUP 9731 frp composites by [1] is taken and 

the optimsation method through DSA is applied to identify the improved combination of machining parameters. 

 

ABBREVIATIONS AND SYMBOLS USED 
 

FRP Fiber Reinforced Plastic N Newton 

v Cutting speed, m/min DSA Differential Search Algorithm 

f Feed, mm/rev Reg  Regression 

F Machining force, N R-sq R - square statistical value 

Df Delamination factor R-sq (adj) R - square adjusted statistical value 

Ra Surface Roughness R-sq (pred) R - square predicted statistical value 

 

II LITERATURE REVIEW  

  

Milling is one of the most important machining processes in manufacturing parts made out of FRPs. Jamal [2] 

commented that high material removal rates rare possible in metals in milling operations but in milling of FRPs is 

conducted at much lower degree because of the reason that FRP components are largely commonly made close to 

the net shape and hence milling operations are subsequently limited largely to de-burring and trimming also to 

achieve contour shape accuracy. Tsao, C. C [3] has experimented and  the declared the apt usage of Grey - Taguchi 

method in optimizing the parameters of milling operations on the aluminium alloy and declared that the grey-

Taguchi method is suitable for solving the surface finish quality and tool flank wear problems in milling process of 

A6061P-T651 aluminum alloy. Machining forces, cutting force, feed force and depth force are the significant factors 

towards the damage namely delamination while milling composite materials and is the common tendency which is 

recognized through the experimentation and suitable analysis Sreejith et al. [4] and Ferreira et al. [5]. David et al. [6] 

have announced through their experiment and critical analysis of an approach to forecast the surface roughness in a 

high speed end-milling process by ANN approach and statistical tools to predict the different surface roughness 

predictor‟s combinations. Ozel C & Kilickap [7] revealed the truth that while the purpose of developing and 

optimizing a surface roughness model for machining processes, it is highly inevitable to recognize the present 

condition of exertion in these aspects. Zeilmann, RP, Weingaertner WL [8] have made an attempt to investigate the 

heat produced at time of machining along with the effect of application of lubricant while machining and studied the 

outcome on the surface quality. Radhakrishnan and Uday Nandan [9] came out to analyse the true association 

among machining parameters like cutting speed, feed rate and depth of cut to the machining force in the end milling 

process. They concluded, by using both multiple regressions and neural network modeling. Regression model was 

employed to fit the experimental data after filtering the abnormal data points, subsequently analysis carried out 

through using neural networks to capitulate a final model. Haan et al. [10] have addressed the effects of cutting 
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fluids also on hole quality and declared that the dry-drilled holes resulted in poorer surface finish than holes 

produced with cutting fluid application along with main cutting parameters. Ramulu et al. [11] have stated that the 

surface roughness and delamination is the characteristic that could influence the dimensional precision, production 

costs and the performance of end product and because for these reasons there has been research and development 

with the objective of optimising cutting conditions, to obtain a desired machinability.  

 

III EXPERIMENTAL OBSERVATION [1] 

 

On the Viapal VUP 9731 reinforced with 65% of glass fiber unsaturated polyester hand lay-up material, which 

posses the material properties as listed in the Table 3.1milling process experiment has performed to analyse the 

machining force during machining and the milling induced damage namely delamination factor, surface quality after 

machining by J Paulo Davim et al [1] with the statistical tool analysis (ANOVA). 

Table 3.1 Properties of Viapal VUP 9731 frp[1] 

 
Property Value 

Flexural strength (DIN EN 63) 480 N/mm
2
 

Tensile modulus (DIN 53457) 26,470 N/mm
2
 

Tensile strength (DIN EN 61) 480 N/mm
2
 

Compressive strength (DIN 53454) 196 N/mm
2
 

Tensile elongation (DIN EN 61) 1.7  % 

Impact resistance (DIN 53453) 150 190 kJ/m
2
 

Martens temperature (DIN 53458) 200 
0
C 

Thermal conductivity (DIN 52612) 0.15 0.22 W/m
0
C 

 
The specimen wasmade up on the hand lay-up discs with 22 mm thickness and machining operations carried out 

with a 5 mm diameter cemented carbide end mill on the „„VCE500 MIKRON‟‟ machining center with 11 kW 

spindle power and a maximum spindle speed of 7500 rpm. With L9 Taguchi array as the plan of DOE by assigning 

cutting velocity (v); feed rate (F) as machining input parameters to evaluate the outputs variables - machining force 

on the workpiece (Fm), delamination factor (Df), surface roughness (Ra). The three states of machining variables 

chosen are listed in Table 3.2. 

Table 3.2 Input cutting variables 

Milling parameters S1 S2 S3 

Cutting speed, (v); m/min 47 79 110 

Feed, (f); mm/rev 0.04 0.08 0.12 

 

Kistler 9257B piezoelectric dynamometer was used to measure the machining forces and Hommel tester T1000 

profilometer was used to evaluate the surface roughness. Of 30x magnification, 1 µm resolution Mitutoyo TM 
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500 microscope used to measure the damage caused on the specimen composite material. The obtained 

observation outcome of the experiments was arranged in the Table 3.3. 

Table 3.3 Experimental observation [1] 

 

Exp v f F Df  Ra 

1 47 0.04 21.67 1.030 1.42 

2 47 0.08 38.96 1.041 1.69 

3 47 0.12 54.19 1.064 1.86 

4 79 0.04 19.85 1.045 1.24 

5 79 0.08 33.40 1.057 1.43 

6 79 0.12 47.35 1.086 1.75 

7 110 0.04 15.54 1.057 1.02 

8 110 0.08 23.32 1.069 1.28 

9 110 0.12 32.89 1.097 1.48 
 

 

IV STATISTICAL PROJECTIONS 

 
On evaluating the regression relationship between the parameters and Best Subsets Regression analysis in Minitab 

the point noted through Table 4.1 the second regression analysis of F versus v, f shows the statistically significant 

relationship between the variables at the 95% confidence level and the model summary reveals the R-sq value as 

99.73% which is significant and model fit. Also the Durbin-Watson test the statistic value is greater than 0.05, 

shows that there is no indication of serial autocorrelation. In the Df versus v, f analysis the R-sq value is 99.79% 

&Regression Analysis of Ra versus v, f statistical significance relationship between the variables at the 95% 

confidence level exists as the R-sq value as 97.13 % which confirms the significance. 

 

Table 4.1 Regression Model summary 

 

 Parameter Regression  S     R-sq   
R-

sq(adj)   

R-

sq(pred) 
Durbin - Watson 

F Second order  1.10613 99.73% 99.29% 96.76% 1.70277 

Df Second order  0.0015853 99.79% 99.45% 97.60% 1.71057 

Ra Second order  0.0779463 97.13% 92.34% 77.69% 3.33973 

 
Based on the model summary the regression equations framed for all the three output parameters are: 

 Machining force = - (8.94) + (0.416 x machining speed) + (556.5 x feed) – (0.002573 x machining speed
2
) 

+ (14 x feed
2
) – (3.004 x machining speed x feed) 

 Delamination factor = (1.00291) + (0.000808 x machining speed) – (0.365 x feed) – (0.000003 x machining 

speed
2
) + (4.688 x feed

2
) + (0.001199 x machining speed x feed) 
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 Surface roughness = (0.543) + (0.01208 x machining speed) + (16.05 x feed) – (0.000119 x machining 

speed
2
) – (65.6 x feed

2
) + (0.0041 x machining speed x feed) 

Table 4.2 Best Subsets Regression: F versus v, f, v x f 

 

Variables R-Sq 
R-Sq 

(adj) 

R-Sq 

(pred) 
Cp S v f v x f 

1 72.3 68.4 52.8 307.3 7.3878 - x - 

2 98.8 98.4 96.7 10.8 1.6753 - x x 

3 98.8 98.1 95.1 12.6 1.8275 x x x 
 

 

The best subset analysis results posted through the Tables 4.2; 4.3; 4.4 confirms the contribution of tool feed as 

higher influence on F, Df and Ra over the cutting speed. 

 

Table 4.3 Best Subsets Regression: Dfversus v, f, v x f 
 

Variables R-Sq 
R-Sq 

(adj) 

R-Sq 

(pred) 
Cp S v f f

2
 v x f 

1 92.5 91.4 87.8 103.9 0.0062532 - - - x 

2 98.7 98.3 97.0 15.4 0.0027794 x - x - 

3 99.1 98.6 97.1 11.7 0.0025290 x x x - 
 

Table 4.4 Best Subsets Regression: Ra versus v, f, v x f 

 

Variables R-Sq 
R-Sq 

(adj) 

R-Sq 

(pred) 
Cp S v f v

2
 

1 52.2 45.4 22.7 44.8 0.20800 - x - 

2 91.7 89.0 87.2 5.6 0.093566 - x x 

2 89.2 85.6 82.6 8.2 0.10669 x x - 

3 93.6 89.8 81.7 5.6 0.089870 x x x 
 

Hence the second order regression relationship is considered for the application towards further evaluation. 

 

V OPTIMIZATION TECHNIQUES 

 

Differential Search Algorithm optimisation method is chosen and applied in this attempt in MATLAB to appraise 

the influence of the cutting velocity, tool feed on to the work material towards the resultant parameters Delamination 

factor and Surface roughness and to estimate the optimal parameters combination for the quality outcome through 

the optimization. Though Elman Back Propagation domain in MATLAB the DSA programme as follows.  

function [direction,msg]=generate_direction(method,superorganism,size_of_superorganism,fit_superorganism); 

switch method 
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    case 1, 

        % BIJECTIVE DSA  (B-DSA) (i.e., go-to-rnd DSA); 

        % philosophy: evolve the superorganism (i.e.,population) towards to "permuted-superorganism (i.e., random 

directions)" 

        direction=superorganism(randperm(size_of_superorganism),:); msg=' B-DSA'; 

    case 2, 

        % SURJECTIVE DSA (S-DSA) (i.e., go-to-good DSA) 

        % philosophy: evolve the superorganism (i.e.,population) towards to "some of the random top-best" solutions 

        ind=ones(size_of_superorganism,1); 

        [null_,B]=sort(fit_superorganism); 

        for i=1:size_of_superorganism, ind(i)=B(randi(ceil(rand*size_of_superorganism),1)); end; 

        direction=superorganism(ind,:);  msg=' S-DSA'; 

    case 3, 

        % ELITIST DSA #1 (E1-DSA) (i.e., go-to-best DSA) 

        % philosophy: evolve the superorganism (i.e.,population) towards to "one of the random top-best" solution 

        [null,jind]=sort(fit_superorganism); ibest=jind(ceil(rand*size_of_superorganism)); msg='E1-DSA'; 

        direction=repmat(superorganism(ibest,:),[size_of_superorganism 1]); 

    case 4, 

        % ELITIST DSA #2 (E2-DSA) (i.e., go-to-best DSA) 

        % philosophy: evolve the superorganism (i.e.,population) towards to "the best" solution 

        [null_,ibest]=min(fit_superorganism); msg='E2-DSA'; 

        direction=repmat(superorganism(ibest,:),[size_of_superorganism 1]); 

end 

Through the compiled DSA values of the output parameters are estimated with initial iterations (trained for 10000 

iterations) are compared with the experimental observations individually and the offset rate is noted. Figure 5.1 

shows the data training progress in MATLAB. 
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Figure 5.1 Data training progress of 50000 iterations 
 

Upon the comparison, it is evident that the performance of the DSA is in the close tolerance the algorithm is coded 

to the execution in the Gradient Descent with Momentum & Adaptive Learning. The performance indicator is the 

mean square error. Based on the objectives, the coding was developed towards optimization, i.e. surface roughness 

to the minimum value as the objective functions. Initially the simulation is trained for 50000 iterations.  Mean 

squared error in computation is found as 0.3640 with the compiling time 74.1137.  

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Flow chart of Regression hybridization with DSA 
 

The regression relationship equations generated by the Minitab is fed into the programme for the closeness in 

resulting the simulation (MSE = 0.29382) and 19.28 % improvement in error reduction is noticed. The relevant flow 

of hybridization is shown through the Figure 5.2. With this the values for the step up periodical (15 intervals) 

between the parameter selection is chosen for subsequent simulation. The step up value for such computation is 

chosen as (47 : 4.2 : 110) for the speed parameter and (0.04 : 0.00533 : 0.12) for the feed parameters. The computed 

values through this hybrid approach are given in the Table 5.1.  
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Table 5.1 F, Df, Ra for v = 47, 51.2 and 55.4 m / min. 
 

Feed 
v = 47 m /min v = 51.2 m /min v = 55.4 m /min 

F Df Ra F Df Ra F Df Ra 

0.040 21.670 1.030 1.420 21.741 1.002 1.477 21.834 1.006 1.446 

0.045 23.784 1.028 1.447 23.786 1.010 1.452 23.292 1.012 1.449 

0.051 26.002 1.057 1.723 26.051 1.045 1.664 26.008 1.040 1.645 

0.056 28.229 1.044 1.700 28.205 1.055 1.686 28.096 1.055 1.657 

0.061 30.451 1.037 1.722 30.361 1.055 1.704 30.185 1.059 1.686 

0.067 32.674 1.024 1.751 33.872 1.031 1.730 34.405 1.037 1.705 

0.072 34.157 1.034 1.757 35.332 1.039 1.740 35.575 1.039 1.721 

0.077 41.025 1.030 1.784 38.891 1.030 1.762 38.482 1.036 1.741 

0.083 43.909 1.041 1.794 41.983 1.050 1.776 41.204 1.048 1.757 

0.088 44.672 1.038 1.809 44.044 1.047 1.790 43.441 1.050 1.770 

0.093 45.387 1.044 1.823 45.412 1.050 1.806 45.014 1.053 1.787 

0.099 46.764 1.046 1.833 46.752 1.050 1.816 46.362 1.054 1.798 

0.104 48.836 1.056 1.846 48.427 1.067 1.829 47.896 1.061 1.812 

0.109 51.236 1.052 1.855 50.562 1.058 1.839 49.912 1.062 1.822 

0.115 53.671 1.059 1.865 52.986 1.062 1.850 52.319 1.064 1.834 

0.120 56.268 1.062 1.873 55.586 1.066 1.859 54.919 1.072 1.843 

 

Table 5.2 F, Df, Ra for v = 63.8, 68 and 72.2 m / min. 
 

Feed 
v = 63.8 m /min v = 68 m /min v = 72.2 m /min 

F Df Ra F Df Ra F Df Ra 

0.040 21.743 1.017 1.389 21.557 1.021 1.362 21.287 1.024 1.336 

0.045 22.850 1.025 1.639 22.832 1.031 1.608 22.958 1.036 1.573 

0.051 25.645 1.045 1.605 25.331 1.047 1.584 24.924 1.047 1.562 

0.056 27.602 1.058 1.595 27.219 1.059 1.561 26.743 1.060 1.524 

0.061 29.554 1.061 1.648 29.105 1.063 1.628 28.560 1.064 1.608 

0.067 34.668 1.047 1.649 34.511 1.053 1.619 34.178 1.059 1.585 

0.072 35.784 1.044 1.680 35.814 1.049 1.658 35.782 1.054 1.636 

0.077 37.796 1.048 1.694 37.513 1.054 1.668 37.247 1.060 1.640 

0.083 39.586 1.048 1.716 38.756 1.049 1.694 37.948 1.050 1.671 

0.088 42.073 1.059 1.727 41.265 1.064 1.704 40.362 1.068 1.679 

0.093 44.156 1.054 1.748 43.698 1.055 1.726 43.210 1.055 1.703 

0.099 45.609 1.064 1.758 45.255 1.070 1.736 44.902 1.075 1.712 

0.104 46.879 1.058 1.774 46.401 1.058 1.753 45.923 1.059 1.731 

0.109 48.561 1.072 1.785 47.873 1.076 1.764 47.188 1.081 1.742 
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0.115 50.806 1.067 1.797 49.954 1.068 1.777 49.063 1.068 1.755 

0.120 53.363 1.083 1.808 52.442 1.087 1.788 51.409 1.090 1.766 

 

Table 5.3 F, Df, Ra for v = 76.4, 80.6 and 84.8 m / min. 
 

Feed 
v = 76.4 m /min v = 80.6m /min v = 84.8 m /min 

F Df Ra F Df Ra F Df Ra 

0.040 20.923 1.025 1.311 20.472 1.026 1.287 19.923 1.027 1.263 

0.045 23.248 1.039 1.534 23.727 1.043 1.490 24.393 1.046 1.441 

0.051 24.423 1.046 1.540 23.836 1.045 1.516 23.155 1.045 1.489 

0.056 26.177 1.061 1.485 25.519 1.062 1.441 24.774 1.063 1.392 

0.061 27.927 1.065 1.586 27.207 1.065 1.563 26.391 1.065 1.537 

0.067 33.705 1.064 1.549 33.136 1.068 1.509 28.012 1.072 1.464 

0.072 35.680 1.058 1.612 30.577 1.062 1.587 29.632 1.065 1.559 

0.077 36.986 1.066 1.610 36.718 1.071 1.577 31.252 1.076 1.540 

0.083 37.187 1.054 1.646 36.483 1.057 1.619 35.839 1.061 1.589 

0.088 39.387 1.073 1.652 38.390 1.077 1.623 37.429 1.082 1.592 

0.093 42.678 1.056 1.678 42.104 1.058 1.651 41.495 1.061 1.621 

0.099 44.531 1.080 1.688 44.119 1.084 1.661 37.740 1.088 1.632 

0.104 45.411 1.060 1.707 44.817 1.062 1.680 44.099 1.064 1.651 

0.109 46.514 1.085 1.718 45.832 1.089 1.692 45.110 1.093 1.664 

0.115 48.189 1.068 1.732 47.411 1.068 1.706 46.792 1.069 1.678 

0.120 50.289 1.093 1.743 49.149 1.095 1.718 48.082 1.098 1.691 

 

Table 5.4 F, Df, Ra for v = 89, 93.2 and 97.4 m / min. 
 

Feed 
v = 89 m /min v = 93.2 m /min v = 97.4 m /min 

F Df Ra F Df Ra F Df Ra 

0.040 19.287 1.029 1.239 18.563 1.032 1.213 17.744 1.034 1.185 

0.045 20.838 1.050 1.387 20.044 1.053 1.327 19.160 1.057 1.261 

0.051 22.387 1.044 1.459 21.525 1.045 1.423 20.574 1.045 1.379 

0.056 23.935 1.065 1.335 23.007 1.067 1.271 21.987 1.069 1.199 

0.061 25.487 1.065 1.506 24.494 1.064 1.469 23.405 1.063 1.419 

0.067 27.036 1.075 1.412 25.974 1.078 1.352 24.821 1.080 1.281 

0.072 28.593 1.067 1.527 27.459 1.069 1.487 26.241 1.070 1.434 

0.077 30.143 1.081 1.498 28.948 1.085 1.449 27.658 1.088 1.388 

0.083 35.275 1.065 1.555 34.848 1.068 1.515 29.078 1.070 1.463 

0.088 36.560 1.086 1.557 35.854 1.090 1.516 30.496 1.094 1.466 

0.093 34.808 1.064 1.588 33.410 1.067 1.548 31.921 1.070 1.499 
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0.099 36.366 1.091 1.600 34.898 1.095 1.563 33.341 1.098 1.519 

0.104 43.250 1.066 1.619 36.387 1.069 1.581 34.763 1.071 1.536 

0.109 44.320 1.096 1.633 43.482 1.099 1.598 36.189 1.101 1.556 

0.115 46.342 1.071 1.646 39.369 1.073 1.610 37.609 1.075 1.568 

0.120 47.149 1.100 1.660 46.347 1.102 1.625 39.034 1.104 1.583 
 

Table 5.5 F, Df, Ra for v = 101.6, 105.8 and 110 m / min. 
 

Feed 
v = 101.6 m /min v = 105.8 m /min v = 110 m /min 

F Df Ra F Df Ra F Df Ra 

0.040 16.838 1.037 1.153 14.747 1.042 1.051 21.670 1.030 1.420 

0.045 18.182 1.061 1.191 15.961 1.068 1.048 23.784 1.028 1.447 

0.051 19.533 1.045 1.322 17.173 1.046 1.168 26.002 1.057 1.723 

0.056 20.879 1.071 1.121 18.385 1.075 0.984 28.229 1.044 1.700 

0.061 22.229 1.062 1.353 19.599 1.060 1.183 30.451 1.037 1.722 

0.067 23.578 1.082 1.202 20.816 1.086 1.065 32.674 1.024 1.751 

0.072 24.927 1.070 1.363 22.035 1.069 1.183 34.157 1.034 1.757 

0.077 26.281 1.091 1.313 23.252 1.095 1.158 41.025 1.030 1.784 

0.083 27.633 1.072 1.392 24.466 1.074 1.215 43.909 1.041 1.794 

0.088 28.985 1.097 1.400 25.685 1.101 1.231 44.672 1.038 1.809 

0.093 30.339 1.072 1.435 26.902 1.076 1.265 45.387 1.044 1.823 

0.099 31.691 1.101 1.460 28.123 1.105 1.290 46.764 1.046 1.833 

0.104 33.046 1.074 1.478 29.344 1.079 1.315 48.836 1.056 1.846 

0.109 34.406 1.104 1.502 30.566 1.108 1.338 51.236 1.052 1.855 

0.115 35.762 1.077 1.514 31.790 1.083 1.356 53.671 1.059 1.865 

0.120 37.118 1.106 1.530 33.010 1.110 1.372 56.268 1.062 1.873 
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Figure 5.3 F, Df, Ra for v = 47 m / min. 
 

Figure 5.4 F, Df, Ra for v = 51.2 m / min. 
 

 

  
 

Figure 5.5 F, Df, Ra for v = 55.4 m / min. 
 

Figure 5.4 F, Df, Ra for v = 63.8 m / min. 
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Figure 5.5 F, Df, Ra for v = 68 m / min. 
 

Figure 5.4 F, Df, Ra for v = 72.2 m / min. 
 
 

  
 

Figure 5.5 F, Df, Ra for v = 76.4 m / min. 
 

Figure 5.4 F, Df, Ra for v = 80.6 m / min. 
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Figure 5.5 F, Df, Ra for v = 84.8 m / min. 
 

Figure 5.4 F, Df, Ra for v = 110 m / min. 
 
 

VI  RESULTS AND CONCLUSIONS 

 
The experimental data set well fit in the second order statistical regression model. The regression relationship linked 

Differential Search Algorithm converges with minimal off set in simulation in terms of MSE. The contribution of 

tool feed registered to be higher in influencing the outcome parameters F, Df and Ra over the cutting speed. The 

combination of machining parameters for optimum outcome through various approaches carried out in this attempt 

is listed in Table 6.1.  

 

Table 6.1 Optimum values and combination of input parameters 
 

Stages Source v f F Df Ra 

1 Experimental values 
110 0.040 15.540 - 1.020 

47 0.040 - 1.030 - 

2 
Simulation through Regression 

Equation 

110 0.040 14.752 - 0.987 

47 0.040 
 

1.029 - 

3 
Simulation through Regression 

equation step values 

110.0 0.040 14.752 - - 

47.0 0.040 - 1.029 - 

93.2 0.040 - - 0.995 

4 
DSA Hybridisation Regression 

simulation 

110 0.040 14.747 - - 

51.2 0.040 - 1.002 - 

110 0.056 - - 0.984 

 

 

 

The methodology of optimisation executed may also be refereed for further analysis as the results are in close 

proximity with the experiments. The exhibited GRAPHS may be utilized by the operator concern at time of 
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performing the milling operations. Further smoothened curves may be produced by simulating with increase number 

of step values. Other algorithms are also may be tried to forecast the product quality through the machining 

parameters optimization in future.   
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