Volume No.06, Special Issue No.(01), December 2017 Www.ijarse.com IJARSE ISSN: 2319-8354

Identifying network communities in Bollywood Tweet dataset

Sandeep Ranjan¹, Dr. Sumesh Sood²

¹PhD Scholar, I.K. Gujral Punjab Technical University, Kapurthala (India) ²Assistant Professor, I.K. Gujral Punjab Technical University, Kapurthala (India)

ABSTRACT

Social Networks are composed of dense communities which can be viewed as symbolic building blocks of the network. Treating social networks as graphs, different parameters can be calculated to identify communities that are distinct from other connected components of the graph. In this research, Tweets for Twitter handles of Bollywood movies released between 1st June 2017 and 28th July 2017 were fetched to identify communities in the network. This helps to understand the density of the graph. Communities are connected components of the graph where an edge exists between any two nodes of the subgraph. Information spread and the role of communities can be determined by analyzing various graph metrics. Number of connected components in a network symbolizes active disseminators of information.

Keywords: - communities, connected components, graphs, opinion mining, social networks

I. INTRODUCTION

Networks are the best way to represent social, information, technological and biological systems [1]. The nodes of network represent entities and the edges represent relationships amongst various entities. Nodes organize themselves into densely connected communities called network communities or clusters [2]. Networks can be found everywhere, for example a country is divided into provinces, districts, towns and villages. Railway station networks [3], road networks [4], webpage networks [5], biological networks [6], research citation networks [7] and animal society networks [8] are complex networks formed of densely connected nodes. Recently a lot of work has been carried out on social networks, which are formed as a result of the interaction of individuals on an online platform [9,10].

Studies have shown that most networks share a number of distinctive properties. One of these properties is the small world property which states that the average distance between the nodes of a network is short [11]. It means that even in a large network like network of web pages, the average distance between any two nodes is not of a high order. This means that nodes have edges amongst themselves and this gives rise to communities where constituent nodes have shared common properties.

Community detection aims at identifying the groups of nodes that are better connected to each other in contrast to other subgroups of the graph [12]. Social networks are composed of dense communities representing inclination of the general public towards specific topics and actors. Clustering web clients having similar interests and geographically based near to each other can help improve the performance of the World Wide Web. In case of online retail networks like Ebay and Amazon, identifying clusters of clients with similar

interests of purchases, better recommendation models can be developed which can better guide the customers and benefit the retailer by enhancing the business opportunities. In the research presented, dataset was created for Bollywood movies released over a period of two months and graph metrics were calculated to find the individual communities denoted by connected components.

II. RELATED WORK

Analysis of networks has been carried out in a variety of scenarios to provide an alternate approach to problem solving. Zachary's network of the members of the karate club is a well-known example of community detection [13]. The edges represent the outside club activities and interactions of the members, using the community detection algorithms, splitting of the club into two groups can be predicted. Researchers have used community detection in networks for studying animal behavior as social networks are not adversely affected by sampling errors and their effect is also local [14].

Five online social networks Facebook, Twitter, Google+, Flickr and Wikipedia were evaluated using Communities from Edge Structures and Node Attribute (CESNA) to statistically model the network structure-node attributes interactions [15]. Community detection and information spread have been studied in Twitter for the role in the spread of hoax in Indonesia [16]. The study focused on the role of social media in spread of false news, lies and gossip that lead to rumors of death of a famous person in Indonesia. Viral epidemics and large scale opinion sharing leads to success or failure of certain events like TV shows, movie release and music concerts [17].

In the present research, analysis has been carried out on the detection of movie tweet communities. Whenever a Twitter user comments or responds to any movie Twitter handle, edges are created amongst vertices and leads to the evolution of communities. The communities composed of professional critics, viewers and amateur communities affect movie related concepts like box office revenue, movie ratings and help form an image of the movie those reading the content to help them decide whether to watch the movie or not [18]. Twitter based movie rating has been found to be superior over public rating systems like MovieLens and Netflix [19]. The Twitter dataset was found to be more realistic and natural giving nearly real time viewer opinion about newly released movies.

III. DATASET CREATION AND OVERVIEW

NodeXL was used to fetch Tweet datasets for Bollywood Hindi movies released from 1st June 2017 to 28th July 2017 on a daily basis. Individual movie tweets were fetched in separate MS Excel sheets date wise and a summary sheet was created to save the 7 day data. To avoid redundancy, the filter was applied to Tweet column to get distinct tweets. NodeXL was used to compute the below mentioned parameters for all the movie tweets dataset files.

Table 1. NodeXL overall metrics worksheet

Type of graph	Directed/ undirected
Vertices	Total vertices in the graph
Reciprocated Vertex	Ratio of number of vertex pairs having bidirectional
Pair Ratio	edges to the number of connected vertex pairs.
Total Edges	Total edges in the graph
Edges containing	Number of edges having any duplicates.
Duplicates	
Unique Edges	Number of unique edges.
Self Loops	Number of edges forming a loop to vertex.
Single-Vertex	Number of connected components that have only
Connected Components	one vertex.
Reciprocated Edge	Number of edges that are reciprocated divided by
Ratio	the total number of edges.
Connected Components	Number of connected components in the graph
Diameter	Distance among all vertex pairs, when geodesic
	distance is the shortest path.
Maximum Vertices in a	Number of vertices in the connected component that
Connected Component	has the most vertices.
Maximum Edges in a	Number of edges in the connected component
Connected Component	having the most edges.
Modularity	A measure of distinguishing denser and sparse
	connections
Graph Density	Number of edges divided by the number of graph
	edges if all the vertices are connected to each other.

Table 1 describes different network parameters computed by NodeXL and their description. These parameters help to understand network and its structure.

Table 2 shows "Aksar 2" movie tweet sheet for 22nd July, 2017 dataset. All the above mentioned fields have been populated with values computed by NodeXL's graph metrics option.

Table 2. NodeXL overall metrics worksheet for "Aksar 2" movie tweet data for 22nd Nov

Metric	Value
Directed/ Undirected	Directed
Number of Vertices	83
Number of Unique Edges	135
Number of Edges (With Duplicates)	60
Total Number of Edges	195
Number of Self-Loops	24

Vertex Pair Ratio (Reciprocated)	0.02222222
Edge Ratio (Reciprocated)	0.043478261
Number of Connected Components	14
Number of Connected Components of Single Vertex	3
Connected Component Maximum Vertices	51
Connected Component Maximum Edges	160
Diameter (Geodesic Distance)	4
Geodesic Distance (Average)	2.392738
Density	0.020276227

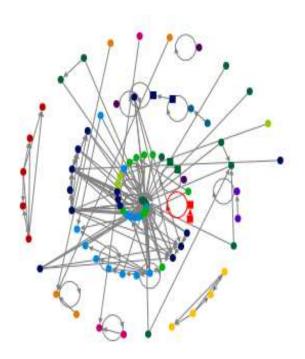


Fig.1 Connected components of "Aksar 2" movie tweet data for 22nd Nov

Figure 1 describes the spiral graph of the Aksar 2 movie dataset for 22nd November 2017. There is a total of 15 (14+1) connected components in this graph each being represented by a distinct color for differentiation. If any of the vertices is clicked, its corresponding connected component in the graph gets highlighted and the vertex shape is also highlighted. In figure 1, the connected component G14 is selected in the worksheet and thus a red colored solid square appears in the graph.

IV. EXPERIMENT FRAMEWORK

The dataset has been created by fetching tweets for Twitter handles of Bollywood Hindi movies released from 1st

June 2017 to 28th July 2017. The tweets for each movie were fetched starting from their release date that normally falls on a Friday to Thursday of next week thus creating dataset of 7 day tweets for each movie released during the said period.

			Date	Tweet Count								
s.	Movie	Twitter	(Released	-						Total		
No	Name	handle	on)	Day-1	Day-2	Day-3	Day-4	Day-5	Day-6	Day-7	Total	Distinct
	Sweetie	sweetiew										
1	Weds NRI	edsnri	02/06/17	431	457	474	367	295	272	264	2560	138
	Mirror	mirrorgam	00/05/45	4005	70.4	5 0.50	7020	7 2.54		0.544	20.420	45 0
2	Game Film	efilm	02/06/17	4905	7061	7068	5030	5364	6351	3641	39420	678
	Hanuman	hanuman										
3	da Damdaaar	dadamdaa r	02/06/17	3855	3700	3446	3485	3464	2372	3383	23705	1269
	Flat 211	flat211							868			
			02/06/17	921	991	0		902		_		
	Dobaara	dobaara	02/06/17	881	636		1090	1241	1501	1634	11392	
6	Dear Maya	dearmaya	02/06/17	447	4172	4396	0	4363	3057	4173	20608	1312
_	Behen Hogi	behenhog	00/06/17	1.60	2.400		2220	2452	2660	20.64	17004	1000
/	Teri	iteri	09/06/17	160		0		3453			17884	
8		raabta	09/06/17	3129	1591	0	3154	911	3052	3019	14856	4391
0	Love You Family	loveyoufa mily	09/06/17	42	47	0	0	47	45	46	227	24
	Bank Chor	bankchor	16/06/17	2562	79	590	754	1799	1468	- 100		_
11	Tubelight	tubelight	23/06/17	3204	2050	0	3166	2146	4214	0	14780	4657
	Ek Haseena											
	Thi Ek Deewana											
12	Tha	ehtedt	30/06/17	1206	7166	1497	0	737	409	0	11015	932
12	THA	mommovi	30/00/17	1200	7100	1497	0	131	407		11013	732
13	Mom	e	07/07/17	130	0	212	219	214	216	209	1200	59
	Guest In	guestinlo	011 011 01									
14	London	ndon	07/07/17	0	587	0	971	973	981	1145	4657	383
	Jagga	jaggajaso										
15	Jasoos	os	14/07/17	5281	450	0	3355	2435	1529	731	13781	5105
		shabthefil										
16	Shab	m	14/07/17	4529	420	0	942	325	513	630	7359	970
	Lipstick	lipstickun										
	Under My	dermybur										
17	Burkha	kha	21/07/17	0	360	4714	5833	7756	8881	2535	30079	3360
10	Munna	munnamic	01/07/17	0	602	1206	700	17467	17107	17020	54404	2720
		hael	21/07/17						17127			
19	Raag Desh	raagdesh	28/07/17	465	2678	3807	1529	1688	2914	3572	16653	1362
20		indusarka	20/05/15	10.5	0.450	1500	5200	07.40	10.520	40.5	10.550	2122
20	Indu Sarkar	r	28/07/17	1865	8462	1792	7299	8749	10629	4867	43663	3123
21	M1 1	mubaraka 	20/07/17	2077	1.425	5100	7.1	5227	F 400	4620	25761	2463
21	Mubarakan Baarat	n baaratco	28/07/17	3067	1435	5122	761	5337	5409	4630	25761	2463
22	Баагат Сотрапу		28/07/17	107	141	197	222	224	228	218	1337	54
22	Company	mpany		107		19/	222		228	218	1337	34

Table 3. Movie dataset description

The entries in the table where "0" is entered for a given day Tweet number means there were no Tweets fetched, it is more likely in the cases of movies which are not too popular among social network users. Analyzing movie

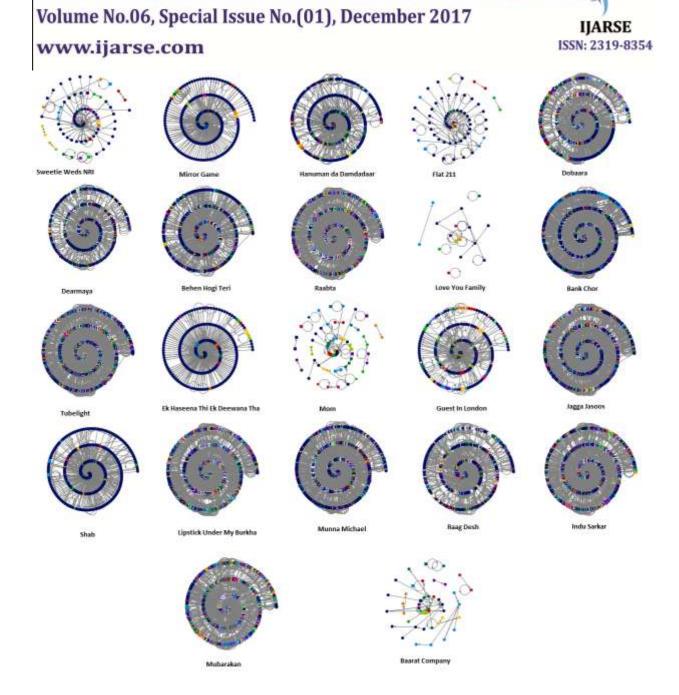
tweet datasets as mathematical graphs, different parameters can be calculated [20]. Table 4 contains different network metrics for the "Aksar 2" movie tweets fetched on 22nd Nov.

Table 4. Visual properties of connected components of "Aksar 2" movie tweet data for 22nd Nov Table 5. Number of connected components for all the movie tweet datasets

		1				ī	ī		Ī	ī			
												Singl	
												e-	
												Verte	Maxim
												х	um
									Recipr		Conn	Conn	Vertice
									ocate		ecte	ecte	s in a
						Edges			d	Recipr	d	d	Connec
					Uniqu	With	Total	Self-		ocate	Com	Com	ted
Grou		Vertex		Vert	e	Dupli	Edge	Loo	Pair	d Edge		pone	
	Vertex Color	Shape	ID	ices	Edges		S		Ratio	Ratio	nts	nts	-
р	vertex coror	Shape	יוו	ices	Luges	cates	3	ps	Natio	Natio	1113	1113	nent
C1	0 13 00	Diele	2	1.1	22	_	20	,	0.007	0.160	4	_	1.4
G1	0, 12, 96	Disk	3	14	23	7	30	2	0.087	0.160	1	0	14
62	0 126 227	Diele	4	1.1	10	24	42	11	0.000	0.000	4	_	1.4
G2	0, 136, 227	Disk	4	14	19	24	43	11	0.000	0.000	1	0	14
	0.400.50	D	_	4.0	4-				0.000	0.000	_	_	4.5
G3	0, 100, 50	Disk	5	13	17	0	17	0	0.000	0.000	1	0	13
G4	0, 176, 22	Disk	6	10	16	3	19	0	0.000	0.000	1	0	10
G5	191, 0, 0	Disk	7	5	7	0	7	0	0.000	0.000	1	0	5
G6	230, 120, 0	Disk	8	4	4	0	4	1	0.000	0.000	1	0	4
G7	255, 191, 0	Disk	9	4	5	0	5	0	0.000	0.000	1	0	4
G8	150, 200, 0	Disk	10	3	2	2	4	2	0.000	0.000	1	0	3
G9	200, 0, 120	Disk	11	3	3	0	3	1	0.000	0.000	1	0	3
G10	77, 0, 96	Disk	12	3	3	0	3	3	Applica	Applica	3	3	1
	, , , , , ,								1-1-	1-1-			
G11	91, 0, 191	Disk	13	2	2	0	2	1	0.000	0.000	1	0	2
011	31, 0, 131	DISK	13						0.000	0.000			
G12	0, 98, 130	Disk	14	2	2	0	2	1	0.000	0.000	1	0	2
G12	0, 98, 130	DISK	14			-			0.000	0.000		0	
		Solid											
G13	0, 12, 96	Square	15	2	2	0	2	1	0.000	0.000	1	0	2
		Solid											
G14	0, 136, 227	Square	16	2	2	0	2	1	0.000	0.000	1	0	2
	-, - ,,				- -		-		2.300				
		Solid											
64-	0.400.50				_			_	0.000	0.000	_	_	
G15	0, 100, 50	Square	17	2	1	0	1	0	0.000	0.000	1	Q 511	IPage

			Number of
			connected
S. No	Movie Name	Twitter handle	components
1	Sweetie Weds NRI	sweetiewedsnri	23
2	Mirror Game	mirrorgamefilm	23
3	Hanuman da Damdaaar	hanumandadamdaar	104
4	Flat 211	flat211	14
5	Dobaara	dobaara	462
6	Dear Maya	dearmaya	198
7	Behen Hogi Teri	behenhogiteri	252
8	Raabta	raabta	1250
9	Love You Family	loveyoufamily	10
10	Bank Chor	bankchor	305
11	Tubelight	tubelight	924
12	Ek Haseena Thi Ek Deewana Tha	ehtedt	23
13	Mom	mommovie	30
14	Guest In London	guestinlondon	97
15	Jagga Jasoos	jaggajasoos	672
16	Shab	shabthefilm	25
17	Lipstick Under My Burkha	lipstickundermyburkha	874
18	Munna Michael	munnamichael	427
19	Raag Desh	raagdesh	216
20	Indu Sarkar	indusarkar	653
21	Mubarakan	mubarakan	780
22	Baarat Company	baaratcompany	15

The number of communities in a graph also depends on the total number of vertices in that graph. In this case, each vertex is a Twitter ID whose associated user tweeted using the Twitter handle of the movie. Lesser number of vertices lead to lesser number of communities and hence a sparse network is generated. Movies which failed to capture the attention of the general public got a lesser number of tweets and the spread of information in the initial stage was slower and restricted by the number of users who initiated the opinion sharing process. The spiral graphs generated by NodeXL give a clear comparison of movie popularity by highlighting the number of edges and number of connected components.



International Journal of Advance Research in Science and Engineering

Fig. 2 Spiral Graphs of the entire Bollywood movie dataset

Figure 2 shows the spiral graphs of all the summary files containing 7 day tweet datasets for the movies released during the test period. More the number of connected components, more is the number of communities in the network and hence a denser graph with vertices establishing complex relationships amongst themselves.

V. CONCLUSION

As social networks are becoming more and more popular, there is a need to mine them and analyze the datasets from a new perspective to yield fruitful results. The Bollywood dataset analyzed in this research has presented methods of detection of communities in a newly released movie dataset which can help the personals related to this business to take help of social network analysis for their movie's promotion and understanding the spread of online word of mouth publicity through these communities.

International Journal of Advance Research in Science and Engineering Volume No.06, Special Issue No.(01), December 2017 www.ijarse.com

REFERENCES

- [1] J. Yang, J. Leskovec, Defining and evaluating network communities based on ground-truth, Knowl. Inf. Syst. 42 (2015) 181-213. doi:10.1007/s10115-013-0693-z.
- [2] M. Girvan, M.E.J. Newman, Community structure in social and biological networks, Proc. Natl. Acad. Sci. 99 (2002) 7821-7826. doi:10.1073/pnas.122653799.
- [3] M. Ouyang, L. Zhao, L. Hong, Z. Pan, Comparisons of complex network based models and real train flow model to analyze Chinese railway vulnerability, Reliab. Eng. Syst. Saf. 123 (2014) 38-46. doi:10.1016/j.ress.2013.10.003.
- [4] T. Tsekeris, Interregional trade network analysis for road freight transport in Greece, Transp. Res. Part E Logist. Transp. Rev. 85 (2016) 132–148. doi:10.1016/j.tre.2015.11.005.
- [5] R. Akerkar, P. Maret, L. Vercouter, Web intelligence and communities, Proc. 4th Int. Work. Web Intell. Communities - WI&C '12. (2012) 1. doi:10.1145/2189736.2189738.
- [6] P. Sah, L.O. Singh, A. Clauset, S. Bansal, Exploring community structure in biological networks with random graphs, BMC Bioinformatics. 15 (2014) 220. doi:10.1186/1471-2105-15-220.
- [7] M. Ley, DBLP Some Lessons Learned *, (2009).
- [8] M. Weiss, H. Hultsch, I. Adam, C. Scharff, S. Kipper, The use of network analysis to study complex animal communication systems: a study on nightingale song, Proc. R. Soc. B Biol. Sci. 281 (2014) 20140460-20140460. doi:10.1098/rspb.2014.0460.
- [9] J. Leskovec, K.J. Lang, A. Dasgupta, M.W. Mahoney, Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters, Internet Math. 6 (2009) 29-123. doi:10.1080/15427951.2009.10129177.
- [10] S. Zannettou, T. Caulfield, E. De Cristofaro, N. Kourtellis, I. Leontiadis, M. Sirivianos, G. Stringhini, J. Blackburn, The Web Centipede: Understanding How Web Communities Influence Each Other Through the Lens of Mainstream and Alternative News Sources, (2017). http://arxiv.org/abs/1705.06947.
- [11] J. Kleinfeld, The small-world problem, Soc. Sci. Public Policy. 39 (2002) 61–66. doi:10.1007/BF02717530.
- [12] S. Fortunato, D. Hric, Community detection in networks: A user guide, (2016) 1-43. doi:10.1016/j.physrep.2016.09.002.
- Fortunato, [13]S. Community detection graphs, Phys. Rep. 486 (2010)75-174. in doi:10.1016/j.physrep.2009.11.002.
- [14]D. Shizuka, D.R. Farine, Measuring the robustness of network community structure using assortativity, Anim. Behav. 112 (2016) 237–246. doi:10.1016/j.anbehav.2015.12.007.
- [15] J. Yang, J. McAuley, J. Leskovec, Community detection in networks with node attributes, Proc. IEEE Int. Conf. Data Mining, ICDM. (2013) 1151–1156. doi:10.1109/ICDM.2013.167.
- [16] H. Situngkir, M P RA Spread of hoax in Social Media Spread of hoax in Social Media, (2011). https://mpra.ub.uni-muenchen.de/30674/.
- [17] D. Shah, T. Zaman, Rumors in a Network: Who 's the Culprit?, Preprint. 57 (2010) 1-43. doi:10.1109/TIT.2011.2158885.

ISSN: 2319-8354

[18] S. Moon, P.K. Bergey, D. Iacobucci, Dynamic Effects Among Movie Ratings, Movie Revenues, and Viewer Satisfaction, J. Mark. 74 (2010) 108–121. doi:10.1509/jmkg.74.1.108.

[19] S. Dooms, T. De Pessemier, L. Martens, MovieTweetings: a Movie Rating Dataset Collected From Twitter, Work. Crowdsourcing Hum. Comput. Recomm. Syst. CrowdRec RecSys. 2013 (2013) 43–44. [20] R. Sandeep, S. Sood, Exploring Twitter for Large Data Analysis, 6 (2016) 325–330.