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ABSTRACT 

The main objective of this study is to extend the applicability of existing MHD two-fluid flow models by 

incorporating the Taylor number to emphasize more on such studies as these are essential for solving many 

engineering and industrial problems in relation to the rotating MHD generators, Hall accelerators, pumps and 

flow-meters, space craft design. The resulting governing linear differential equations are solved analytically, 

using the prescribed boundary and interface conditions to obtain the exact solutions for velocity distributions 

such as primary and secondary distributions in both regions. Also, their corresponding numerical results for 

various sets of values of the governing parameters are obtained to represent them graphically and are discussed 

in detail. 

Basic governing equations with boundary, interface conditions and mathematical analysis of the problem 

The fundamental equations to be solved are the equations of motion and current for the steady state two-fluid 

flow of neutral fully–ionized gas valid under assumptions given below and neglecting the asterisks, the non-

dimensional forms of equations are simplified as: 

(i)  The ionization is in equilibrium which is not affected by the applied electric and magnetic fields. 

(ii)  The effect of space charge is neglected. 

(iii)  The flow is fully developed and stationary, that is       /t = 0 

           And /x = 0 except p/x  0.       

(iv) The magnetic Reynolds number is small [so that the externally applied     magnetic field is undisturbed by 

the fluid, namely the induced magnetic    field     is    small    compared    with    the    applied    field [Shercliff 

(1965)]. Therefore components in the conductivity tensor are expressed in terms of B0. 

(v)  The flow is two-dimensional, namely /z = 0. 

With these assumptions, the governing equations of motion and current can be formulated as follows for the 

two-dimensional steady state problem of study in two regions.   

With the above transformations and for simplicity, neglecting the asterisks, the non-dimensional forms of 

equations are become: 
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The boundary conditions are  

 1 1 0,                                                                                            

 2 1 0,                   

   1 20 0 ,                  

1 21d d

dy h dy

 


 , at y = 0.      

          

I. SOLUTIONS OF THE PROBLEM 

Exact solutions of the governing differential equations with the help of boundary and interface conditions for the 

primary and secondary velocities u1, u2 and w1, w2 respectively. The numerical values of the expressions given 

at equations and computed for different sets of values of the governing parameters involved in the study and 

these results are presented graphically from figures 1and 2, also discussed in detail. 

 

II. RESULTS AND DISCUSSION 

The effect of varying the Hartmann number
 
on temperature distributions in the two regions, (that is, for two-

fluids) in the case of s=0 is shown in Fig.1.  It is observed in both the regions that, an increase in Hartmann 

number increases the temperature distribution. Also it is noticed that the temperature profile in the channel 

moves above the channel centerline towards region-I i.e., profile is high in the upper region compared to the 

lower region for Hartmann number Ha when all the remaining parameters are fixed. 

Fig.2 exhibit the effect of varying Hall parameter ‘m’ on temperature distributions in the case of s=0.  From the 

figure, it is found that an increase in ‘m’ decreases the temperature distribution in the two regions. Also it is 
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noticed that the temperature distribution is high in the upper region compared to the lower region for small 

values of Hall parameter (for m= 0.05 and 1) when all the remaining parameters held fixed.     
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