
 

1852 | P a g e  
 

A Novel Path Enumeration Algorithm for Directed 

Acyclic Graphs 

Sushobhit Singh
1
, Ajay Kumar Saxena

2 

1,2
Department of Electrical Engineering, Dayalbagh Educational Institute,(India) 

 

ABSTRACT 

Path enumeration is well studied and applied operation in all classes of graph problems. In directed acyclic 

graphs, traversal methods are typically used for enumerating paths. In this work, we have explored a novel 

approach to path enumeration for directed acyclic graphs, which is particularly useful to converge quickly for 

repeated path enumeration operations on the graph. We have defined a set of problem cases and compared our 

method with DFS based path enumeration. In our experiments we have found a dramatic impact of number of 

repeated operations on overall runtime.      

Keyword: Depth First Search (DFS), Directed Acyclic Graph (DAG), From To Path (FTP), Path 

Enumeration, Through Path (ThP) 

I. INTRODUCTION 

Graph, in computer science is an abstract data type, which is used for representing the mathematical graph 

concept. A graph can be classified as directed or undirected, based upon the possibility of accessing the adjacent 

vertices from a given vertex in the graph. In directed graphs the vertices are connected with the edges which 

have direction associated with them, which mean that all the adjacent vertices of a given vertex are not 

accessible with the same cost. Directed acyclic graphs or (DAG) is an important class of graph structures which, 

is a finite directed graph with “no directed cycles”. A DAG contains no vertex, v that can be reached to itself 

through a finite set of directed edges E [1]. Some of the important definitions, related to DAGs which we will be 

using throughout this paper are presented below: 

1. Path – A path is a finite set of directed edges. Set of all paths is denoted by P. 

2. Start Point – A start point is a vertex v, in the DAG which does not have any incoming edges to it. S is the set 

of all start points in the graph. 

3. End Point – An end point is a vertex v, in the DAG which does not have any outgoing edges from it. E is a set 

of all end points in the graph. 

In a lot of graph applications [2], [3], [4] and [5], it is required to find out all paths between a set of vertices, this 

all path finding problem can be generalized as, enumerating all the paths from a set of start points to a set of end 

points, where the start and end points of interest are known and is a sub-set of all start and end points of the 

graph. 

In this work we have particularly focused on two sub-sets of path enumeration problem, which we call as FTP  

(from_to_paths) and ThP (through_paths) algorithms. These problems are formally defined below: 

1. From_To_Path_Enumeration (FTP): 



 

1853 | P a g e  
 

Given a graph G, find a set of all paths p ϵ  P, between a given vertex pair (u, v) | u ϵ  S, v ϵ  E 

2. Through_Path_Enumeration (ThP): 

                Given a graph G, find a set of paths p ϵ  P, which contains the vertex t ϵ  V, between each vertex pair 

(u, v) |       

                u ϵ  S, v ϵ  E. 

Fig. 1 shows a sample DAG; we have shown inputs to both the FTP and ThP algorithms, and expected output 

for both problem types. 

                                

                    Fig.1 A sample Directed Acyclic Graph and paths resulting from FTP and ThP 

Rest of the paper is organized as follows; we will describe our data structure and its related operations in section  

2. Section 3 describes the path enumeration algorithms, both DFS based and point handle based. Section 4 

describes the comparative experiments and results, and conclusive remarks are made.  

 

II. POINT HANDLE 

Point handle (PH), is a vertex bound structure, which has a unique handle per vertex and it keeps the track of 

splitting and merging of paths from vertices in a DAG. Fig. 2 describes a PH structure in detail; where we have 

enlisted the main structure elements and define the basic intent of each one of them. 

 

1. The source vertex handle, keeps the track of source vertex from where the PH is originated. 

2. Master PH, keeps the track of PH from which the current PH is generated, it ensures that in constant stime one 

can reach from a PH to its master PH, and can be reached to the origin point or a start point of the path. 



 

1854 | P a g e  
 

3. Merged PH container contains a set of PHs which are merged into this PH and are getting propagated 

encapsulated in this PH. 

In the next section we will describe operations to be performed on point handles; and the point handle 

propagation algorithm. We will further describe the state of the data structure after each of these operations. 

Before we delve into exploring individual operations let’s describe a central property of the PH based 

algorithms that we will be presenting in later sections. A unique PH is created at each of the start points in the 

Graph and they are propagated on the paths originating from the vertices, but on each vertex of the graph we 

maintain only one PH explicitly. With this as the central property of the PH algorithms, let us now describe 

various operations and their intent for the algorithm. 

                                         

 

Fig.2 Point Handle Structure 

2.1 Split Point Handle 

Split operation on a PH comes into being when there is more than one vertex on the graph which contains an 

incoming edge from the give vertex. In such a case to ensure single vertex single PH property, point handles are 

effectively split, and a new PH is created at each of the sink vertices. Source vertex handle of each the newly 

created PHs points to the source vertex at which the split takes place. As a special case, if there is already a 

point handle present, PH merging takes place, we have described PH_Merging further. 

OPERATION Split_PH: 

Input: v ϵ  V 

Output: Set S of vertices 

For each vertex u in the fan-out of v 

If (PH[u] does not exist) 

PH[u] = new PH 

Master [PH[u]] = PH[v] 

Add u to S 

Else 

Merge_PH (PH[u], PH[v]); 

End. 



 

1855 | P a g e  
 

 

2.2 Merge Point Handle 

As a point handle propagates through a path there is a possibility that it comes across a situation where there is 

already a PH present on sink vertex of the path, in accordance with the central idea of PH structure, this PH 

cannot propagate any further, hence it is merged with the PH which is present on the sink vertex. The inputs to 

this operation will be two point handles to be merged; it inserts the source vertex point handle PH[u], into the 

merged PH container of sink vertex point handle PH[v]. 

 

 

 

 

 

2.3 Test PH Merged 

As a PH can exist on a node contained in the merged container for another PH, it is important to establish some 

method or operation to find out if a vertex contains a given PH. For this purpose, we have defined the operation 

called Test_Merged_PH, which will take two PH and check whether they are merged or not. The “is in merged 

container” is a costly operation, in that it involves searching for a PH in another. But, due to PH culmination at 

split and merge points, it’s unlikely that a given PH will contain a big number of merged PHs. 

 

 

 

 

 

 

2.4 Propagate Point Handles 

With the basic operations setup, let us now look at the tag propagation procedure, for graph sweep and 

establishing point handles at each of the vertices, which will then be used for path enumeration algorithms. For 

asserting point handles on each vertex in the design, path handles are propagated on the graph. At every start 

point a new path handle is created and propagation follows. Point handle propagation starts from a start point in 

the DAG, generally any point in the DAG can be used for tag propagation, but in this work we have the 

algorithm initiating from the start points. Propagation of the PHs on the downstream fan-out vertices, happens in 

breadth first manner. 

 

OPERATION Merge_PH: 

Input: PH[u], PH[v] 

Output: 

if PH[u] not uniquely equal to PH[v] 

  Merged_Container[PH[v]] += PH[u] 

OPERATION Test_Merged_PH: 

Input: PH[u], PH[v] 

Output: Status 

Status ← false 

 

if PH[u] equals PH[v] OR PH[u] exists in merged container of 

PH[v]  

Status ← true 

 



 

1856 | P a g e  
 

We have maintained a queue of vertices which are to be explored further. There are couple of observations 

which   we would like to draw attention to – 

1. Point handles gets split into child point handles at the split point, and thus a point handle does not exist 

beyond the split point 

2. A given point handle, or its children propagates only till the time it reaches a vertex which is already 

populated with a point handle, beyond which it is contained in the handle in which it is merged. 

The aforementioned observations make the tag propagation exactly a O(V) algorithm, i.e. by a single sweep of 

all vertices of the graph we will be able to propagate the point handles on the graph, and this method maintains 

the previously stated invariant. Fig. 3 presents a DAG and its state after the point handle propagation. In this 

case we have given unique integer identifiers to point handles.  

 

                                                    

Fig.3 Merge and Split on the graph and point handle connectivity 

 

III. PATH ENUMERATION ALGORITHM 

With all the constituents established, we may now present the path enumeration algorithms. We will briefly 

touch upon the path enumeration using depth first search on the graph, which is a typical method used on DAGs. 

We will take special case of path enumeration which we are interested in this work, without the loss of 

generality. Next, we present the challenges faced by generic DAG path enumeration algorithms based on DFS in 

FTP and ThP enumeration problems. 



 

1857 | P a g e  
 

 

3.1 DFS Based Path Enumeration on DAG 

DFS is a standard graph algorithm, and we will not go into the details of it, any interested reader can go through 

[6] for understanding the DFS. There is however an important observation which we would like the readers to 

take a note of, given a vertex v in the DAG, all the paths out of the vertex can be easily enumerated, but the 

same cannot be said for the paths from incoming edges, because DAGs typically doesn’t have linkages in the 

backward direction. Thus, DFS based solutions for path enumeration in case of FTP and ThP type of problems 

becomes impractical in terms of runtime. Several applications tweak the DAG to have incoming edges 

information also stored on all the vertices [7] to be able to go backward on the graph, which incurs serious space 

penalty, and is unnecessary for path enumeration. In this case, the DFS operation can be performed, after fan-

in/fan-out cone coloring on the graph for secluding the section of graph on which prospective paths are present 

[8]. In the next section we will present our path enumeration algorithm which uses the point handles for 

performing path enumeration. 

ALGORITHM Propagate_PH: 

Input: v S | S is a set of start Points in Graph G  

Output: 

Create empty Queue Q 

Q.enqueue (v) 

while Q is not empty 

u = Q.dequeue () 

if u E | E is a set of end points of graph 

Continue to start 

if (split needed at u) 

S Split_PH (u);  

for each s inS 

Q.enqueue (s) 

end 

else 

W = Next[u]  

if w has PH 

Merge_PH (PH[u] , PH[w]) 

else 

Q.enqueue (w) 

end 

 

 



 

1858 | P a g e  
 

3.2 Point Handles Based Path Enumeration on DAG 

Before we delve into the path enumeration we would like to point the readers to a residual structure we call as 

point handle graph. A point handle is a residual structure that is derived from the original DAG after the tag 

propagation as depicted in figure 3. This is a reduced graph which takes in account the merges and splits that 

have taken place on the path. There are a couple of points to be observed for point handle graph: 

1. It is reversed DAG, with reduced points as compared to original graph, i.e. the start points of the point handle 

graph contain the end point tags of the original graph. 

2.    The merged point handles can be visualized as being on the same level or union, and any path converging         

from a point handle; will pass through all the point handles at the same level, shown in Fig. 3. 

 

Algorithm Enumerate_PHPaths is used to get a set of PH paths, culminating at an end point, given an end point 

in   the design, and algorithm Enumerate_DAGPath is used to enumerate a DAG given a PH path. These are the 

two   major sub operations of the enumeration algorithms, which we will be presenting in the next section. 

Enumerate PH paths does a point handle path enumeration, which is a reduced graph path enumeration, from 

which the original graph path enumeration is done. In PH path enumeration, DFS operation is performed on this 

is used to get all the paths culminating at an end point. We have used an operation Expand_PH which expands 

all the point handles which are merged in this PH or in which this PH is merged. 

     

 

     

     

  

 

 

 

 

 

 

 

 

 

 

ALGORITHM Enumerate_PHPaths: 

Inputs: Vertex Stack S, PH[v] | v ϵ  V 

Output: Set of End point handle paths  

if PH[v] is non-existent 

 

Push PH[v] on Stack S 

 while S is not empty 

 

PH ← POP(S) 

  

PH_S ← Expand_PH  

foreach PH ϵ  PH_S 

Enumerate_PHPaths(S, Master[PH]) 

end 

end 

else 

Add path in stack to point handle paths set and remove non-needed entries from stack 

end 



 

1859 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

3.2.1 Path Enumeration from FTP (From To Path) 

In FTP path enumeration, as discussed earlier, the paths between a pair of start and end point on the graph are 

enumerated. Path handle based method for enumerating such paths in the design, gets all the end points and does 

a backward path enumeration. It has to then filter the paths which do not start from the points in from set. 

3.2.2 Path Enumeration of ThP (Through Path) 

Through path enumeration problem requires to enumerate all start point to end point paths through a given point 

in the graph. The path handle based method, does a BFS traversal from the given point and reaches to all the end 

points in the fan out of the through point. At the end points, path enumeration for all paths to the end points 

takes place, with the only distinction from FTP algorithm being filtering of the from points. 

 

 

 

 

 

 

 

 

 

 

ALGORTIHM Enumerate_DAGPath: 

Inputs: A given point handle path 

Outputs: DAG path 

PHT ← Remove_PH_Path_Top 

v← Get PH Vertex [PHT] Add on path [v] 

while v is not a graph end point 

for each vertex u in the fan-out of v  

if PH[u] is equal to PHT 

v← u 

break the inner loop 

else if Test_Merged_PH(PH[u], PHT) 

PHT ←      Remove_PH_Path_Top 

v ← u 

break the inner loop 

end 

end 

ALGORITHM Enumerate_FTP: 

 

Inputs: Set of from pins F ϵ  S and to pins T ϵ  E 

Outputs: Enumerated DAG Paths 

foreach e ϵ  T 

P← Enumerate_PHPaths (e)  

foreach path p ϵ  P 

if start point of p not part of F 

Remove p from P 

end 

end 

foreach p in P 

Enumerate_DAGPath (p) 

 

 

 

 

 



 

1860 | P a g e  
 

 

IV. RESULT AND CONCLUSION 

In this section we have done a basic comparison of the DFS based path enumeration with point handle based 

path enumeration from the vantage point of FTP and ThP enumeration problems. DFS based algorithms have 

been gauged for two variants of graph implementation: 

1. Every graph vertex has only the out-going directed edges, which means movement in one direction is possible 

2. Every graph vertex has out-going and in-coming directed edges both, which makes the backward iteration 

possible, but    leads to memory penalty. 

We have generated random directed acyclic graphs using a simple C++ method reported by [9], interested 

readers or researchers may as well try to compare the performance of our methods with DFS based path 

enumeration, for the graphs representing their domain of problem. We have presented the runtime of performing 

K different path enumeration operations, both in case of FTP and ThP problems. On a set of variable size graphs 

where we define    the size of E.V, we have done performance analysis, with varying number of FTP and ThP 

enumeration calls on both our method and DFS based method, one must note that the tag numbers are for 

enumerating tag paths only and from this we can enumerate the original graph paths in O (path length) time. 

Results of our experimentation are presented below, we have taken random sets of graph in the format G (V, E), 

varying in the size and then performed fixed number FTP and ThP experiments as shown, and generated CPU 

time for each experiment. We have not done memory analysis on our data set, as we do not see memory as a 

bottleneck on our experimentation; an extensive runtime vs memory correlation may give some more insight 

into the solution effectiveness. For DFS we have not considered the case where there are no incoming edges 

because in such cases the ThP becomes practically impossible, so we have discarded this out of our 

experimentation, an interested reader can perform such analysis. 

   

Table: Experimental Result 

 Time in milliseconds 

Graph 

(#Nodes, 

#Edges) 

#Commands TAG_FT DFS_FT TAG_TH DFS_TH 

362, 1924 100  270  280 270 264790 

458, 3088 200  3500 4410 4380 51362200 

346, 1733 300  570 580 1000 382140 

450, 2922 400  4200 5810 5123 29803900 

355, 1787 600  1100 1140 900 708600 

346, 1751 700  1500 1140 1750 1018000 

 



 

1861 | P a g e  
 

Conclusively, we can see that the convergence time for point handle based algorithms comes better compared to 

DFS based algorithms. Interested readers may use these algorithms in their problem space and see how effective 

this data structure is for their class of problems. Moreover, we would further like to explore parallel versions of 

these algorithms on path enumeration and see how much scalability and speedup we can derive out of this. 

 

REFERENCES 

[1] GIUSEPPE DI BATTISTA et al, DRAWING DIRECTED ACYCLIC GRAPHS: AN EXPERIMENTAL 

STUDY, Int. J. Comput. Geom. Appl. 10, 623 (2000). Reference of applications page where paths are 

needed 

[2] Eppstein, 1998, D. Eppstein, Finding the K shortest paths, Journal of the Society for Industrial and Applied 

Mathematics, 28 (2) (1998), pp. 652-673 

[3] Yau-Tsun Steven Li , Sharad Malik, Performance analysis of embedded software using implicit path 

enumeration, Proceedings of the 32nd annual ACM/IEEE Design Automation Conference, p.456-461, June 

12-16, 1995, San Francisco, California, USA [doi>10.1145/217474.217570] 

[4] Dial, R B, 1971 “A probabilistic multipath assignment model which obviates path 

enumeration” Transportation Research 5 (2) 83–111 Google Scholar, Crossref 

[5] E. DeutschDyck path enumeration, Discrete Math., 204 (1999), pp. 167-202 

[6] A. Marino, Analysis and Enumeration, Atlantis Studies in Computing 6, Atlantis Press and the authors 2015 

[7] John J. Zasio, Kenneth C. Choy, Darrell R. Parham, "Static timing analysis of semiconductor digital 

circuits", US Parent US4924430 A, issued May 8, 1990 

[8] Maria Gradinariu 1 Sébastien Tixeuil , "Self-stabilizing Vertex Coloring of Arbitrary Graphs", International 

conference on Principles of Distributed Systems (OPODIS 2000), Dec 2000, Paris, France. pp.55-70, 2000 

[9] GuyMelançon, FabricePhilippe, "Generating connected acyclic digraphs uniformly at random", Information 

Processing Letters Elsevier, Vol 90 Issue 4, Pages 209-213, 2004 

 

 

 

http://www.sciencedirect.com/science/article/pii/S1755534513700058#bbib48
https://dl.acm.org/citation.cfm?id=217570&CFID=1008510690&CFTOKEN=55867488
https://dl.acm.org/citation.cfm?id=217570&CFID=1008510690&CFTOKEN=55867488
https://dl.acm.org/citation.cfm?id=217570&CFID=1008510690&CFTOKEN=55867488
http://doi.acm.org/10.1145/217474.217570
http://scholar.google.com/scholar_lookup?hl=en&publication_year=1971&pages=83-111&issue=2&author=R+B+Dial&title=%E2%80%9CA+probabilistic+multipath+assignment+model+which+obviates+path+enumeration%E2%80%9D&
http://journals.sagepub.com/servlet/linkout?suffix=bibr20-a090285&dbid=16&doi=10.1068%2Fa090285&key=10.1016%2F0041-1647%2871%2990012-8

