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ABSTRACT 
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I. INTRODUCTION 

Throughout the paper N  denotes the set of the natural numbers and for Nn  we set  
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denote the sets of n -components, 2,n  generalized probability distributions and complete probability 

distributions respectively. 

For     ,=,...,,,=,...,, 2121 nnnn QqqqPppp   we define a non-additive measure of inaccuracy, 

denoted by );,( QPH  as  
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If ,= QP  then );,( QPH  reduces to non-additive entropy.  
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The entropy (1.2) was first of all characterized by Havrda and Charvat [7]. Later on, Daroczy [5] and M. Behara 

and P. Nath [2,3] studied this entropy. Vajda [20] also characterized this entropy for finite discrete generalized 

probability distributions. Tsallis’s [19] gave its applications in physics for ,*

nP   and 1,  ;PH  

reduces to Shannon [17] entropy.  
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II. FORMULATION OF THE PROBLEM 

 For 1  and ,*

nP  ,*

nQ   then an important property of Kerridge’s inaccuracy [9] is that  

 (2.1)                                                                           ).,()(H QPHP   

equality if and only if .= QP  In other words, Shannon’s entropy is the minimum value of Kerridge’s 

inaccuracy. If ,nP  ,nQ   then (2.1) is no longer necessarily true. Also, the corresponding inequality  

     (2.2)                                                                  ;,;  QPHPH   

are not necessarily true even for generalized probability distributions. Hence, it is natural to ask the following 

question:“For generalized probability distributions, what are the quantity the minimum values of which are 

 ?;PH ” We give below an answer to the above question separately for  ;PH  by dividing the 

discussion into two parts (i) 1  and (ii) .1   Also we shall assume that 2,n  because the problem is 

trivial for 1.=n  
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Case 1. Let 1.  If ,*

nP  ,*

nQ   then as remarked earlier (2.1) is true. For ,nP  ,nQ   it can 

be easily seen by using Jenson’s inequality that (2.1) is true if ,
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Case 2. Let .1   Since (2.2) is not necessarily true, we need an inequality  
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such that     ;,; QPHPH   and equality holds if and only if .= QP  

 

Remark: If 1,=  the inequality (2.3) reduces to case 1. 

  Since 1,>  by reverse Hölder inequality, that is, if 1>  2,3,...,= n  and nn yyxx ,...,,,..., 11  

are positive real numbers then  
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Putting these values into (2.4), we get  
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where we used (2.3), too. This implies however that  
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using (2.6) and the fact that 1,> , we get (2.2) . 

 

Particular’s case: If 1= , then (2.2) becomes  

                                                                                                             ,    ,QPHPH   

 which is Kerridge’s inaccuracy [9] .  

 

  

3. Mean Codeword Length and their bounds. 

 

We will now give an application of inequality (2.2) in coding theory for  
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Let a finite set of n input symbols  

                                                                                      ...,,,= 21 nxxxX  

be encoded using alphabet of D symbols, then it has been shown by Feinstien [6] that there is a uniquely 

decipherable code with lengths nNNN ,...,, 21  if and only if the Kraft inequality holds that is,  
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Where D is the size of code alphabet. 

Furthermore, if  

a code satisfying (3.1), the inequality  
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is also fulfilled and equality holds if and only if  
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and that by suitable encoded into words of long sequences, the average length can be made arbitrarily close to 

 PH , (see Feinstein [6]). This is Shannon’s noiseless coding theorem. 

By considering Renyi’s entropy (see e.g. [15]), a coding theorem and analogous to the above noiseless coding 

theorem has been established by Campbell [4] and the authors obtained bounds for it in terms of  
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Kieffer [11] defined a class rules and showed  PH  is the best decision rule for deciding which of the two 

sources can be coded with expected cost of sequences of length N  when N , where the cost of encoding 

a sequence is assumed to be a function of length only. Further, in Jelinek [8] it is shown that coding with respect 

to Campbell’s mean length is useful in minimizing the problem of buffer overflow which occurs when the 

source symbol is produced at a fixed rate and the code words are stored temporarily in a finite buffer. 

Concerning Campbell’s mean length the reader can consult [4]. 

It may be seen that the mean codeword length (3.2) had been generalized parametrically by Campbell [4] and 

their bounds had been studied in terms of generalized measures of entropies. Here we give another 

generalization of (3.2) and study its bounds in terms of generalized entropy of order   and type  . 

Generalized coding theorems by considering different information measure under the condition of unique 

decipherability were investigated by several authors, see for instance the papers [6, 10, 12, 13, 14, 16]. 

An investigation is carried out concerning discrete memoryless sources possessing an additional parameter ,  

which seems to be significant in problem of storage and transmission (see [8], [11] and [12]). 

In this section we study a coding theorem by considering a new information measure depending on two 

parameters. Our motivation is -among others- that this quantity generalizes some information measures already 

existing in the literature such as the Arndt [1] entropy, which is used in physics. 

 

Definition: Let 1)0(> ,  Nn  be arbitrarily fixed, then the mean length  L  corresponding to the 

generalized information measure  ;PH  is given by the formula  
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where *

1 ),...,(= nnppP   and nNNND ,...,, , 21  are positive integers so that  
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Since (3.6) reduces to Kraft inequality when 1,=  therefore it is called generalized Kraft inequality and codes 
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obtained under this generalized inequality are called personal codes. 

 

Theorem 1. Let .1> ,Nn  be arbitrarily fixed. Then there exist code length nNN ,...,1  so that  
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holds under the condition (3.6) and equality holds if and only if  
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Where  ;PH  and  L  are given by (1.2) and (3.5) respectively. 

Proof: First of all we shall prove the lower bound of  .L  

By reverse Hölder inequality, that is, if 1>  2,3,...,= n  and nn yyxx ,...,,,..., 11  are positive real numbers 

then  
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Putting these values into (3.9), we get  
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where we used (3.6), too. This implies however that  

 (3.10)                                           
1

1=

1112

1=











 













































k

n

k

k
N

k

n

k

pDp  

For ,1>  (3.10) becomes  
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using (3.11) and the fact that 1,>  we get  

     (3.12)                                                                    .    ;  LPH   



 

974 | P a g e  
 

 

From (3.8) and after simplification, we get  

                                                                                     =

112









k

k
N

k pDp







 


 

 

This implies  
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which gives    .;=  PHL  Then equality sign holds in (3.12). 

Now we will prove the inequality (3.7) for upper bound of  .L  

We choose the codeword lengths kN , nk 1,...,=  in such a way that  
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multiplying both sides by 
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kp  and then taking sum over k, we get the generalized inequality (3.6). So there 

exists a generalized code with code lengths kN , nk 1,...,= . 

Since 1,>  then (3.14) can be written as  
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 Since 0<1   for 1> , we get from (3.17) the inequality (3.7). 

 

Particular’s cases: 

 For 1,  then (3.7) becomes  
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Which is the Shannon [17] classical noiseless coding theorem. 
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