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ABSTRACT
A relation between Shannon entropy and Kerridge inaccuracy, which is known as Shannon inequality, is well
known in information theory. In this communication, first we generalized Shannon inequality and then given its
application in coding theory.
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I. INTRODUCTION

Throughout the paper N denotes the set of the natural numbers and for N € N we set

k=1

A, ={P = (P, Py P, ) 0< P <1, 0< D 'p, 31},

A, ={P =(Py Parn Py 0< P <1, DD, =1},
k=1

denote the sets of N-components, N> 2, generalized probability distributions and complete probability
distributions respectively.
For (pl, P,y pn): P eAn,(ql,qz,...,qn): Qe A,, we define a non-additive measure of inaccuracy,

denoted by H(P,Q; @) as

[ n a?—a+l a-1
Ll 2P QE 2
k=1

H(P,Q;a)zl_a Z
Py

-1 a>1. (L1
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> py log, q,
== gl

Zpk
k=1

If P=Q, then H(P,Q;«) reduces to non-additive entropy.

>
ie., H(P;a):li ¥l 1] a>0(=1). (1.2)
4

Zpk
k=1

> py log, p,
k=1

== a—>1l
n
Zpk
k=1
The entropy (1.2) was first of all characterized by Havrda and Charvat [7]. Later on, Daroczy [5] and M. Behara
and P. Nath [2,3] studied this entropy. Vajda [20] also characterized this entropy for finite discrete generalized
probability distributions. Tsallis’s [19] gave its applications in physics for P € A*n, and @ —>1, H (P;a)

reduces to Shannon [17] entropy.

e, H(P)=-p, log, p,. (L3)

k=1

I1. FORMULATION OF THE PROBLEM
For ¢ —>1land P e A*n, Qe A*n, then an important property of Kerridge’s inaccuracy [9] is that
H(P) < H(P,Q). (2.1)
equality if and only if P =Q. In other words, Shannon’s entropy is the minimum value of Kerridge’s
inaccuracy. If P e A, Q€ A, then (2.1) is no longer necessarily true. Also, the corresponding inequality
H(P;a)<H(P,Q;a) (2.2)

are not necessarily true even for generalized probability distributions. Hence, it is natural to ask the following

question:“For generalized probability distributions, what are the quantity the minimum values of which are
H(P;a)?” We give below an answer to the above question separately for H(P;a) by dividing the
discussion into two parts (i) & — 1 and (ii) 1 # . Also we shall assume that N> 2, because the problem is

trivial for n =1.
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Casel Let « —>1. If PeA ,QeA , then as remarked earlier (2.1) istrue. For Pe A, Q€ A,, it can

be easily seen by using Jenson’s inequality that (2.1) is true if ZE:lpk > ZEnqw equality in (2.1) holding if

and only if

zpk

ql q2 qn qu

Case 2. Let 1 # a. Since (2.2) is not necessarily true, we need an inequality
n 1 n
dpcta <> Pl a>l . (2.3)
k=1 k=1

such that H (P; a) <H (P,Q; a) and equality holds if and only if P = Q.

Remark: If o =1, the inequality (2.3) reduces to case 1.

Since o >1, by reverse Holder inequality, that is, if N =2,3,..., ¥ >1 and X,..., X, Y- ¥y

are positive real numbers then

n LY (a1 YO
LZX( J {Zyk ‘“’J PR (2.4)
k=1 k=1 k=1

az—om—l a

Let y=—% %, =p, “" Q. y = pre (k=1,23,..n).
a-1

Putting these values into (2.4), we get

a

a?—a+l a-1 \a-l

Zpk 0y (Zpkj <Zp qkskZ:,pE‘,

where we used (2.3), too. This implies however that

zpk g q.“ . (zpk J (2.9)

Or
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az—a+1 a-1

dP* g > p¢

k=1 S k=1
Zpk Zpk
k=1 k=1

(2.6)

using (2.6) and the fact that o > 1, , we get (2.2) .

Particular’s case: If o =1, then (2.2) becomes

H(P)<H(P,Q) ,

which is Kerridge’s inaccuracy [9] .

3. Mean Codeword Length and their bounds.

We will now give an application of inequality (2.2) in coding theory for

A, ={P = (Pys P Py ) 0< P <1, D, =1}
k=1

Let a finite set of n input symbols

X =X, X0 X, }
be encoded using alphabet of D symbols, then it has been shown by Feinstien [6] that there is a uniquely

decipherable code with lengths N,, N,,..., N if and only if the Kraft inequality holds that is,

n

>D % <1, (3.1)
k=1

Where D is the size of code alphabet.
Furthermore, if

a code satisfying (3.1), the inequality
L>H(P) (3.3)

L=>"N.p, (3.2)
k=1

is the average codeword length, then for

is also fulfilled and equality holds if and only if
N, =—log,(py) (k=1,..,n), (3.4
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and that by suitable encoded into words of long sequences, the average length can be made arbitrarily close to
H (P), (see Feinstein [6]). This is Shannon’s noiseless coding theorem.

By considering Renyi’s entropy (see e.g. [15]), a coding theorem and analogous to the above noiseless coding

theorem has been established by Campbell [4] and the authors obtained bounds for it in terms of
1 a
H,(P)= E|ogDzF>k Ja > 0(=1).

Kieffer [11] defined a class rules and showed Ha(P) is the best decision rule for deciding which of the two

sources can be coded with expected cost of sequences of length N when N —> 0o, where the cost of encoding
a sequence is assumed to be a function of length only. Further, in Jelinek [8] it is shown that coding with respect
to Campbell’s mean length is useful in minimizing the problem of buffer overflow which occurs when the
source symbol is produced at a fixed rate and the code words are stored temporarily in a finite buffer.
Concerning Campbell’s mean length the reader can consult [4].

It may be seen that the mean codeword length (3.2) had been generalized parametrically by Campbell [4] and
their bounds had been studied in terms of generalized measures of entropies. Here we give another

generalization of (3.2) and study its bounds in terms of generalized entropy of order ¢ and type £ .

Generalized coding theorems by considering different information measure under the condition of unique
decipherability were investigated by several authors, see for instance the papers [6, 10, 12, 13, 14, 16].

An investigation is carried out concerning discrete memoryless sources possessing an additional parameter ¢,
which seems to be significant in problem of storage and transmission (see [8], [11] and [12]).

In this section we study a coding theorem by considering a new information measure depending on two
parameters. Our motivation is -among others- that this quantity generalizes some information measures already

existing in the literature such as the Arndt [1] entropy, which is used in physics.

Definition: Let neN, o > 0(1) be arbitrarily fixed, then the mean length L(a) corresponding to the
generalized information measure H (F’; a) is given by the formula
n a?-ail

L@ p)= | | 2p, « D L || (35)

k=1

where P =(p,,..., p,) €A, and D, N,,N,,...,N_ are positive integers so that

>petD <> pr (3.6)
k=1 k=1

Since (3.6) reduces to Kraft inequality when o =1, therefore it is called generalized Kraft inequality and codes
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obtained under this generalized inequality are called personal codes.

Theorem 1. Let n € N, & > 1. be arbitrarily fixed. Then there exist code length N,..., N, so that

1-a
l-a o
H(P;a)< L(a)< D « H(P;a)+11L (3.7)
-
holds under the condition (3.6) and equality holds if and only if
N, =—log,p. ; k=12..,n (3.8)

Where H (P; a) and L(a) are given by (1.2) and (3.5) respectively.
Proof: First of all we shall prove the lower bound of L(a).
By reverse Holder inequality, that is, if n=2,3,..., » >1 and Xiyeey X1 Yp0eeny Y, are positive real numbers

then

k=1

n LY (0 1 YO
L X[ J {Zyk‘“’] PR (3.9)
1 k=1

az—a+l

Let 7=L1, X =P *t D,y = pie (k=1,2,3,..n).
a_

Putting these values into (3.9), we get

o
— 1
a2—a+1

n N (&) el 1o n B n
2P« D {7 (Zp;"jl <Y pD <Y pl >t
k=1 k=1 k=1 k=1

where we used (3.6), too. This implies however that

@
a’—a+l a-1) \a-1

e ()
a D a
kZ:;pk

< (Z pe j‘“ (3.10)

For o > 1, (3.10) becomes

n a1 _N (L*lj n
dp, o« D e S(Zpsj (3.12)
k=1 k=1

using (3.11) and the fact that o >1, we get

H(P;a)< L(a) . (3.12)
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From (3.8) and after simplification, we get
a?—g+l N a-1
ke )~ e
p. « D [ J = P«
This implies
n a?-a+l 7Nk[gtéj n
2P D= (ZpE‘J , (3.13)
k=1 k=1
which gives L(a) =H (P; a). Then equality sign holds in (3.12).
Now we will prove the inequality (3.7) for upper bound of L(a).
We choose the codeword lengths N, , kK =1,...,n insuch a way that
—log, p <N, <-log, p, +1. (3.14)
is fulfilled forall k =1,...,n.
From the left inequality of (3.14), we have
D M < Py, (3.15)

a-1

multiplying both sides by P, ~ and then taking sum over k, we get the generalized inequality (3.6). So there

exists a generalized code with code lengths N, , k =1,...,n.

Since o >1, then (3.14) can be written as

pgtj > DiNk[%j S pEOZ]D[OZJ (3.16)

az—a+l

Multiplying (3.16) throughout by p, ¢  and then summing up from K =1 to N, we obtain inequality

az—a+l

[Zn:p?jz Zn:pk “ DNk(_Ta) >(Zn:pZJD[_;j. (3.17)

Since 1—a <0 for a >1, we get from (3.17) the inequality (3.7).

Particular’s cases:

For a —1, then (3.7) becomes
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H(P H(P

()SL< ()+L

log D log D
Which is the Shannon [17] classical noiseless coding theorem.
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