Volume No.06, Issue No. 11, November 2017 www.ijarse.com

IJARSE ISSN: 2319-8354

ROLE OF HYBRID ELECTRIC BICYCLES IN SMART CITIES

Mrs.Suma. C¹, Mrs.Jyoti PKoujalagi²

¹Research Scholar, Department of Electrical & Electronics Engineering Dr. AIT, Bengaluru, (India)

²Associate professor& Head, Department of Electrical & Electronics Engineering,

Dr. AIT, Bengaluru (India)

ABSTRACT

This paper presents how hybrid electric bicyles are useful in smart cities and their role in improving the health issues of today's generation and also the environmental issues like green house effect. As the pollution is the main cause for green house effect. This paper deals with different Electric bicycle for different conditions and its classifications and reducing the cost and improving the range of the vehicle.

Keywords: Electric bicycle, Health, Pollution, transportation,

I INTRODUCTION

With concern of the environmental issues and health issues of today's life we need to change our life styles for better health and better tommarrow pollution is the main cause for environmental issues, hence we need to be very careful about the pollution. Transportation is the second biggest sector contributes to the air pollution primarily through the consumption of fossil fuel and accounts for more than one third of the total crude oil consumption.

From the several tests it is identified that challenges are involved in improving the performance of the system.

II BASIC CONFIGURATION OF ELECTRIC BICYCLE SYSTEM

The Configuration of the Electric bicycle system consists of a controller that controls the power flow from the battery to the electric motor. This power acts in parallel with the power delivered by the rider via the pedal of the bike (figure 1)

The rider of Electric bicycle can choose to

- Relay on the motor completely
- Pedal and use the motor at the same time
- Pedal only(as a conventional bicycle)

Volume No.06, Issue No. 11, November 2017 www.ijarse.com

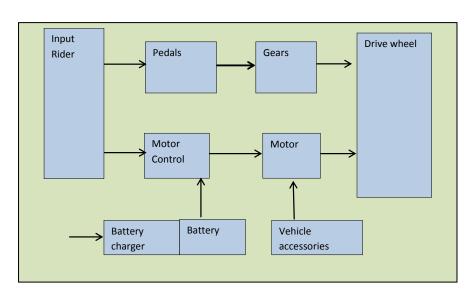


Figure.1

For the experimental investigation an electric bicycle with brushed DC motor installed in the front hub, a controller, thumb throttle and a battery pack are used(Figure 2) The Electric hub motor in the front wheel is not used during the measurements, yet using this bicycle, the actual setup of an electric bicycle is represented. The torque and speed are directly measured in the hub of the rear wheel using a power tap hub[2].

III ADVANTAGES OF USING ELECTRIC BICYCLE

Electric bicycles are gaining popularity worldwide specially in china, japan, Europe, Taiwan and United states because of its several beneficial features.. Today China is the largest manufacturer of the Electric bicycles exporting the majority of Electric bicycles also meeting the local demand. According to china's Electric Bike General Technical Qualification GB17761-1999[1]chinese electric bicycles may not exceed 20km/h and may not be heavier than 40kg .Number of aspects favour the use of electric bicycles in different situations. These

IJARSE

Volume No.06, Issue No. 11, November 2017 www.ijarse.com

include lower energy cost per distance travelled (1-2% of the cost travelled by car) for a single rider, environmental friendliness and health benefit for the rider. (Table 1)

TABLE 1: ADVANTAGES OF USING ELECTRIC BICYCLE		
Energy Cost:		
Rs. 2.82/km for going by car		
Rs.0.45/km for going by electric bicycle		
Other costs: Generally no licence ,no registration and no parking fee.		
Environmental friendliness: Zero emission vehicle		
Health Benefit: Incorporation of exercise and longer distance		
commutating		
Traffic flow: Most countries allow		

IV PERFORMANCE RANGE OF COMMERCIALLY AVAILABLE ELECTRIC BICYCLES

TABLE 2:PERFORMANCE RANGE OF COMMERCIALLY AVAILABLE ELECTRIC BICYCLES		
Speed		
Average speed	12 mi/h	19km/h
Maximum speed	20mi/h	32km/h
Travel range (full charge)	10-50 miles	16-80 km
Batteries		
Charging time	2-6 hrs	
Cycles of charge/discharge	Upto 400	
Power		
Power consumption	100-500wh	
(each full charge)		
On board power supply	12-36V	
Torque		
Hill climbing ability	Up to 6% slope	
Weight		
Electric bicycle kit excluding original	4.6-22.8kg	
bicycle weight		
Price		
Electric bicycle kit only	Rs.16K-52K	
Electric bicycle kit and bicycle	Rs.52K-167k	

Table 2 gives a comparative overview of the performance ranges of today's commercially available electric bicycles. It gives clear pitcture how widely the specifications of electric bicycles vary according to the bicycle design and the riding conditions for which the electric bicycle is designed.

Volume No.06, Issue No. 11, November 2017 www.ijarse.com

V CLASSIFICATION OF ELECTRIC BICYCLES

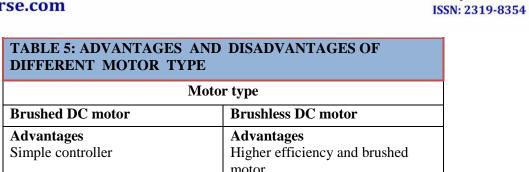

Criteria for classification of electric bicycles have been determined such that they are independent of the country and the purpose of use. These are the bicycle kit type, motor type, motor assembly. assist type, throttle type, motor placement and battery type(Table 3).

TABLE 3:CLASSIFICATION OF ELECTRIC BICYCLES		
Bicycle kit type	Custom builtAdd on	Table 4
Motor type	Brushed DC motorBrushless DC motor	Table 5
Motor Assembly	GearHubFriction	Table 6
Assist	Full AssistHalf Assist	Table 7
Throttle type	Thumb throttleTwist throttlePush Button	Table 8
Motor Placement	Front WheelRare wheel	Table 9
Battery type	Lead AcidNiMHOthers	Table 10

TABLE 4: ADVANTAGES AND DISADVANTAGES OF DIFFERENT BICYCLE KIT TYPES			
Bicycle Kit Type			
Custom built	Add on		
Advantages	Advantages		
High end bicycles Good appearance Safety features Little/no installation required	 Comparatively inexpensive Mounting flexibility Suitable for different bicycle types Bicycle can be reconverted to a conventional types 		
Disadvantages Comparatively high cost	Disadvantages Installation needed Connections may not be robust		

IJARSE

Volume No.06, Issue No. 11, November 2017 www.ijarse.com

IJARSE

TABLE 5: ADVANTAGES AND DISADVANTAGES OF DIFFERENT MOTOR TYPE			
Motor type			
Brushed DC motor	Brushless DC motor		
Advantages	Advantages		
Simple controller	Higher efficiency and brushed		
	motor		
	Comparatively reduced size		
Disadvantages	Disadvantages		
Lower efficiency	More complex controller		
Bigger in size and difficult in			
mounting into the fork of the			
bicycle			

TABLE 6:ADVANTAGES AND DISADVANTAGES OF DIFFERENT MOTOR ASSEMBLY TYPES				
Motor Assembly type				
Gear Hub Friction				
 Advantages Provides desired gear reduction ratio Enables easier torque sensing/adjustment 	 Advantages Motor integrated in the wheel Easy mounting Minimal maintainance 	Advantages Light weight		
Disadvantages	Disadvantages	Disadvantages		
• Chain/belt may be	• Can be heavy	• Less efficient		
entangled	Significant shift of	due to friction loss		
 Chain/belt may need 	the centre of gravity	• Tires wearout		
maintenance lubrication/tension		easily		

Note: Table 7 and Table 8 are excluded from the view of length of paper

TABLE 9:ADVANTAGES AND DISADVANTAGES OF DIFFERENT MOTOR PLACEMENT TYPES			
Front		Rear	
Advant	tages	Advan	tages
•	Comparatively easy installation	•	Best for light weight vehicles
•	Good weight distribution	•	Better traction for hill climbing
•	Suitable for low land a d hilly	•	Suitable for mountaneous
regi	ions with good road	regions and poor ground conditions	
Disadva	antages	Disadvantages	
Front w	heel slides are more dangerous than rear	Comparatively complex installation	
wheel s	lides		

Volume No.06, Issue No. 11, November 2017 www.ijarse.com

VI SPECIAL PURPOSE DESIGN OF ELECTRIC BICYCLES

Bicycles are designed according the user requirements for example city bicycles

Hill bicycles requires

Need fast acceleration and frequent stops with an average power of 150w and an average speed of 16km/h

High torque capability and maximum power of 300w @13km/h for short time

Speedy bicycles requires

High speed of 30km/h with average power of 200w in cycling racing

VII CONCLUSIONS

The issues associated with the electric bicycles may be addressed with custom designed drives, that are more efficient over a given operating cycle. These include city bicycles, distant bicycles, hill climbing bicycles and speedy bicycles.

Overall performance and cost of the system need more attention towards the development the Electric bicycles according the custom needs. Also power source for the electric bicycle is one of the major area where more investigations are required to be done.

REFERENCES

- [1] NASA, Baseline Testing of the EV Global E-Bike SX http://gltrs.grc.nasa.gov/reports/2001/TM-2001-210972.pdf
- [2] Power Tap, Graber Products, Inc., Madison, www.cycle-ops.com