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ABSTRACT
RISC-V (pronounced "risk-five") is a new, open, and completely free general-purpose instruction set
architecture (ISA) developed at UC Berkeley. It is designed to be useful in modern computerized devices such as
warehouse-scale cloud computers, high-end mobile phones and the smallest systems. The RISC-V instruction set
is for practical computers. It have features to increase a computer's speed yet reduce its cost and power use.
These include a load-store design, bit patterns to simplify the multiplexers in a CPU. The instruction set is
designed for a wide range of uses. The instruction set is variable-width and extensible, so that more encoding
bits can always be added.
The test bench is implemented using System Verilog, the Universal Verification Methodology and C++. System
Verilog is Verilog with extensions to support object-oriented programming, improved synchronization and
functional coverage. UVM is a joint effort between Mentor and Cadence to develop an SV library of common
blocks and features to expedite the creation of SV test benches. UVM also defines a standard implementation
methodology to follow.
The test bench determines generation of the stimulus, applies it to the DUT and Reference Model, collects it and
scores it to determine the functional coverage. The test bench makes extensive use of the predefined classes in
UVM. The Reference Model runs with the RS64 RTL to provide on-the-fly checking during simulation. The
random constraint solver is used with sequences to create complex test scenarios controlling multiple interfaces.
KeyWords :C++DUT,ISARISC,RS64 RTL,UVM,VERILOG

I.INTRODUCTION

Today’s devices are highly integrated, enabling a single chip to perform many functions such as networking,
wireless etc. Each function is done by an Intellectual Property (IP). Grouping all the IPs and allowing them to
communicate on one chip is called System on Chip (SoC).

The increasing demand for high-performance portable SoC’s in communication and computing has added the
power consumption to the traditional constraints, such as area, performance, cost, and reliability digital designs.
The main agenda of this project is to verify the RISC-V processor.

The VLSI design cycle starts with a formal specification of a VLSI chip, follows a series of steps, and
eventually produces a packaged chip. VLSI design Flow is generally divided into two phases — Front End and
Back end
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1.1 VERIFICATION FLOW

The verification process comprises of the following three steps: Verification Setup, Iterative Execution, and
Quality Assessment & Termination. Each step has unique resource requirements.

The Verification setup includes setting up the verification environment and inputs to the verification system. In
the most commonly deployed simulation based methodology, this requires setting up the run scripts and test
bench. The test bench is made up of Error Checkers and Stimulus Generators. Typically, this is considered the
responsibility of verification engineers. An initial setup starts the verification process and the setup itself may be
iteratively refined as verification progresses.

Iterative execution requires running the verification flow, flagging errors, debugging errors and fixing the design
to start the new iteration. Typically, verification engineers support running of the verification flow and initial
debugging of the flagged errors to ensure test bench correctness. The design engineers debug the flagged errors
and make design fixes. Once the design starts maturing and the bug rate falls down, the debugging burden on the
verification engineers reduces and the effort is focused on Quality Assessment (Coverage, etc.). This may
require test bench refinements, which may lead to more iteration. Upon reaching the quality targets, the process
can be terminated.

Major verification costs include costs for setup (test bench development), debugging (verification and design
engineering effort) and quality assessment (coverage). In addition, running the flows also has computation costs.

The engineering costs provide a measure of Usability of the flow.

1.2 Universal Verification Methodology (UVM) for Verification

UVM provides the best framework to achieve coverage-driven verification (CDV). CDV combines automatic
test generation, self-checking test benches, and coverage metrics to significantly reduce the time spent verifying
a design. The purpose of CDV is to:

— Eliminate the effort and time spent creating hundreds of tests.
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— Ensure thorough verification using up-front goal setting.

— Receive early error notifications and deploy run-time checking and error analysis to simplify debugging.
UVM helps setting verification goals using an organized planning process. Firstly a smart test bench is created
that generates legal stimuli and sends it to the DUT. Coverage monitors are added to the environment to
measure progress and identify non-exercised functionality. Checkers are added to identify undesired DUT
behavior. Simulations are launched after both the coverage model and test bench have been implemented.
Verification then can be achieved

1.3 INTRODUCTION TO RISC-V

RISC-V (pronounced “risk-five™) is a new instruction set architecture (ISA) that was originally designed to

support computer architecture research and education, but which we now hope will also become a standard free

and open architecture for industry implementations. RISC-V include:

i.A completely open ISA that is freely available to academia and industry.

ii.A real ISA suitable for direct native hardware implementation, not just simulation or binary translation.

iii.An ISA that avoids “over-architecting” for a particular microarchitecture style (e.g., micro coded, in-order,
decoupled, out-of-order) or implementation technology (e.g., full-custom, ASIC, FPGA), but which allows
efficient implementation in any of these.

iv.An ISA separated into a small base integer ISA, usable by itself as a base for customized accelerators or for
educational purposes, and optional standard extensions, to support general purpose software development.

v.Support for the revised 2008 IEEE-754 floating-point standard.

Vi.An ISA supporting extensive user-level ISA extensions and specialized variants.

vii.Both 32-bit and 64-bit address space variants for applications, operating system kernels, and hardware
implementations.
viii.An ISA with support for highly-parallel multicore or many core implementations, including heterogeneous

multiprocessors.

ix.Optional variable-length instructions to both expand available instruction encoding space and to support an
optional dense instruction encoding for improved performance, static code size, and energy efficiency.

x.A fully virtualizable ISA to ease hypervisor development.

xi.An ISA that simplifies experiments with new supervisor-level and hypervisor-level ISA designs.

The UVM library and methodology provides all necessary features the technologies for constructing reusable,

constrained-random and coverage-driven test-benches. It provides the TLM-based modelling for building

modular and reusable verification components which communicate through transaction-level interfaces.

The UVM class library allows us creating sequential constrained-random stimulus which helps to collect and

analyze the functional coverage and include assertions configured as members of those test-bench environments.
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Il. IMPLEMENTATION

2.1 Introduction
This chapter covers top level RISCV Verification Environment will be shown and each block of the

environment will be explained. It also covers the working and execution of environment at block level and IP

level. It will also give Introduction about Coverage reports and their importance.

2.2 RISC-V Verification
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Fig.3 Verification Environment
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The verification of rs64 will be in different steps. In first step functional coverage model is created which is
based on RS64 specifications and instruction set and sequence of instructions to verify. This functional coverage
model is used to define testbench, sequence items, sequences, tests and functional coverage. In second step the
actual testbench is architected to enable the stimulus to verify RS64 response. In the architecture sequence
items, agents, sequencers, monitors, reference model are included. In third step DUT, DUT drivers are used to
test whether the environment is working properly or not. Once the environment is working then attach reference

model. When RTL and reference model are working properly then checkers were added to compare results.

2.3 Working and Execution

The below flow diagram shows the sequence in which test case is executed step-by-step.

Stimulus Scoreboard
generator
¥
Driver DuUT - Monit_on‘
Receier

Fig.4 Flow diagram for Test case Execution

1. RESULTS

3.1 Introduction

This chapter will gives some of the Test case results. In this chapter Some Tests like Verification of alu
instructions, load-store dependency verification, all instruction verification and conformal tests verification and
their waveforms/log files are also provided.

3.2 Description

There are total of 30 arithmetic and logical instructions which include all R type instructions and some | type
instructions. This test sequence verifies all instructions without redundancy. The tests pass fail status depends on
BFM results in simulator. Running number of times in a loop will verifies different register combinations and
different data of an instructions. The register contents can be seen in dump file and in waveforms also. The
emulator dump contains instructions which is executed on core, simulator dump contains instructions executed
on BFM.

3.3 Dump File For Alu Cyclic Random Testcase

Fig.5 BFM dump file of alu cyclic random Sequence
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Description
This test case main interest is verifying load store dependencies .The pattern followed here performing R type
instructions and then load store operations and store-load operations. Now performing | type instructions and

then load-store operations and store- load operations. In performing load -store operations verifying as address

dependency load store and register dependency load-store operations.

3.4 DUT File For Load Store Dependency

File Edit Tools Syntax

Description:

A cybhen-vdi0523:2 (ksrikant) - VNC Viewer

Buffers Window Help

Fig.6 dump file of load store dependent Sequence

[slaf=

This test is to verify conformal test of ADD instruction.in conformal test input is known and expected output is

also known. Hence memory is backdoor filled with input data and expected output data .Now performing the

required operation by using data in memory. Conform the results by performing expected result and actual

results SUB operation will conform the pass status.as subtraction result contains all zeros.

3.5 DUT dump file for conformal test

Fig.7 DUT dump file of conformal test
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[6x06823] Bx08cdd5b3 R: SRL x11 %27 x12 R11=0000000000660008, R27=0000006000EAC383, R12=000000AEEEBECBad @975 [
[0x00824] 0x030b853b R: MULW x18 x23 x16 R16=0000000052cd5038, R23=0000000000006dae, R16=000000A0OBBOC144 @985
[6x80825] 8x8134ebb3 R: OR x23 %89 x19 R23=00000000000074e9, RO9=0000006000006420, R19=00000000000074e3 @995
[0x00826] 0xaa231d23 S: SH xB6 x2 Bxaba RE6=000000000000127T, RO2=000E000BAEROTA81 @1605
[0x00827] Oxaba33ed3 I: LD x28 xB6 Bxaba @ STORE AFTER R28=000000000080cda, RO6=000600000000127f @1615
[0x00827] Oxaba33ed3 I. LD x28 x06 Bxaba LOAD R28=000000000080cda, RO6=0006000000A0127F @1625
[0x00827] Oxaba33e03 I: LD x28 x06 Oxaba R28-000000000080aTh7, ROG=000800000000127f @1635
[0x00828] 0x78dlac93 I: SLTI x25 x03 0x78d R25=0000000000600000, RO3=00060600000099d] @1645
[6x00829] BxT47bcc83 I: LBU x25 %23 0xf47 R25=0000000EEEEEE0E0, R23=-0000000000B074e9 @1055
[0x00829] BxT47bcc83 I: LBU x25 %23 0xf47 R25=000000000EEEO0T0, R23=0000000006E074e9 @1065
[6x8082a] @xf4bbB3a3 5: SB x23 x11 Oxf47 R23=00000000000074€9, R11=0000000600000000 @1075
[0x0082b] 0x4161d13b R: SRAW x82 x83 x22 RO2=0000000600000801, RO3=0000000AEAE899d1, R22-000000000000828T @1085
[0x0082c] 0x53a909a3 S: SB x18 x26 ©x533 R18=000000000000D6d3, R26=000600000BAOT3D @1695
[0x0082d] 0x738d3d03 I: LD x26 x26 Bx738 R26=0000000060080d73b, R26=0006000808H0d73D @1105
[0x0082d] 0x738d3d03 I. LD x26 x26 0x738 R26=000000000000019¢, R26=000800000800d73b @1115
[0x0082e] Oxea2c3203 I: LD x84 x24 Oxeal R4-000000000000d792, R24-0006060000A05327 @1125
[0x0082e] Oxea2c3203 I: LD x84 x24 Oxea2 R4=0000000000601b52, R24=00006000000005327 @1133
[expe82f] Bxe72f0b83 I: LB x23 x30 Oxe72 R23=00000000000074e9, R30=00000006OB0011de @1145
[6xp082f] Oxe72fOb83 I: LB x23 x30 Oxe7l2 R23=FTIfffffIfffiffd, R30=00000006000011de @1155
[6x80830] @x8d733aa3 5: 5D xB@6 x23 BxBd5 LOAD AFTER RO6=000000000000127T, R2I=TIFTTTFFfffiffd @1165
[0x00831] 0x02d38733 R: MUL x14 x87 x13 STORE R14=000000001c6aff9a, RO7=000000008A08965d, R13=000000OBO00E3662 @1175
[0x00832] 0x46b78533 R: SUB x18 x15 x11 R16=0000000800000eff, R15=0000008000000eff, R11=0000000000000606 @1185
[0x00833] 0x064f21b3 R: SLT x03 x30 x04 RO3=0000000600000001, R30=00000000000011de, RO4=0000000000001D52 @1195
[0x00834] 0x40acOfb3 R: SUB x31 x24 x10 R31-00000000600004428, R24=0000000000085327, R16-0000000000000eTf @1205 £
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By this sequence total 51 instructions are verified directly. The pc change when JAL and JALR instructions are
performed is shown in logfile.The sb type instruction are also verified by giving equal and unequal data, greater
and lesser data. The pc change after performing SB type instructions also verified.

Description

This is conformal test verification. Here different combinations of data with expected output is given .after
running this code on core if the result is expected data then the test is said to be passed and to know pass status

and fail status used memory locations of 20000 and 30000 respectively.

3.6 DVE waveform of add.s pass
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Fig.8 Dve of add.s pass

3.7 DUT file of add.s pass:

uCodePO_emu.dmp (/proj/rs64-workl/ksrikant/gfx10/wsl/out/linux_...rs64mta/run/block/rsé4/riscv_rtype_instr_directed_test) - GVIM2

File Edit Tools Syntax Buffers Window Help

=2 =] . B & @& b g B |6 B

[0x00120] Ox00fO0093 DATA RO1: . @5495 |
0x00121] 0x002081b3 DATA RO la, ROL f, RO @5505
0x00122] ©x00120213 DATA 35 @5515
0x00123] 0x00200293 DATA 2, @5525
0x00124] ©xfe5212e3 DATA 1, R @5535
0x0011d] 0x00bOO113 DATA RO, : @5575
0x0011e] 0x00000013 DATA . @5585
0x0011f] ©x00000013 DATA 3 @5595
0x00120] 0x00fO0093 DATA RO1: f, @5605
[0x00121] 0x002081b3 DATA RO la, ROL f, RO @5615
[0x00122] ©x00120213 DATA s 1 @5625
[0x00123] 0x00200293 DATA 2, @5635
[0x00124] Oxfe5212e3 DATA 2, 2 @5645
[0x00125] ©x01a00e93 DATA R: 1a, @5675
[0x00126] 0x02200el3 DATA R 2, @5685
06x00127] 0x05d19c63 DATA RO la, R la @5695
0x00128] ©x00f00093 DATA ROL £ @5765
0x00129] 0x00100133 DATA RO £, . ROL f @775
0x0012a] 0x00f00e93 DATA R f, @5785
0x0012b] 0x02300el3 DATA R 23, @5795
0x0012c] 0x05d11263 DATA RO f, R f @5805
0x0012d] ©x02000093 DATA RO1 0, @5835
0x0012e] 0x00008133 DATA RO 20, ROL o, @5845
[0x0012f] 0x02000e93 DATA R: o, @5855
[0x00130] ©x02400e13 DATA R: 4, @5865
[0x00131] 0x03d11863 DATA RO 20, R 20 @5875
[6x00132] 0x000000b3 DATA RO1: . . @5905
[6x00133] ©x00000e93 DATA R: 3 @5915
[0x00134] 0x02500el3 DATA R s, @5925
[0x00135] 0x03d09063 DATA RO1 . R @5935
[0x00136] ©x01000093 DATA ROL 10, @5955
[6x00137] 0x01e00113 DATA | | RO le, @5965
[0x00138] 0x00208033 DATA e, ROl 10, Re: le @5985
[0x00139] ©x00000e93 DATA R: 1 @5995
[0x0013a] 0x02600el3 DATA R: 6, @6005
[0x0013b] 0x01d01463 DATA > B 015

@6
[6x0013c] 0x01cOle63 DATA 00000 B 00000000026 @6035
[6x00143] 0x00100el3 DATA REE=U000000000000001, ROO=00000000000TUTS=AR105
[6x00144] ©0x00020fb7 DATA R31=0000000000020000 @6
[6x00145] 0x01cfbo23 DATA R31: 20000, R 1 @125

Fig.9 Sim file of add.s pass

P
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3.8 DUT waveform of add.s fail

Fig.10 Dve of add.s fail

Summary:

In this chapter Different Test cases and their sequence of execution are shown. Results of some real time
scenarios are also shown in this chapter. Waveforms and Log files are provided in this chapter for the respective
tests and given their description also.

IV.CONCLUSION AND FUTURE SCOPE

4.1 Conclusion

RISCV is a completely open ISA that is freely available to academia and industry. A real ISA suitable for direct
native hardware implementation, not just simulation or binary translation. Riscv that avoids over-architecting for
a particular microarchitecture style (e.g., micro coded, in-order, decoupled, out-of-order) or implementation
technology (e.g., full-custom, ASIC, FPGA), but which allows efficient implementation in any of these. In this
project verified all instructions of riscv which supports integer type in UVM environment. Got knowledge on
UVM verification environment and instructions of riscv.

The UVM Verification Methodology is used to verify the RTL behavior. Environment related to this is
developed and verified it for different kinds of scenarios. The Verification environment required for the
Riscv features verification has been developed and generated the required sequences. The waveforms had
been analyzed to see if the RTL is working correctly or not.

4.2 Future Scope

We can verify the master DUT by adding additional blocks.

» This project can be further extended by adding instruction cache and data cache.
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» This project can be further extended by adding branch prediction algorithm to achieve effective

performance.
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