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ABSTRACT 

RISC-V (pronounced "risk-five") is a new, open, and completely free general-purpose instruction set 

architecture (ISA) developed at UC Berkeley. It is designed to be useful in modern computerized devices such as 

warehouse-scale cloud computers, high-end mobile phones and the smallest systems. The RISC-V instruction set 

is for practical computers. It have features to increase a computer's speed yet reduce its cost and power use. 

These include a load-store design, bit patterns to simplify the multiplexers in a CPU. The instruction set is 

designed for a wide range of uses. The instruction set is variable-width and extensible, so that more encoding 

bits can always be added.  

The test bench is implemented using System Verilog, the Universal Verification Methodology and C++. System 

Verilog is Verilog with extensions to support object-oriented programming, improved synchronization and 

functional coverage. UVM is a joint effort between Mentor and Cadence to develop an SV library of common 

blocks and features to expedite the creation of SV test benches. UVM also defines a standard implementation 

methodology to follow.   

The test bench determines generation of the stimulus, applies it to the DUT and Reference Model, collects it and 

scores it to determine the functional coverage. The test bench makes extensive use of the predefined classes in 

UVM. The Reference Model runs with the RS64 RTL to provide on-the-fly checking during simulation. The 

random constraint solver is used with sequences to create complex test scenarios controlling multiple interfaces.  

KeyWords :C++DUT,ISA,RISC,RS64 RTL,UVM,VERILOG 

 

I. INTRODUCTION 

Today’s devices are highly integrated, enabling a single chip to perform many functions such as networking, 

wireless etc. Each function is done by an Intellectual Property (IP). Grouping all the IPs and allowing them to 

communicate on one chip is called System on Chip (SoC).  

The increasing demand for high-performance portable SoC’s in communication and computing has added the 

power consumption to the traditional constraints, such as area, performance, cost, and reliability digital designs.  

The main agenda of this project is to verify the RISC-V processor. 

The VLSI design cycle starts with a formal specification of a VLSI chip, follows a series of steps, and 

eventually produces a packaged chip. VLSI design Flow is generally divided into two phases – Front End and 

Back end 

https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Mobile_phone
https://en.wikipedia.org/wiki/Load/store_architecture
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Fig.1 VLSI design flow 

1.1 VERIFICATION FLOW 

The verification process comprises of the following three steps: Verification Setup, Iterative Execution, and 

Quality Assessment & Termination. Each step has unique resource requirements. 

The Verification setup includes setting up the verification environment and inputs to the verification system. In 

the most commonly deployed simulation based methodology, this requires setting up the run scripts and test 

bench. The test bench is made up of Error Checkers and Stimulus Generators. Typically, this is considered the 

responsibility of verification engineers. An initial setup starts the verification process and the setup itself may be 

iteratively refined as verification progresses. 

Iterative execution requires running the verification flow, flagging errors, debugging errors and fixing the design 

to start the new iteration. Typically, verification engineers support running of the verification flow and initial 

debugging of the flagged errors to ensure test bench correctness. The design engineers debug the flagged errors 

and make design fixes. Once the design starts maturing and the bug rate falls down, the debugging burden on the 

verification engineers reduces and the effort is focused on Quality Assessment (Coverage, etc.). This may 

require test bench refinements, which may lead to more iteration. Upon reaching the quality targets, the process 

can be terminated. 

Major verification costs include costs for setup (test bench development), debugging (verification and design 

engineering effort) and quality assessment (coverage). In addition, running the flows also has computation costs. 

The engineering costs provide a measure of Usability of the flow. 

 

1.2 Universal Verification Methodology (UVM) for Verification 

UVM provides the best framework to achieve coverage-driven verification (CDV). CDV combines automatic 

test generation, self-checking test benches, and coverage metrics to significantly reduce the time spent verifying 

a design. The purpose of CDV is to: 

— Eliminate the effort and time spent creating hundreds of tests. 
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— Ensure thorough verification using up-front goal setting. 

— Receive early error notifications and deploy run-time checking and error analysis to simplify debugging. 

UVM helps setting verification goals using an organized planning process. Firstly a smart test bench is created 

that generates legal stimuli and sends it to the DUT. Coverage monitors are added to the environment to 

measure progress and identify non-exercised functionality. Checkers are added to identify undesired DUT 

behavior. Simulations are launched after both the coverage model and test bench have been implemented. 

Verification then can be achieved 

 

1.3 INTRODUCTION TO RISC-V 

RISC-V (pronounced ―risk-five") is a new instruction set architecture (ISA) that was originally designed to 

support computer architecture research and education, but which we now hope will also become a standard free 

and open architecture for industry implementations. RISC-V include: 

i.A completely open ISA that is freely available to academia and industry. 

ii.A real ISA suitable for direct native hardware implementation, not just simulation or binary translation. 

iii.An ISA that avoids ―over-architecting" for a particular microarchitecture style (e.g., micro coded, in-order, 

decoupled, out-of-order) or implementation technology (e.g., full-custom, ASIC, FPGA), but which allows 

efficient implementation in any of these. 

iv.An ISA separated into a small base integer ISA, usable by itself as a base for customized accelerators or for 

educational purposes, and optional standard extensions, to support general purpose software development. 

v.Support for the revised 2008 IEEE-754 floating-point standard. 

vi.An ISA supporting extensive user-level ISA extensions and specialized variants. 

vii.Both 32-bit and 64-bit address space variants for applications, operating system kernels, and hardware 

implementations. 

viii.An ISA with support for highly-parallel multicore or many core implementations, including heterogeneous 

multiprocessors. 

ix.Optional variable-length instructions to both expand available instruction encoding space and to support an 

optional dense instruction encoding for improved performance, static code size, and energy efficiency. 

x.A fully virtualizable ISA to ease hypervisor development. 

xi.An ISA that simplifies experiments with new supervisor-level and hypervisor-level ISA designs. 

The UVM library and methodology provides all necessary features the technologies for constructing  reusable, 

constrained-random and coverage-driven test-benches. It provides the TLM-based modelling for building 

modular and reusable verification components which communicate through transaction-level interfaces. 

The UVM class library allows us creating sequential constrained-random stimulus which helps to collect and 

analyze the functional coverage and include assertions configured as members of those test-bench environments. 
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Fig.2 UVM Class Hierarchies 

II. IMPLEMENTATION 

2.1 Introduction  

This chapter covers top level RISCV Verification Environment will be shown and each block of the 

environment will be explained. It also covers the working and execution of environment at block level and IP 

level. It will also give Introduction about Coverage reports and their importance. 

 

2.2 RISC-V  Verification  

 

Fig.3 Verification Environment 
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The verification of rs64 will be in different steps. In first step functional coverage model is created which is 

based on RS64 specifications and instruction set and sequence of instructions to verify. This functional coverage 

model is used to define testbench, sequence items, sequences, tests and functional coverage. In second step the 

actual testbench is architected to enable the stimulus to verify RS64 response. In the architecture sequence 

items, agents, sequencers, monitors, reference model are included. In third step DUT, DUT drivers are used to 

test whether the environment is working properly or not. Once the environment is working then attach reference 

model. When RTL and reference model are working properly then checkers were added to compare results. 

 

2.3 Working and Execution 

The below flow diagram shows the sequence in which test case is executed step-by-step. 

 

Fig.4 Flow diagram for Test case Execution 

III. RESULTS 

3.1 Introduction 

This chapter will gives some of the Test case results. In this chapter Some Tests like Verification of alu 

instructions, load-store dependency verification, all instruction verification and conformal tests verification and 

their waveforms/log files are also provided. 

3.2 Description 

There are total of 30 arithmetic and logical instructions which include all R type instructions and some I type 

instructions. This test sequence verifies all instructions without redundancy. The tests pass fail status depends on 

BFM results in simulator. Running number of times in a loop will verifies different register combinations and 

different data of an instructions. The register contents can be seen in dump file and in waveforms also. The 

emulator dump contains instructions which is executed on core, simulator dump contains instructions executed 

on BFM. 

3.3 Dump File For Alu Cyclic Random Testcase 

   

Fig.5 BFM dump file of alu cyclic random Sequence  
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Description 

This test case main interest is verifying load store dependencies .The pattern followed here performing R type 

instructions and then load store operations and store-load operations. Now performing I type instructions and 

then load-store operations and store- load operations. In performing load -store operations verifying as address 

dependency load store and register dependency load-store operations. 

 

3.4 DUT File For Load Store Dependency 

 

 Fig.6 dump file of load store dependent Sequence 

Description: 

This test is to verify conformal test of ADD instruction.in conformal test input is known and expected output is 

also known. Hence memory is backdoor filled with input data and expected output data .Now performing the 

required operation by using data in memory. Conform the results by performing expected result and actual 

results SUB operation will conform the pass status.as subtraction result contains all zeros. 

3.5 DUT dump file for conformal test 

    

Fig.7 DUT dump file of conformal test 
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By this sequence total 51 instructions are verified directly. The pc change when JAL and JALR instructions are 

performed is shown in logfile.The sb type instruction are also verified by giving equal and unequal data, greater 

and lesser data. The pc change after performing SB type instructions also verified. 

Description 

This is conformal test verification. Here different combinations of data with expected output is given .after 

running this code on core if the result is expected data then the test is said to be passed and to know pass status 

and fail status used memory locations of 20000 and 30000 respectively. 

 

3.6 DVE waveform of add.s pass 

 

Fig.8 Dve of add.s pass  

 3.7 DUT file of add.s pass: 

 

Fig.9 Sim file of add.s pass  
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 3.8 DUT waveform of add.s fail 

 

Fig.10 Dve of add.s fail  

 Summary: 

In this chapter Different Test cases and their sequence of execution are shown. Results of some real time 

scenarios are also shown in this chapter. Waveforms and Log files are provided in this chapter for the respective 

tests and given their description also. 

 

IV.CONCLUSION AND FUTURE SCOPE 

4.1 Conclusion 

RISCV is a completely open ISA that is freely available to academia and industry. A real ISA suitable for direct 

native hardware implementation, not just simulation or binary translation. Riscv that avoids over-architecting for 

a particular microarchitecture style (e.g., micro coded, in-order, decoupled, out-of-order) or implementation 

technology (e.g., full-custom, ASIC, FPGA), but which allows efficient implementation in any of these.  In this 

project verified all instructions of riscv which supports integer type in UVM environment. Got knowledge on 

UVM verification environment and instructions of riscv. 

The UVM Verification Methodology is used to verify the RTL behavior. Environment related to this is 

developed and verified it for different kinds of scenarios. The Verification environment required for the 

Riscv features verification has been developed and generated the required sequences. The waveforms had 

been analyzed to see if the RTL is working correctly or not.   

4.2 Future Scope 

We can verify the master DUT by adding additional blocks. 

 This project can be further extended by adding instruction cache and data cache. 
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 This project can be further extended by adding branch prediction algorithm to achieve effective 

performance. 
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