International Journal of Advance Research in Science and Engineering Q
Volume No.06, Special Issue No.(01), Nov 2017 IJARSE

www.ijarse.com ISSN: 2319-8354

A Research on Generation of Metamorphic Relations And
Automatic Test Cases Generation Using Nature-Inspired

Optimization Algorithms For Integer Bug Detection

Simarjeet Kaur', Dr. Deepak Kumar?

! Assistant Professor, Guru Kashi University, Talwandi Sabo (Bathinda)

2 Assistant Professor, Guru Kashi University, Talwandi Sabo (Bathinda)

ABSTRACT

Metamorphic testing is a new and innovative technique, which is used to determine if a test execution uncovers
a fault. This is a more practical method than the test oracle method. Oracle is the big issue in testing that only
compares the generated output to the predicted output It used as a component for figuring out results either
successful or not. By contrast, metamorphic testing applies a modification to a test input and utilizes
metamorphic relations. It then observes how the program output changes into a different one as a result
metamorphic testing changes the way that software is tested the faults. This paper illustrate about the overview
about metamorphic testing, various benefits of metamorphic testing technique with contrast to another
techniques of software testing and detection of integer bugs with metamorphic testing by the generations of new
relations and overcome various challenges regarding metamorphic testing.

Keywords: Metamorphic testing, Oracle problem, Metamorphic relation, AFSA

I. INTRODUCTION

In order to find fault within a test execution, often, a test oracle is used. The methodology utilized involves
comparing the expected output against the observed results. The test oracle method is not practical in cases
where the relationship between the program's input and output is complex. In such cases, the more fitting
methodology involves metamorphic relationships. This methodology relies on transforming the input of a
program and observing how the output of that same program morphs as a result. This article will discuss
metamorphic testing, include it's origins, applications, and the challenges faced by this method [1].Integer
variables are expressed by fixed bit- wide vector. Integer overflow takes place when the value attained by
instruction operation is more than the value of storage capacity. Such errors can be attributed to the integer bug,
which is one of the main reasons behind software calculation error. This can be problematic and even fatal in
applications such as rocket launching. At times, software security vulnerabilities are produced when an integer
is disposed to be an unexpected value by a program and this unexpected value is then used for the array indexes
or loop variable. Due to expense. integer overflow in commercial software has not yet been detected on a large
scale. Metamorphic testing was first introduced in a technical report by Chen et al. [3] that was published in
1998.1t must be mentioned though that earlier reports describe the use of identity relations to check program

outputs [4], [5] as well as fault tolerance [6].In total, the paper found 12 different application fields. Web

292 |Page

International Journal of Advance Research in Science and Engineering
Volume No.06, Special Issue No.(01), Nov 2017 IJARSE
www.ijarse.com ISSN: 2319-8354

services and applications (16%) followed by computer graphics (12%),simulation and modelling (12%) and
embedded systems (10%) are the most renowned domains.IT also identified applications to other areas

(21%)like financial software, optimization programs or encryption programs.[2].

others —
19% embedded
b 10infomat systems 10%

5 Web
6% services and

componen application

4% : 15%
b Metamorphic
ACi11I

. Computer
learning

graphics
12%

testing

compiler : ;
b imulation

" . and modelling
' and decision services

support and - 12%
2% applica-
tions
15%

Fig 1. 1 Metamorphic testing application domains [2]
1.1.PROBLEM STATEMENT
It is impossible to test software with all the conceivable inputs. Successful test cases do not reveal error, so these
test cases are not considered and discarded by testers. But these successful test cases do carry useful information
which remains buried and used. One more limitation of Software testing is the oracle problem. The test oracle
has always been restricting the development of software testing. In some cases the test oracle does not exists or
if it exists, it is too complex to be used.
1.2. Objectives
The main goal of this research paper is:
e To study the various approaches of Metamorphic Testing.
e To generate various metamorphic relations.
e To propose and implement Metamorphic Testing with Optimizing Algorithm.
e To calculate the Mutation Detection Ratio and compare the results.

e To Overcome the challenges of Metamorphic Testing.

Il. LITERATURE REVIEW

We’ve read several academic papers on software testing in the past, and as a general rule I really don’t like
them. However, this one’s really worth reading. In the article the authors suggest the use of a new software
testing technique called metamorphic testing to finding integer bugs in the software code. I’ve generated the

universal metamorphic relations and it’s some of the most difficult to formulate MR I’ve ever done.After some

293 |Page

International Journal of Advance Research in Science and Engineering QQ
Volume No.06, Special Issue No.(01), Nov 2017 IJARSE
www_ijarse_com ISSN: 2319-8354

discussion about why traditional techniques aren’t enough, the authors describe their new method of
metamorphic testing (MT): Instead of using the traditional test oracle, MT uses some problem domain specific
properties, namely metamorphic relations (MRs), to verify the testing outputs. The end users, together with the
testers or program developers, first need to identify some properties of the software under test. Then, MRs can
be derived according to these properties. The article then reviews a couple of studies and talks about the
limitations of the technique.W. K. Chan et al[7] describes testing the correctness of services assures the
functional quality of service oriented applications. A service oriented application may bind dynamically to its
supportive services. For the same service interface, the supportive services may behave differently.E.J. Weyuker
[8]frequently invoked assumption in program testing is that there is an oracle (i.e. the tester or an external

mechanism can accurately decide whether or not the output produced by a program is correct).T song Yueh
Chen:[9]Summaries what testing techniques have been successfully integrated with metamorphic testing.Barr

et al[10]describes Testing involves examining the behaviour of a system in order to discover potential faults.

I1l. RESEARCH METHODOLOGY

Here the flow of our work in described in steps.

Step 1.we test code by giving the function with mutant and without mutant and test that gave the same
result. This shows that fault did not detected. We found that the bugs could not be detected. The fault is
not detected by the testing it give same results with and without mutant. There is a fault in areal() but it
give same value for both the functions. This problem will be solved by applying the metamorphic testing.
For this detection we generate the universal metamorphic relations. In our research we take the
mathematical formulas of triangle.

=t AL A

L

.[:‘. Problems @ Javadoc @)Declaratiun ! Console 5 | Progres i SM % ug

<temninated> Cat [Java Application] C:\Program Files\ava\jrel 80_31\bin\javaw.exe (Aug 3, 2006, 7:59.02 M)

8225,765682925616 y
8225,765682925616

True

Fig 3.1 Output with mutant

294 |Page

International Journal of Advance Research in Science and Engineering QQ
Volume No.06, Special Issue No.(01), Nov 2017 IJARSE

www.ijarse.com ISSN: 2319-8354

Step 2.Then we generate 7 new relations.by which we can test our code. The flow of work is represented

in flow chart form.

start

:

Generate MRs

&

Analysis of code

:

Apply optimizing
(AFSA) algorithm

:

Compare the MRs

:

Result Analysis

Fig 3.2 Flow chart of work

Step 3.
Metamorphic Relation 1: (x1,y1)
al=(x1,y1l)(x4,y4),(x5,y5),a2=(x4,y4)(x2,y2)(x6,y6)

a3=(x5,y5)(x6,y6)(x3,y3),a4=(x4,y4)(x5,y5),(x6,y6)
(x4,y4) (x5,y5)

Total Area= al+a2+a3+a4 MR 1

(x2,y2)
(x3,y3)

A general form triangle has six main characteristics three linear (side lengths a, b, ¢) and three angular (o, 3, 7).
The classical plane trigonometry problem is to specify three of the six characteristics and determine the other

three.This is the our first relation.here universal formula of area is sum of all triangles area is equals to the sun

295 | Page

International Journal of Advance Research in Science and Engineering Q
Volume No.06, Special Issue No.(01), Nov 2017 IJARSE
www.ijarse.com ISSN: 2319-8354

of outer triangle.so we put this relation in our coding and check if the total area is equals to the sum of inner

areas then there is no fault if it gives value false then there is fault in the programing.

Step 4.First Input file given: This is the file of our first relation .Further this data given for optimization.
Table 3.1 Input data file

11 1100.0000 | 2500.0000 | 1600.0000 | 5640.0000 | 7600.0000 | 2500.0000
FALSE
12 2980.0000 | 2500.0000 | 1160.0000 | 5210.0000 | 6200.0000 | 2500.0000 | FALSE
13 1100.0000 | 2500.0000 | 1600.0000 | 5600.0000 | 7660.0000 | 2500.0000 | TRUE
14 1110.0000 | 2500.0000 | 1600.0000 | 5600.0000 | 7660.0000 | 2500.0000 | FALSE
15 9800.0000 | 2500.0000 | 1160.0000 | 5210.0000 | 6200.0000 | 2500.0000 | FALSE
16 1110.0000 | 2500.0000 | 1160.0000 | 5600.0000 | 7660.0000 | 2500.0000 | FALSE
17 9800.0000 | 2500.0000 | 1160.0000 | 5100.0000 | 6200.0000 | 2500.0000 | FALSE
18 1110.0000 | 2500.0000 | 1600.0000 | 5600.0000 | 7600.0000 | 2500.0000 | FALSE
19 9800.0000 | 2500.0000 | 1160.0000 | 5610.0000 | 6820.0000 | 2500.0000 | FALSE
110 | 1100.0000 | 2500.0000 | 1600.0000 | 5600.0000 | 7660.0000 | 2500.0000 | FALSE
111 | 9800.0000 | 2500.0000 | 1600.0000 | 5600.0000 | 6820.0000 | 2500.0000 | TRUE
112 | 1210.0000 | 2500.0000 | 1600.0000 | 5600.0000 | 7660.0000 | 2500.0000 | FALSE
113 | 9800.0000 | 2500.0000 | 1600.0000 | 5600.0000 | 6800.0000 | 2500.0000 | TRUE
114 | 2100.0000 | 2500.0000 | 1600.0000 | 5600.0000 | 7600.0000 | 2500.0000 | FALSE
115 | 2100.0000 | 2600.0000 | 8000.0000 | 6700.0000 | 9000.0000 | 5000.0000 | TRUE
116 | 5500.0000 | 2500.0000 | 1160.0000 | 5600.0000 | 7600.0000 | 2500.0000 | FALSE
117 | 9800.0000 | 2500.0000 | 1600.0000 | 5600.0000 | 6000.0000 | 2500.0000 | FALSE
118 | 1500.0000 | 2500.0000 | 1600.0000 | 5600.0000 | 7600.0000 | 2500.0000 | FALSE
119 | 7500.0000 | 2500.0000 | 1600.0000 | 5600.0000 | 7600.0000 | 2500.0000 | FALSE
120 | 7500.0000 | 2500.0000 | 1600.0000 | 5600.0000 | 6000.0000 | 2500.0000 | FALSE

Input with MR1

It shows the result with each input values when it gives false value it means we detect the bug because we
give the mutant in the input and vice versa. This is the example of only one MR.Then by applying AFSA
we generate multiple test cases.

Step 5.Calculation of mutation detection ratio:It is the ratio of mutant detected and total mutant present.
Metamorphic Relation 1: 16/20

Here in MR1 there are 16 mutants detected out of 20 inputs with mutants given.

Step 6.Comparison Of Metamorphic Relations:Here mutation detection ratio of different metamorphic
relations are generated now it will compare the ratio and find the best metamorphic relations that detects more

faults.

296 |Page

International Journal of Advance Research in Science and Engineering QQ
Volume No.06, Special Issue No.(01), Nov 2017

IJARSE
www.ijarse.com ISSN: 2319-8354
Table 3.2 Comparison of MRs
Metamorphic MR1 | MR2 MR3 | MR4 | MR5 | MR6 | MR7
Relations
MDR 0.8 0.85 1 0.9 1 1 1

Step 7. Overcome Two Major Challenges Of Metamorphic Testing: It shows the comparison table of both
challenges

«»QOvercome challenge no. 1: Prioritization and minimization of metamorphic relations:For most programs
a variety of metamorphic relations with different fault—detection capabilities can be derived. In certain cases
using all the metamorphic relations may be too expensive and a subset of them must be selected. It is therefore
important to know how to prioritize the most effective metamorphic relations. To this end, several authors have
proposed using code coverage or test case similarity with promising results. However, the applicability of those
approaches as domain—independent prioritization criteria is still to be explored. Prioritization and minimization
of metamorphic relations by analysis the comparison table of MDR we concluded:

Table 3.3 Priority of MRs

Metamorphic relation Priority
MR 3
MR 5
MR 6
MR 7
MR 4
MR 2
MR 1

«+*Overcome challenge no.2:Generation of likely metamorphic relations-The generation of metamorphic
relations is probably the most challenging problem to be addressed. Although some promising results have been
reported, those are mainly restricted to the scope of numerical programs. The generation of metamorphic
relations in other domains as well as the use of different techniques for rule inference are topics where
contributions are expected. Generation of likely metamorphic relations by analysis the comparison table of
MDR we concluded:

297 |Page

International Journal of Advance Research in Science and Engineering QQ
Volume No.06, Special Issue No.(01), Nov 2017 IJARSE

www.ijarse.com ISSN: 2319-8354

Table 3.4 Likely MRs

Likely generated metamorphic relations
MR 3
MR 5
MR 6
MR 7

1V. CONCLUSION AND FUTURE SCOPE

Conclusion:This paper demonstrates the use of metamorphic testing as a complement to special value testing
using randomly generated values to test the software. Metamorphic Testing is very helpful in detecting faults
when general testing fails to detect the bugs.Along with Metamorphic Testing, Artificial Fish Swarm Algorithm
is deployed to increase the efficiency of Metamorphic Testing.The challenges of Metamorphic Testing like
prioritization and likely generation overcome by us.

Future Scope:In this thesis, we have generated the metamorphic relations under Metamorphic Testing for
testing the software manually which requires a lot of resources as well as time. So a mechanism can be devised
in future to generate automated metamorphic relations to test the software more effectively and efficiently.

REFERENCES

[1]Segura, Sergio, G. Fraser, A. B. Sanchez, A. R. Cortes, A Survey on Metamorphic Testing ,IEEE,42(9),
2016, 805 — 824,

[2]Sequra, Sergio, G Fraser, A. B. Sanchez, and A.R.-Cortes Metamorphic Testing: A Literature Review,
Applied Software Engineering Research Group,University of Seville Spain,1.1, ,july 2015.

[3] T. Y. Chen, S. C. Cheung, and S. M. Yiu,Metamorphic testing:A new approach for generating next test
cases, Technical Report HKUST-CS98-01, Department of Computer Science, The Hong Kong University
of Science and Technology, Tech. Rep., 1998.

[4] W. Cody, Software Manual for the Elementary Functions,Upper Saddle River, NJ, USA: Prentice-Hall, Inc.,
1980.

[5] M. Blum, M. Luby, and R. Rubinfeld,Self-testing/correcting with applications to numerical
problems,Journal of Computer and System Sciences,47(3),1993,549 — 595.

[6] P. E. Ammann and J. C. Knight,Data diversity: An approach to software fault tolerance,|[EEE Transactions
on Computers,37(4),1988,418-425.

[7]W.K.Chan,S,C.Cheung,Karl,R.P.H.Leung,A Metamorphic Testing approach for Online Testing of service
oriented applications, International Journal of Web Services Research,4(2),2009,61-81.

[8]E.J. Weyuker,On Testing Non-Testable Program,Oxford Journals Science & Mathematics Computer Journal
25(4),1982,465-470.

298 |Page

International Journal of Advance Research in Science and Engineering (/
- I

Volume No.06, Special Issue No.(01), Nov 2017 IJARSE

www.ijarse.com ISSN: 2319-8354

[9]T song Yueh Chen,Metamorphic Testing: A Simple Approach to Alleviate the Oracle Problem,International
Journal of Modern Engineering Research (IIMER),3(2),2013,990-99.

[10]Barr,E.T Harman,M.Mc Minn,P.Shabhaz,M.ShinYoo,The Oracle Problem in Software Testing:A
Survey,Software engineering,|IEEE,41(5),2015,507-525.

299 |Page

