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ABSTRACT 

MHD viscous flow of an ionized gas through a horizontal channel bounded by two parallel walls in a rotating 

frame of reference, taking the effects of Hall currents into account. It is assumed that the magnetic Reynolds 

number is small.  The fluids in the two regions are assumed to be incompressible, immiscible and electrically 

conducting with different viscosities; electrical and thermal conductivities.  The transport properties of the two 

fluids are taken to be constant and the bounding walls are maintained at constant and equal temperature. The 

governing equations of energy for both fluids are solved using the prescribed conditions (that is, isothermal 

boundary and interface conditions).The governing differential equations are solved analytically, using the 

prescribed boundary conditions in both phases and obtained exact solutions for primary and secondary velocity 

distributions. 

Numerical calculations of the resulting solutions are performed and by varying the various physical parameters 

Hartmann number, Hall parameter, viscosity ratio, height ratio and represented graphically to discuss 

interesting features of the solutions. We observed that an increase Hall parameter increases the primary and 

secondary velocity distributions for fixed values of the remaining governing parameters. 
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I. INTRODUCTION 

We consider a steady state two-dimensional two-fluid flow of an ionized gas bounded by two infinite horizontal 

parallel walls(y= 1h and y= 2h ) extending in x-and z-directions under the action   of   a   uniform    transverse   

magnetic   field    B0   applied   in   the y-direction, that is, normal to the plane of flow. We assume that, both the 

fluid and walls are in a state of rigid rotation with uniform angular velocity about y-axis normal to the walls. K 

is the Taylor number (rotation parameter). The effect of flow parameters on the fluid’s temperature and the heat 

transferred between the fluids and the walls is considered, using the fully developed two-fluid. Further, 

assuming that the thermal boundary conditions apply everywhere on the infinite channel walls and neglecting 

the thermal conduction in the flow direction, the governing energy equations in two-fluid regions. 
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II. FORMULATION OF THE PROBLEM 

The fundamental equations of motion and current for the steady state two-fluid flow of neutral fully-ionized gas 

valid under above assumptions and in a rotating frame of reference, for both regions are simplified as:  
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In the above equations, the subscripts 1 and 2 refer to the quantities for Region-I and II respectively, such as u1, 

u2 and w1, w2 are the primary and secondary velocity distributions in the two regions respectively,  is the 

angular velocity, Ex and Ez , also Jx and Jz are x- and z- components of electric field, also current densities 

respectively. Here, s = pe/p is the ratio of the electron pressure to the total pressure.  The value of s is 1/2 for 

neutral fully–ionized plasma and approximately zero for a weakly–ionized gas.  11 , 12  and 21 , 22  are the 

modified conductivities parallel and normal to the direction of electric field respectively.  

The boundary condition on velocity requires the no slip condition.  In addition, the fluid velocity, sheer stress 

must be continuous across the interface y=0. So the boundary and interface conditions on 1, 2 ,  1 2, ,u u  

1 2, ,w w  1 2, ,I I   are: 

The isothermal boundary and the interface conditions are  

 1 1 0,                                                                                            

 2 1 0,                  

   1 20 0 ,                  
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 , at y = 0.                      

 

III. SOLUTIONS OF THE PROBLEM 

Exact solutions of the governing differential equations subject to the boundary and interface conditions for the 

temperatures 1, 2 , regions are obtained as in the following two cases of study.  
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IV.EXPERIMENTAL RESULTS 

The problem of MHD two immiscible fluids flow through a horizontal channel is investigated analytically in the 

presence of an applied magnetic field transverse to the flow direction.  The two fluids are assumed to be 

incompressible and electrically conducting possessing different viscosities, thermal and electrical conductivities. 

The resulting partial differential equations are reduced to ordinary linear differential equations and solved 

analytically by means of the assumed solutions to obtain exact solutions for the velocity distributions, such as, 

u1, u2 respectively in the two regions. The graphs for the velocity distributions for steady state flow motions are 

shown in figures to discuss the important features of hydromagnetic state of the fluid.   

 

 



 

526 | P a g e  
 

V. CONCLUSION  

The effect of the ratio of electrical conductivity   is shown in fig.1. It is found that, there is no much 

significant variation on temperature as 0  increases. 

Fig.2 depicts the effect of the thermal conductivity ratio on temperature distribution. It is found that the 

temperature increases as   increases. Also, the maximum temperature distribution in the channel tends to 

move below the channel centerline towards region-II (fluid in the lower region) for thermal conductivity ratio 

(for β=1.5, 2), and the maximum temperature in the channel tends to move above the channel centerline towards 

region-I (fluid in the upper region) for height ratio (for β= 0.1). 
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