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ABSTRACT

The moduli set {2n — 1, 2n, 2n + 1} has been commonly used in residue number system (RNS)-based calcula-
tions. Its sign extraction problem, even though fundamentally important in magnitude comparison and other
difficult algorithms in RNS, has received considerably less attention than its scaling and reverse conversion
problems. This paper presents a new algorithm for the design of a fast adder-based sign detector. The circuit is
greatly simplified by minimizing the dynamic range to eliminate large modulo operations with the help of the
new Chinese remainder theorem. Our synthesis results show that the proposed design outperforms all the exist-
ing adder-based sign detectors reported for this moduli set in area and speed.

Keywords - Chinese remainder theorem (CRT), computer arithmetic, residue number system
(RNS).

I.INTRODUCTION

Residue number system (RNS) is gaining enhancing popularity in the VLSI implementation of application-
specific digital signal processors (DSPs). This is in part due to its ability to accelerate and to decrease the power
consumptions of crucial and frequently used data path operations by subword-level parallelism and modularity,
and in part due to the ease of realizing modulo operations using the moduli of the forms 2" and 2"+1. Modular
2"+1. arithmetic properties have been exploited with arithmetic structures, such as diminished-1, sparse carry
chain, Kogge—Stone adder, and so on, to decrease the implementation complexity of modulo addition, subtrac-
tion, and multiplication for these special moduli to an extent that is comparable with their two’s complement
number system counterparts. These improvements have given rise to the extensive use and continual successes
in developing the balanced three moduli set {2" — 1, 2", 2" + 1} for the implementation of many new and exist-
ing DSP algorithms, including fast Fourier transform, discrete wavelet transform, finite and infinite impulse
response filters, and digital image processing. In fact, the difficulties associated with the implementation of
nonmodular operations, such as scaling and reverse conversion from residue-to-binary representation, have
largely been resolved for this three moduli set.

Even though the hardware efficiency of its individual residue arithmetic operations, as well as its forward and

reverse converters, some fundamental operations, such as sign detection, magnitude comparison, and overflow
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detection, for this moduli set remain slow and expensive. These operations are complicated to parallelize as they
need the combination of multiple residue values to calculate. To reduce the computational complexity, lookup
tables are often used to store the precalculated orthogonal projections of the numbers of interest. Unfortunately,
memory-based ways are difficult to pipeline. The size and number of lookup tables, as well as their access time
also grow with the size of the moduli. Among these operations, sign detection is an example of a less focused
problem for this moduli set. Despite its importance as a preprocessing operation and an integral component of
other intermodulo operations like magnitude comparison and overflow detection, only a handful of solutions are
found in the literature.

A general theorem for sign detection in residue domain is presented, where the magnitude of an integer is first
decoded from its residue representations by converting the residues into its equivalent binary representation to
find the halfway point of the dynamic range. The large modulo operation in the reverse conversion is decreased
by the mixed radix conversion (MRC) and to a modulo-two sum by using the fractional binary representation.
Both the implementations are based on ROMs, which suffer from the aforementioned deficiencies. The most
recent RNS sign detectors were designed for {2" — 1, 2", 2™ — 1}. Although very efficient standalone, its use is
limited as the efficient reverse converter, and scaler needed for a complete system implementation has not been
reported for this new moduli set. The only adder-based sign detection circuits for {2n —1, 2n, 2n +1} identify the
sign by either full or partial reverse conversion into the binary domain using the new Chinese remainder theo-
rem, or through the mixed radix coefficients.

In this paper, an alternative efficient sign detection algorithm for {2"-1, 2", 2"+1} is proposed. The proposed
technique develops the new CRT-I to greatly simplify the 22" — 1 scaling of residue representation into addends
that can be readily achieveed by circular left shifted residues at no logic cost. The reduced dynamic range
enables the sign of an integer to be calculated directly from the most significant bit (MSB) of the scaled residues
with a heavily strippeddown version of a reverse converter. Another benefit of our proposed sign detector is that

it can also be used as a scaler.

11.PRELIMINARIES AND NOTATIONS
RNS is characterized by a set of N coprime numbers, called the moduli set {m1, m2, ... mN }, i.e., GCD(mi ,m
j)=1Vi#j. Any integer X can be represented by an N-tuple (x1, x2, . .., XN ) in this moduli set. Each residue
X; is the least nonnegative remainder calculated by dividing X by the modulus mi , which can be expressed ma-
thematically as x; = |X|m; fori =1, 2, ..., N. The product of all moduli is called the dynamic range M, i.e., M =
_Ni=1m;. Any integer X that lies within 0 < X < M will have a unique residue representation.

An integer X within the dynamic range can be recovered from its residue representation (x1, x2, . . .,
xN ) by applying the CRT

N
P{' = Z M; | |"‘d.‘_l |m X |m.=
=1 Mo (1)

where M; = M/m; and |[M—1; |m; is the multiplicative inverse of [M; |m; .
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To represent a signed integer X" in RNS, M is divided into two symmetrical half ranges for the repre-
sentation of positive and negative integers. When M is even, the range of signed integers that can be definitely
represented in RNS is [-M/2, M/2 — 1]. Correspondingly, for odd M, the range of definitely representable signed
integers in RNS is [-(M — 1)/2, (M — 1)/2]. The signed integer X" can be represented using the same residue

representation as an unsigned integer X for the same moduli set. The relationship between X" and X is given as

;:;=HX+¥J B 2

When X* > 0, the residue representation of X can be mapped to that of X" in the range of [0, M/2 — 1] if M is

follows:

even and [0, (M — 1)/2] if M is odd. In a similar way, when X" < 0, the residue representation of X can be
mapped to that of X" in the range of [M/2, M — 1] if M is even and [(M + 1)/2, M — 1] if M is odd. Thus, the sign
of X" can be identified as follows.

When M is even

oo [0, if X e[0,(M/2)-1]
sign(X) = i 1, if X € [M/2, M — 1] 3)
When M is odd

o [0, if X e[0,(M—1)/2]

sign(X) = | 1, if X e[(M+1)/2,M—1] @
0 2 ,.‘I_zn —2"-2 Xe[027-2)
v
0 g re[0,27)

Fig. 1. Mapping of the half ranges of integer X in [0, M) to the half ranges of its scaled integer Y in [0, M")

Properties 1 and 2 are employed in order to simplify some arithmetic operations in the derivation of our pro-
posed sign detection circuit for RNS {2"—1, 2", 2" + 1}.
Property 1: The modulo 2" — 1 multiplication of an n-bit binary number x and r exponent of two is equivalent to

a circular left shift (CLS) of the binary bits of x by r positions
|2jla"|2”—l = CLSp(x,r)

where CLSn(x, r ) represents the circular shift of an n-bit binary number x by r bits to the left.

Property 2: As a corollary of Property 1
|=2"xlpn_1 = 272" =1 =x)lan_; = [2"%|pn | = CLSa(%,7) (6)

Where —X is the one’s complement of integer X.

I11. PROPOSED SIGN DETECTION ALGORITHM
Let (X1, X,, X3) be the residue representation of an integer X with respect to the moduli set {m;, m,, mg} = {2" - 1,

2", 2" + 1}. Since the dynamic range M of this moduli set can be factored into 2" and 2°" — 1, the sizes of the
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modulo operations required for identifying the sign of X" from its equivalent residue representation of X can be
substantially decreased by scaling (x., X, X3) in the residue domain by 22" — 1. This will map thes lower half
range [0, 2°" % — 2" of X to the lower half range [0, 2" %) of the scaled integer Y and the upper half range [2°"*
— 2" 23" — 2" of X to the upper half range [2" %, 2") of Y , as shown in Fig. 1. By minimizing the dynamic
range from M = 23" — 2%" to M' = 2", its half range can be easily identified from the MSB of the scaled integer Y

This new concept of sign detection in {2" -1, 2", 2" +1} can be made very efficient provided that scal-
ing by 22" — 1 as well as the reverse conversion of the scaled residues into Y can be computed efficiently from
the residues xi, X,, and Xs. As only the MSB of Y is needed for the sign detection of X", a full reverse conversion
from (X1, X5, X3) is not needed.

To simplify the scaling by 22n —1 in the residue domain, the new CRT, also called CRT-I, is used to
convert X into a weighted sum of its residues modulo 22n — 1. Corresponding to CRT-I

X =x3+mylky(xy —x3) + kom0 = XD lmime (7

where kyms = [1]m;m, and komzm; = |1|m, .

Withm; =2"1, m, = 2", and mg = 2" + 1, we have

X =x3+@"+ DIk —x3) + k2 (2" — Dxp — x1)|an2n_py (8)

It can be proved that the multiplicative inverses of [2" + 1|2n (2"-1) and |22" — 12" are given by k1 = 2°"* — (2"

— 1) and k2 = —1, respectively. These closed form expressions of k1 and k2 are proved as follows.
Proof of k1 = 2" — (2" — 1):

k(2" + 12" (2"-1) = |2 = (2" - DIER" + D" (2"-1)
= [2* 2"+ 1) — (2*" - 1)]2" (2"1)
=23 - 22 4 12" (2"-1)
= 222"~ 1) + 12" (2"-1) = 1.
Proof of k, = —1:
K2 (22" = Dfon = |—1 x (22" = Dfpn = |-22" 4+ 1|on = 1
Substituting the values of k1 and k2 into (8), we have

2271 2" — 1)} (xy — x3)

X =x3+(2 +1)‘ — (2" = 1)(xz —x1)

27(27 1)

n 201 (xy — x3)
ﬂ”””‘ — (2" = 1)(x2 — x3)

rE-n 9)
By scaling X by 2*" —1, the scaled integer Y can be obtained by

X X3 (2"+1)z
Y= Lgﬁn_]J = Lgﬁ:r_]J+L 22n _ |

where Z = 2"} (x, — x3) — (2" — 1)(X, — X3)[2"(2"-1).

Since x3 € [0, 2"], X3 < 2%" — 1. Therefore [(xs/2?" — 1)] = 0, and Y can be written as
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Y=U2”+])ZJ=L z J
22—y 2 1

_ an_lm —x3) = 2" = D)(x2 —)‘])bn[:rf_]]J
(11)

@ -

As [(X|[m1m2 /m1)] = |[(x/m1)]|m2 from [11], (11) can be rewritten as

v FE”—]U, —53) - 2" = Dix2 —mJ

@ -1

2211 () — x3)
L? +x3-x

an

L (12)
Let H = 22" }(x, — x3). Since H = m[(H/m)] + |H|,, for any integer H and m, we have

H
H=(2"-1) lﬁJ + [H|2n

Taking mod 2" operation on both the sides of (13), we have

H
Hlm = |(2" -1 Hlon_1]|2n
|H|2 ‘( )[2"—1JL"+” l2n—1l2

...... (14)
Since [Hon = [2°" (x, — x3)[2" = 0 and 2" — 1j,n = -1
L=l - (15)
Substituting (15) into (12), we have
Y = [[Hlpn_1 + x3 — x2|2n
= 12" e =)+ x3 —wle (16)

If Y € [0, 2""), X falls in the lower half range of M and (X1, X,, X3) denotes a positive integer, i.e., X" > 0. Other-
wise, if Y € [2"F, 2"), X falls in the upper half range of M and (xy, X,, X3) represents a negative integer, i.e., X" <
0.

IV. HARDWARE IMPLEMENTATIONS

The residues x1, x2, and x3 can be denoted in a binary form as x; = X;,n-1Xgn-2 - - - X1,0, X2 = Xan-1X2n-2 - - - X20 and
X3 = Xan Xan-1 . . - X3,0, FeSpectively, where x; ; represents the j th bit of the residue x; . The binary vectors of x1
and x2 are of n bits but the binary vector of x; is of n + 1 bits. In (16), one of the terms in the modulo 2" — 1 sum
involves the operation |-2°"* x32"—1, which cannot be directly implemented by Property 2, since x; has n+1
bits. To apply the CLS property on the one’s complement of X3 as in (6), Xs is expressed as Xz = 2"Xz, +
X3n-1Xan-2 + - - X30. SiNCe 2" X3,)2"-1 = X3, the MSB X3, of x5 can be logically OR with x3,0 to form an n-bit
binary vector x's = [X3|2"—1 = [Xg n-1Xan-2 - - - X'30/2"—1, Where X's ¢ = X3V X3,and v denotes a logical OR operator.
|[H|.n—1 in (16) can then be implemented using the CLS operations of Properties 1 and 2 to obtain

Vi=lug tusloay +x3 —x2he (19

where

up = 22" xg|an_q = CLSp(x1,2n — 1) = X1 0 X1 n—1 ... X1,1
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2n—1
uz = |27 3301 = CLSu (33,20 — 1) = 75 g F3,0—1... 53,1
N L

1 a—l .. (19)

The term |u; + U,|2"-1 can be expressed as

wy +us 4+ 1an, ifuy+us=2"—-1
oty 2 2 1 2

uyp +u2jam_y = i
[y 4 u2|2n_ uy + 12, otherwise | (20)

u U,
n n

g; and p; Generator
P 8i

Carry ‘ AND all
Generator bits

o} v w
— fé .
\/.

c.

in

Fig. 2. Generation of carry-in signal c;,

Uy B B PPy

uz;[_ 88 Py Py N
SECTIRS

g] p]
v
4 P <

3'.'“’17 “36“16 23 U5 “4”14 “13“13 zz“u ” L"u Hyg thyp

(
cv

Fig. 3. Example of the generation of the carry signal C, and forn =8

Hence, [Jug + Up2"1[2" = |uy + U, + Cin|2", where cin € {0, 1}. As [-%2" = 2, — x* = X, + 1, (17) can be written
as

Y=|uy+uz+cin+x3+x2+1fn (21)

The generation of the carry-in signal c;, is shown in Fig. 2. The
condition u; +u, > 2" is detected by C; = 1 and the signal C, can be generated by parallel prefix operators. As an
example, the carry signal C; for n = 8 can be generated by the circuit shown in Fig. 3. The condition u;+u, =
2"-1={11...11}n can be identified by C, = 1. C, is generated by ~ w A v, where w = A ;5" * g;and v = p, 1:0
= A" pi,» where A denotes a logical AND operator. The signals g; and p,_1.c have already been generated in
the computation of C1. Accordingly, the condition u;+u, > 2" —1 for cin = 1 can be detected by

Chn=Cy1V Cy...... (22)

The two addends, u2 and x3, in (21) can be further simplified as follows:

6|Page




International Journal of Advance Research in Science and Engineering Q

Volume No.06, Issue No. 11, November 2017 Iy AE{SE
www.ijarse.com ISSN: 2319-8354

2 + x3]2n = ||2u2|2n — w2 + |x3|20]20

= |X¥3,n—1%3 n—2-..%3,10+|x3|2n —uz

n an

X3,n—1%3 n—2 ... X3,1X3,0 —X3,0 + |x3|2n — 12

n
= ||¥32n + |x3|2n —u2 — X3 0/2n
=|2" — 1 —uz — F3,0l2n = |tz — X3,0/2n

an

! -
= |x3,0x3,n7113,n72 X3, = X30| pn

X X3 X2
irHl i’n iﬂ
Bit reordering | | . Blt,
inversion
e P
‘ n-bit CS4 ‘ ‘ Fig.2 ‘
1 4 o
‘ Simplified prefix adder }47

¥

Fig. 4. Proposed sign detection architecture for {2" -1, 2", 2"+1}

, i X = X3 X3 p— X3 p—2 ... X3 ] — X
When Xa = 0, X50 = X30 V 0 = Xao. Then 142 T X3l = [x3,0X3 n—1X3 n—2 30 =300 (24)

When x3, = 1, since x3 € [0, 2n], X3,n-1Xan-2 - - - X30 =00 ... 0. Hence, X'30 = X3 V Xsn =1 and

|tz + x3]20 = (100...0—1

n

an n

= [X3,0X30¥3n X3 0 — E.’!‘O +x3p

To satisfy both (24) and (25)
|2 + x3|2n = |43z — X3 020
where the n-bit binary vector us is given by
Uiy = (X3,0 VX3 X3 n—1X3 p—2 ... X3 1
Substituting (26) into (21), we have
F=luy+uzs+ir+cnt =Sl )
Ifx30=1,1— Xs0=1,andifxsp=0,1— x30=0.Hence, the term 1— x5, in (28) can be replaced by X3

and
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Vi=lup +us+32 +cin+ X300 (99

The sign of X" can be identified by the MSB of Y. An n-bit carry save adder (CSA) can be used to add the three
n-bit operands, uy, Uz, and X, to produce an n-bit sum A = a, ;a, » . . . @ and an n-bit carry vector B = b, 1b, »
... bibg. Due to the modulo 2n addition, the final carry output bit bn of the CSA need not be generated. As b0 =
0, it can be replaced by x3,0 of (29) before the MSB of Y is calculated by a simplified parallel prefix adder of A
and B with the input carry bit c_; = c;,. The prefix adder is simplified by keeping only the carry generation net-

work for the computation of carry signal c,;, from which the sign of X* can be identified by

sign(X) = an—1 @ bn—1 ® Cn—1 The architecture of the proposed sign detector is shown in Fig. 4, where the
circuit diagram for the simplified prefix adder is depicted in Fig. 5 for n = 8.

a, b, a; b, a, b, -Llr alb:‘. a, b, a b ax,

& rr’]—’;] Ein
1 II
IS

\/ a, b

e

sen(X)

Fig. 5. Simplified prefix adder for n =8

u; 0 1 1 1 1
s 0 1 1 0 1
¥ 1 1 0 0 0
A 1 1 0 1 0
B 1 ~ 1 — 0 ~ I ~ 0= 2
A 1 1 0 1 0
B 1 1 0 1 0
Cin 1
Y 1 0 1 0 1

Fig. 6. Computation of Y for Example 1

Example 1: For n =5, {my, m,, ms} = {31, 32, 33}, M = 31 x 32 x 33 = 32 736, and M/2 = 16 368. The signed
integer X~ = —11 161 can be denoted by the residue representation (xs, X, X3) = (30, 7, 26) according to the un-
signed integer X = 21 575 in the same moduli set. The binary representation of the residues are x; = 111102, x, =
001112, and x; = 0110102. According to (18), (19), and (27), u; = 011112, u, = 100102, and uz = 011012. Also,
X30 = 0. Since u; + u, = 01111 + 10010 = 33 > 32, C1 = 1. Since 33 _= 31, C2 = 0. According to (22), ¢\, =C; V
C, = 1. The calculation of Y in (29) is illustrated in Fig. 6. Since MSB of Y = 1, the integer X" represented by
(30, 7, 26) is negative.
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The proposed razor latch is designed with the XILINX ISE 14.5 simulation tool and implemented with Verilog

HDL. The RTL diagram and simulation results are displayed below.

Fig. 7. Top level schematic diagram

bitrecodingandinversion csasbit simplifiedpa

cingeneration

Fig. 8. Internal architectures of RTL diagram

TOP Project Status

Project File: signdetector,xise Parser Errors: X 1Error

Module Name: TOP Implementation State: Synthesized
Target Device: xc7z2010-2clg400 *Errors: Mo Errors
Product Version: ISE 14.5 *Warnings: 2 Warnings (2 new’
Design Goak Balanced » Routing Results:

Design Strategy: ilinx Default {unlocked) *Timing Constraints:

Environment: System Settings * Final Timing Score:

Device Utilization Summary (estimated values) -1
Logic Utilization Used Available Utilization
Mumber of Slice LUTs 33 17600 0%
Mumber of fully used LUT-FF pairs 1] 33 0%
Number of bonded I0Bs 34 100 34%

Fig. 9. Synthesis report
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Fig. 10. Simulation result

VI. CONCLUSION

In this paper, an efficient fast sign detection algorithm for the residue number system moduli set {2"-1, 2",2"+1}
is presented. The proposed algorithm which allows parallel implementation and include modulo 2n additions.
Based on existing sign detection algorithm, an efficient sign detection algorithm is proposed. The sign detection
unit can be implemented using one carry save adder, one comparator and one prefix adder. Here efficiency
achieved is better than other algorithm for sign detection. Adder based sign detectorwas designed by the Verilog
HDL synthesized in Xilinx ISE 14.5.

VIl. FUTURE SCOPE
Arithmetic designs are developed and holded with these proposed methods of reverse converters in RNS formu-
lation. Finally with these conditional procure positions of adders obtain the eventual levels of area, power and

performance.
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